Gauge Invariant Perturbations in Quantum Cosmology

Guillermo A. Mena Marugán (IEM-CSIC) With Laura Castelló Gomar, & Mercedes Martin-Benito

Hot Topics in Gen. Relativity & Gravitation, 14 August 2015

Introduction

 Our Universe is approximately homogeneous and isotropic: Background with perturbations.

- Need of gauge invariant descriptions (Bardeen, Mukhanov-Sasaki).
- Canonical formulation with constraints (Langlois, Pinto-Nieto).
- Quantum treatment including the background (Halliwell-Hawking, Shirai-Wada).
- Recently studied in Loop Quantum Cosmology.

Classical system

- We consider a **FLRW** universe with **compact flat** topology.
- We include a **scalar field** subject to a potential (e.g. a mass term).
- For simplicity, we analyze only SCALAR pertubations.

• We expand the inhomogeneities in a (real) Fourier basis $(\vec{n} \in \mathbb{Z}^3)$:

- We take $n_1 \ge 0$. The eigenvalue of the Laplacian is $-\omega_n^2 = -\vec{n} \cdot \vec{n}$.
- Zero modes are treated exactly (at linear perturbative order) in the expansions.

Classical system: Inhomogeneities

• Scalar perturbations: **metric and field**.

$$h_{ij} = \sigma^{2} e^{2\alpha} \left[{}^{0} h_{ij} + 2\sum \left[a_{\vec{n},\pm}(t) Q_{\vec{n},\pm} {}^{0} h_{ij} + b_{\vec{n},\pm}(t) \left(\frac{3}{\omega_{n}^{2}} (Q_{\vec{n},\pm})_{,ij} + Q_{\vec{n},\pm} {}^{0} h_{ij} \right) \right] \right],$$

$$N = \sigma \left[N_{0}(t) + e^{3\alpha} \sum g_{\vec{n},\pm}(t) Q_{\vec{n},\pm} \right], \qquad N_{i} = \sigma^{2} e^{2\alpha} \sum \frac{k_{\vec{n},\pm}(t)}{\omega_{n}^{2}} (Q_{\vec{n},\pm})_{,i},$$

$$\Phi = \frac{1}{\sigma (2\pi)^{3/2}} \left[\varphi(t) + \sum f_{\vec{n},\pm}(t) Q_{\vec{n},\pm} \right], \qquad \sigma^{2} = \frac{G}{6\pi^{2}}, \qquad \tilde{m} = m\sigma.$$

Truncating at quadratic perturbative order in the action:

$$H = N_0 \Big[H_0 + \sum H_2^{\vec{n},\pm} \Big] + \sum g_{\vec{n},\pm} H_1^{\vec{n},\pm} + \sum k_{\vec{n},\pm} \widetilde{H}_{\uparrow 1}^{\vec{n},\pm}.$$

Classical system: Inhomogeneities

Scalar constraint:

$$H_{0} = \frac{e^{-3\alpha}}{2} \left(-\pi_{\alpha}^{2} + \pi_{\phi}^{2} + e^{6\alpha} \tilde{m}^{2} \phi^{2} \right),$$

$$2e^{3\alpha}H_{2}^{\vec{n},\pm} = -\pi_{a_{\vec{n},\pm}}^{2} + \pi_{b_{\vec{n},\pm}}^{2} + \pi_{f_{\vec{n},\pm}}^{2} + 2\pi_{\alpha}(a_{\vec{n},\pm}\pi_{a_{\vec{n},\pm}} + 4b_{\vec{n},\pm}\pi_{b_{\vec{n},\pm}}) - 6\pi_{\varphi}a_{\vec{n},\pm}\pi_{f_{\vec{n},\pm}}$$

$$+\pi_{\alpha}^{2}\left(\frac{1}{2}a_{\vec{n},\pm}^{2} + 10b_{\vec{n},\pm}^{2}\right) + \pi_{\varphi}^{2}\left(\frac{15}{2}a_{\vec{n},\pm}^{2} + 6b_{\vec{n},\pm}^{2}\right) - \frac{e^{4\alpha}}{3}\left(\omega_{n}^{2}a_{\vec{n},\pm}^{2} + \omega_{n}^{2}b_{\vec{n},\pm}^{2} - 3\omega_{n}^{2}f_{\vec{n},\pm}^{2}\right)$$

$$-\frac{e^{4\alpha}}{3}\left(2\omega_{n}^{2}a_{\vec{n},\pm}b_{\vec{n},\pm}\right) + e^{6\alpha}\tilde{m}^{2}\left[3\varphi^{2}\left(\frac{1}{2}a_{\vec{n},\pm}^{2} - 2b_{\vec{n},\pm}^{2}\right) + 6\varphi a_{\vec{n},\pm}f_{\vec{n},\pm} + f_{\vec{n},\pm}^{2}\right].$$

• Linear **perturbative constraints**:

$$\boldsymbol{H}_{1}^{\vec{n},\pm} = -\pi_{\alpha}\pi_{a_{\vec{n},\pm}} + \pi_{\varphi}\pi_{f_{\vec{n},\pm}} + \left(\pi_{\alpha}^{2} - 3\pi_{\varphi}^{2} + 3e^{3\alpha}H_{0}\right)a_{\vec{n},\pm} - \frac{\omega_{n}^{2}}{3}e^{4\alpha}\left(a_{\vec{n},\pm} + b_{\vec{n},\pm}\right)$$

$$+e^{6\alpha}\tilde{m}^{2}\varphi f_{\vec{n},\pm}, \qquad \tilde{H}_{\uparrow 1}^{\vec{n},\pm} = \frac{1}{3} \Big[-\pi_{a_{\vec{n},\pm}} + \pi_{b_{\vec{n},\pm}} + \pi_{\alpha} (a_{\vec{n},\pm} + 4b_{\vec{n},\pm}) + 3\pi_{\varphi} f_{\vec{n},\pm} \Big].$$

Gauge invariant perturbations

Consider the sector of zero modes as describing a fixed background.

Look for a transformation of the perturbations --canonical only with respect to their symplectic structure-- adapted to gauge invariance:

a) Find new variables that **abelianize** the perturbative constraints.

$$\breve{H}_{1}^{\vec{n},\pm} = H_{1}^{\vec{n},\pm} - 3e^{3\alpha}H_{0}a_{\vec{n},\pm}.$$

b) Include the gauge-invariant Mukhanov-Sasaki variable.

$$\boldsymbol{v}_{\vec{n},\pm} = e^{\alpha} \left[f_{\vec{n},\pm} + \frac{\pi_{\varphi}}{\pi_{\alpha}} (a_{\vec{n},\pm} + b_{\vec{n},\pm}) \right].$$

c) Complete the transformation with suitable momenta.

Gauge invariant perturbations

• Mukhanov-Sasaki momentum (removing ambiguities):

$$\overline{\boldsymbol{\pi}}_{\boldsymbol{v}_{\overline{n},\pm}} = e^{-\alpha} \bigg[\pi_{f_{\overline{n},\pm}} + \frac{1}{\pi_{\varphi}} \Big(e^{6\alpha} \widetilde{m}^2 \varphi f_{\overline{n},\pