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ABSTRACT

It has been 99 years since Schwarzschild constructed his epony-
mous solution in Einstein’s theory of gravity. It is suprising that
exact solutions can exist in such a nonlinear theory. In this talk,
we shall review the tremendous progress made in the past 99
years, focusing on exact local solutions. We also discuss the
current problems and possible future directions.
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Motivation

2015 marks the centennial of Einstein’s General Theory of Rela-
tivity.

In Chinese tradition, possibly in some other asian traditions as
well, one celebrates the 9’th rather than the 10’th.

It is thus appropriate to celebrate black holes, whose first solution
was published 99 years ago, by Karl Schwarzschild.

Karl Schwarzschild died in May 11, 1916. (Ref: Wikipedia)



Scope of the talk

• I shall focus only on exact solutions.

– In all branches of physics, exact solutions play the most
important role in understanding and developing the con-
cepts.

– Numerical progress is much harder to summarize in less
than 40 minutes.

• There is recently a book called 0Exact solutions of Ein-
stein.s field equations,0 but

• I shall talk about mainly black holes and black hole related
topics.

• I shall also focus on pure gravity. When matter is involved, it
is string or supergravity matter, or at least has a Lagrangian
formulation.

• Also, since in general relativity, we typically do not know
where we are and what time it is, so I shall only present the
local solutions. (The global analysis deserves a special talk
for each black hole.)



outline

• Review of past work (30mins)

• My recent work (15mins)

– Black hole formation
– Black holes in D = 4 higher-derivative gravity



Einstein Theory of Gravity(1915)

Gµν ≡ Rµν − 1
2Rgµν =

8πG

c4
Tµν

Gµν is called Einstein tensor. Vacuum solution Gµν = 0.

To be specific, consider ds2 = gµν(x)dxµdxν§ xµ = {t, x, y, z}

gµν : gµλg
νλ = δνµ ,

Γρµν = 1
2g
ρλ(∂νgλµ + ∂µgλν − ∂λgµν) ,

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ ,
Rµν = Rρµρν , R = Rµµ .



Thus we see that Einstein’s gravity is described by a set of very
complicated non-linear differential equations, involving six inde-
pendent functions (1

2(4×5)−4 = 6) and four variables (t, x, y, z).

At first sight, one does not expect any non-trivial solutions.

Trivial solution: Minkowski spacetime ds2 = −dt2+dx2+dy2+dz2.
In other words, gµν is constant in the Cartesian coordinates, and
hence all the connection Γρµν, Riemann tensor Rµνρσ, Ricci tensor
Rµν and Ricci scalar R all vanish. Einstein’s vacuum equation of
motion is then automatically satisfied.



Static and spherically-symmetric black hole

Schwarzschild (1916): (Spherically symmetric and static)

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2

f = 1−
2m

r
, dΩ2

2 = dθ2 + sin2 θdφ2

This is a vacuum solution Gµν = 0.

How come vacuum has a black hole?

Also, what is this solution good for? Even if there exist black
holes in our universe, there is no evidence of black holes on the
earth or in our solar system.



Vacuum versus vacuum solution

These concepts are analogous to those in electromagnetism (EM).
Vacuum solution is not the same as vacuum; the former is a local
concept whilst the latter is a global one.

Vacuum solution involves localized matter.

Minkowski spacetime is a vacuum of Einstein gravity, whilst the
Schwarzschild black hole is a vacuum solution.

As in EM, the electric potential outside a spherical ball of uniformly-
distributed charge is the same as that created by a point charge
of equal total charge.

The gravitational field outside the Sun is the same as that created
by the black hole of the same mass (and angular momentum).

Thus the Schwarzschild black hole solution can be used to test
General Relativity, even if there is no black hole in the solar
system.



Back to the Schwarzschild metric

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 ,

f = 1−
2m

r
, dΩ2

2 = dθ2 + sin2 θdφ2 .

Since when r → +∞, f → 1, the solution is asymptotic to flat
Minkowski spacetime. The metric has two singularities, one is at
r = r0 = 2m, and the other is at r = 0. The former gives rise to
the event horizon and it is a consequence of coordinate choice,
whilst the latter corresponds to the true spacetime singularity.

An interesting property

−fdt2 +
dr2

f
= −f(dt2 −

dr2

f2
) = −f(dt+

dr

f
)(dt−

dr

f
)

Define du = dt+ dr
f , we have

ds2 = 2dudr − du2 + r2dΩ2
2 +

2m

r
du2

= −dt̃2 + dr2 + r2dΩ2
2 +

2m

r
(dt̃+ dr)2 ,

where u→ t̃+ r. In other words, a black hole is a linear pertur-
bation of the Minkowski spacetime.



Some important black hole properties

Definitionµhaving an (enclosing) event horizon.

• Black hole has inevitable singularity, indicating that the gen-
eral relativity is not classically complete. (Interestingly, New-
tonian gravity has no such a problem, if mass is assumed to
be proportional to volume.)

• The singularity is hidden within an event horizon.

• There is Hawking radiation due to the (semi-classical) quan-
tum effect (Temperature ∼ ~, entropy ∼ 1/~.)

• Black hole no-hair theorem: The properties outside the hori-
zon is completely specified by the conserved quantities such
as mass, angular momentum and charges. suggesting it is
the purest thermal system.

• The first law of black hole thermodynamics µdM = TdS +
ΩdJ + · · · .



Hawking radiation

Temperature:

T =
~c3

8πGMkB
≈

1.227× 1023kg

M
K

Black hole with mass of the SunµT ≈ 10−7K.
LHC black holeµ
(energy released by nuclear bomb: M ∼ 10g, rs ∼ 10−25m, T ∼
1027K.)

Life time:

t =
5120πG2M3

0

~c4
≈ 8.671

M3
0

M3
p
× 10−40s

Mp Planck mass"
Black hole with mass of the Sunµt ≈ 1074s"
LHC massµt << 10−22s.

Even if Hawking is wrong and there is no Hawking radiation,
microscopic black hole created by LHC is rather harmless and
they are as much inert as dark matter. In fact, if it were not
for Hawking radiation, microscopic black holes are very good
candidates for dark matter.



Schwarzschild-(A)dS

Schwarzschild black hole is asymptotic flat, but our universe ap-
pears to have a cosmological constant.

Maximal symmetric spacetime in Einstein theory is Minkowski

Maximal symmetric spacetime in Einstein theory with a cosmo-
logical constant is (Anti-)de Sitter or (A)dS.

Schwarzschild-(A)dS:

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2

f = 1− 1
3Λr2 −

2m

r

The cosmological constant in our universe is too small to be
testable within our solar system.



But the Sun is Rotating



Effect of rotation on spacetime

In Newtonian gravity, the gravitational field created by the Sun
(assuming its spherically symmetric) is independent of its rota-
tion.

Einstein theory predicts that the rotation of the matter can drag
the spacetime around it.

This of course provides a test to distinguish the two theories.



Rotating Black Hole: Kerr Solution

Roy Kerr metric (1963)µGµν = 0

ds2 = ρ2
(
dr2

∆r
+ dθ2

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)dφ

)2

−
∆r

ρ2

(
dt− a sin2 θ dφ

)2
,

ρ2 = r2 + a2 cos2 θ , ∆r = r2 + a2 − 2mr

• Mass: M = m

• Angular momentum: J = ma

• J ≤M2

• Extremal limit |J | = M2

The metric is asymptotic flat. Note that when M = 0, the metric
is Minkowski spacetime written in the rotating coordinates.

tµtime¶rµradial coordinate¶θ: latitude [0, π]¶φ: longitudinal
[0,2π)"



Black hole topology

The topology of a black hole is about the horizon shape. In
four dimensional asymptotic Minkowski spacetime, a black hole
horizon must have spherical topology. (Hawking, 1972.)

Schwarzschild black hole’s horizon is a round sphere, whilst Kerr
metric has elliptic shape.

The horizon (r = r0) of the Kerr metric

ds2
2 = (r2

0 + a2 cos2 θ)dθ2 +
sin2 θ

(r2
0 + a2 cos2 θ)

(r2
0 + a2)2dφ2 .

Extremal case, r0 = a. In general r0 ≥ a.



Rotating black hole?



Further on topology

Static black holes that are asymptotic to (A)dS spacetimes can
have additional topologies

ds2 = −f2dt2 +
dr2

f
+ r2dΩ2

2,k ,

dΩ2
2,k =

du2

1− ku2
+ u2dφ2 , k = 0,±1 ,

with

f = −
Λ

3
r2 + k −

2m

r
.



Kerr-(A)dS

Carter (1968):

ds2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

sin2 θ∆θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

ρ2 = r2 + a2 cos2 θ , Ξ = 1+1
3Λa2

∆r = (r2 + a2)(1−1
3Λr2)− 2mr

∆θ = 1 + 1
3Λa2 cos2 θ

This is actually rather non-trivial to construct. If we let m = 0,
the metric is (A)dS written in rotating coordinates.



Generalize to higher dimensions

• Asymptotic Minkowski: Meyer and Perry (1986)

• Asymptotic (A)dS: D = 5 Hawking, Hunter and Robinson
(1998)

• Asymptotic (A)dS: Arbitrary D, Gibbons, L, Page and Pope
(2004)



New topologies in higher dimensions

In higher dimensions, black objects can have new topologies other
than spheres. For example, in five dimensions, in addition to S3,
the horizon topology can also be S2×S1. Such a solution is called
black ring. The first example of Ricci-flat solution was obtained
by Emparan and Reall. (Phys.Rev.Lett. 88 (2002) 101101)

How many such examples are there in higher dimensions? How
to classify? What happens if one adds a cosmological constant?
These are all interesting research projects, but after 13 years, all
the progresses, albeit significant, are restricted to D = 5 asymp-
totic flat spacetime.

Generalization to Hawking’s topology theorem: In higher dimen-
sions the horizon is of the positive Yamabe type, i.e., admit-
s metrics of positive scalar curvature. (Galloway, Shoen, gr-
qc/0509107.)



Further topics

Kerr + NUT → Kerr-NUT or Plebanski metric → generalized to
Kerr-AdS-NUT in general dimensions, Chen, L and Pope.

C-metric + Plebanski → Plebanski-Demianski metric (the most
general type D metric) → generalized to D = 5 without a cos-
mological constant. L, Mei and Pope. Interestingly this metric
contains the black ring limit.

What is the high-d generalization of Plebanski-Demianski metric?

Another related topic is that dS black hole + Euclideanization
+ BPS limit yield Einstein-Sasaki metrics of toric variety in odd
dimensions. (Y p,q, Gauntlett, Martelli, Sparks, Waldram; Lp,q,r

Cvetic, L, Page, Pope.)



Charged black holes

Einstein-Maxwell theoryµ

L =
√
−g(R− FµνFµν) , Fµν = ∂µAν − ∂νAµ .

Reissner-Nordström (RN)black hole (1916-1918)

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 , f = 1−
2m

r
+
q2

r2
,

with A = q
rdt.

With a cosmological constant

f → −1
3Λr2 + 1−

2m

r
+
q2

r2
.

This black hole has two parameters, mass m and charge q.



Charged and rotatingµµµKerr-Newman AdS

Charged AdS rotating black hole in four dimensions has long been
known:

ds2 = ρ2
(
dr2

∆r
+
dθ2

∆θ

)
+

∆θ sin2 θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)2

−
∆r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)2
,

A =
q r

ρ2

(
dt− a sin2 θ

dφ

Ξ

)
+
p cos θ

ρ2

(
adt− (r2 + a2)

dφ

Ξ

)
,

where,

ρ2 = r2 + a2 cos2 θ , ∆θ = 1 + 1
3Λa2 cos2 θ , Ξ = 1 + 1

3Λa2 ,

∆r = (r2 + a2)(1− 1
3Λr2)− 2mr + p2 + q2 .

Kerr-Newman (1965); Kerr-Newman-AdS is actually constructed
by Carter in 1968.



Generalizing to Higher D

The RN black hole can be generalized easily to higher dimensions.
However, within the framework of Einstein-Maxwell gravity, there
is no known example of charged rotating black holes beyond four
dimensions.

To be precise, black holes exist, but no known analytic solution.



Supergravity admits such a solution

Five dimensional Einstein-Maxwell gravity

L =
√
−g(R− 1

4F
2) .

Five-dimensional Einstein-Maxwell supergravity

L =
√
−g(R− 1

4F
2) + 1

12
√

3
εµνρσλFµνFρσAλ .

Five-dimensional Einstein-Maxwell gauged supergravity

L =
√
−g(R− 2Λ− 1

4F
2) + 1

12
√

3
εµνρσλFµνFρσAλ .

The most general charged rotating AdS black holes was con-
structed in 2005. Chong, Cvetic, L, Pope, hep-th/0506029.

Relevant references: Cvetic, Youm; Chong, Cvetic, L, Pope;
Chow; Wu;...
Supersymmetric rotating solutions: Gutowski, Reall, Gauntlet,
Martelli, etc.

Currently, the most able person in this type of construction is
Professor Wu Shang-qing in China. Many new breakthrough was
made by him recently.



Further interesting black holes

• Carrying Yang-Mills hair: Many BPS black holes in super-
gravities were constructed by Ortin et al.

• Carrying scalar hair: Many exact black holes that are asymp-
totic to flat or (A)dS spacetimes were recently constructed
by many groups,e.g. Anabalon, Acena, Deruelle, Mann, Wen,
Feng, L, etc.

• Black holes in cosmological backgrounds, Kastor and Trashen;
Maiki and Shirashi; Maeda; Sabra; Gibbons, L, Pope; etc.

• AdS planar black holes...

• Lifshitz black holes...

Lifshitz spacetimes

ds2 = `2(−r2zdt2 +
dr2

r2
+ r2dxidxi) .



My recent work: Black hole formation

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 , f = 1−
2GM

c2r

Schwarzschild radiusµrs = 2M . (Using natural units G = 1 = c.)

Uniform mass distribution M ∝ r3

Thus matter can form a black hole even if it is in low density,
as long as there are enough of them. (ExampleµEarth: ρ ∼
5500kg/m3. fixing ρ, rs ∼ 1.7 × 1011m, M ∼ 1038kg. Typical
mass of a black hole ≥ 10×M�.)

Once an event horizon is formed, a singularity becomes inevitable
inside the horizon, (at least in the framework of classical general
relativity.)

Of course, the above discussion is static. Can the dynamical
formation of a black hole described by an exact solution?



It is worth mentioning

Black holes that are formed due to gravitational collapse are
necessarily big ones, with mass more than 10 times the mass of
the Sun.

Microscopic black holes, if exist, were created at the early days
of the universe when the temperature is extremely high.

Black hole formation can be described by Robinson-Trautman
ansatz. (It is hard to imagine an exact solution from the general
ansatz.)

Numerical analysis indicates that AdS spacetime is not stable and
any finite perturbation in the asymptotic boundary can lead to
formation on a black hole in the middle. (Bizon and Rostworows-
ki; Buchel, Lehner and Liebling; Wu, etc.)

We would like to find an exact solution to demonstrate such
instability.



Vaidya metric

Recall earlier-mentioned Kerr-Schild form

ds2 = −fdu(du∓ 2
dr

f
) + · · · = ±2dudr − fdu2 + r2dΩ2

2 .

Vaidya metric

ds2 = ±2dudr −
(

1−
2M(u)

r

)
du2 + r2dΩ2

2 .

Energy-Momentum tensor Tuu = 2M ′(u)
r2 6= 0.

TµνTµν = 0 and Tµµ = 0.

Pure radiative energy decaying or absorbtion.



Scalar-driven black hole formation

Einstein-Scalar theory: Fan and L, 1505.03557.

e−1Ln = n−2
8(n−1)(1− φ2)R− 1

2(∂φ)2 − V ,

V = −1
8(n− 2)2

(
g2 + αφ

2(n−1)
n−2

(
1

1−φ2 − 2F1[1, n−1
n−2; 2n−3

n−2 ;φ2]
))
.

The scalar has a fixed point φ = 0 and hence the theory admits
AdS vacuum

ds2 = g2r2(−dt2 + dxidxi) +
dr2

g2r2
, φ = 0 .

The scalar is conformally massless and satisfying the BF bound,
and the AdS vacuum is therefore linearly stable.

We obtain the following dynamical solution:

ds2 = 2dudr − fdu2 + r2dxidxi , φ =
(a
r

)1
2(n−2)

,

f = g2r2 −
αan−1

rn−3 2F1[1, n−1
n−2; 2n−3

n−2 ,
(
a
r

)n−2
] ,

where a(u) satisfies



ȧ+ α̃ a2 log
(a
q

)
= 0 , α̃ = 1

2(n− 1)α .

There are two stationary points in this equation, one is a =
0, corresponding to the AdS vacuum, and the other is a = q,
corresponding a static planar AdS black hole. There is a solution
linking the two stationary points:

Ei
(

log(qa)
)

= −α̃q u .

-6 -4 -2 2 4
u

0.5

1.0

1.5

2.0

2.5

aHuL

This solution provides an explicit demonstration of nonlinear in-
stability of the planar AdS vacuum that is stable at the linear
level.

See also Zhang and L, Phys.Lett. B736 (2014) 455-458.



Where does the energy come from

A black hole is formed out of the vacuum. Where does the energy
come from? It comes from the scalar potential.

The scalar potential V (φ).

-0.5 0.5

-0.55

-0.50

-0.45

-0.40



Another work: Higher derivative gravity

In quantum field theory, the nonrenormalizable problem can typ-
ically be solved by considering high derivatives. The same is true
for gravity. However, high derivatives typically lead to ghost ex-
citations. In gravity, the problem can be resolved by considering
topological terms like Euler integrands. The lowest non-trivial or-
der is the Gauss-Bonnet term. However, the benefit of avoiding
ghost has a price that the theory is equally nonrenormalizable.

Black hole solutions of this type were constructed by Boulware,
Deser; Cai.

There is no surprise here however in that the solution can be
viewed as the Schwarzschild solution with higher-order correc-
tions.



Four dimensional quadratic gravity

We are concerned with the four dimensional theory

L4 =
√
−g

(
κR+ αR2 + βRµνRµν + γRµνρσRµνρσ

)
.

In four dimensions, the Gauss-Bonnet combination

LGB =
√
−g(R2 − 4RµνRµν +RµνρσRµνρσ)

is a total derivative, and hence we can set γ = 0, or equally write

L =
√
−g

(
κR− αCµνρσCµνρσ + βR2

)
.

where C is the Weyl tensor.

• The theory is renomalizable for general parameters. (Stelle,
1976)

• The theory has ghost for non-vanishing β.

• The theory can be treated as a perturbative truncation of
string theory.

• The higher derivative terms contribute no effective cosmo-
logical constant.



The effect of higher derivatives on black holes

How do the higher derivative terms affect the black hole solution?
It turns out that in four dimensions, Schwarzschild and Kerr black
holes receive no correction.

Is there a new black hole besides the Schwarzschild solution?

L =
√
−g

(
κR− αCµνρσCµνρσ + βR2

)
.

If κ = 0 = β, the theory has called conformal gravity and new
solutions do exist.

• StaticµRiegert§ Phys.Rev.Lett. 53 (1984) 315-318

• RotatingµLiu and L§JHEP 1302 (2013) 139

We now consider κ 6= 0 6= β,

It can be proven, for asymptotic flat spacetime, if the solution
has an event horizon, we must have R = 0. Nelson (Phys.Rev.D
82 (2010) 104026,) This means in particular there is no new
black hole in Starobinsky R+R2 gravity.



The effective theory

Thus the effective theory becomes

L =
√
−g (κR− αCµνρσCµνρσ) .

We find that in addition to the Schwarzschild black hole, there
exist a new disconnect one. This was demonstrated numerically
in Phys.Rev.Lett. 114 (2015) 17, 171601, L, Perkins, Pope and
Stelle.



Asymptotic behavior

The metricµds2 = −hdt2 + dr2

f + r2dΩ2
2. Large r behavior

h = 1−
2M

r
−
c1e
−µ2r

r
−
c2e

µ2r

r
,

f = 1−
2M

r
− 1

2c1(µ2 + 1
r)e−µ2r + 1

2c2(µ2 − 1
r)eµ2r ,

where µ2
2 = 1/(2α). If c1 = c2 = 0 gives rise to Schwarzschild

black hole.

We must have c2 = 0, but c1 can be non-vanishing, which would
give a new black hole. We demonstrate numerically that when
mass M ≤M∗ ≡ 0.434

√
2κα, new disconnect black hole arises. In

other words, given mass less than M∗, there are two black holes,
one is the Schwarzschild and the other is this new one.



Black hole properties
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The masses (left plot) and temperatures (right plot) of the
Schwarzschild (dashed line) and non-Schwarzschild (solid line)
black holes as a function of the horizon radius r0.
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The first plot shows the entropy as a function of mass, and the
second shows the free energy F = M − TS as a function of T ,
for the Schwarzschild (dashed line) and non-Schwarzschild (solid
line) black holes.
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The mass M as the function of temperature T .

It is clear that we have

Cnew < CSchw < 0 .



Conclusions

There are two classes of physicists. One establishes equations;
the other solves them. Einstein equations fortunately provide the
highest enjoyment for people to solve them.

In the first 99 years, the results can be roughly summarised as
follows

• More or less full understanding of static or stationary black
holes with spherical topologies; few or possibly no surprise
there.

• Few things are known on black holes with new topologies,
except for black ring in D = 5, without a cosmological con-
stant.

• Black hole formation and black holes in higher-derivative grav-
ities remain largely untouched, (in the exact solution sense.)

Although tremendous progress has been made, but the subject
is far from over, and calling the efforts as merely “the first 99
years” is not at all pretentious.

We are still at the Beginning rather than the End.



The End


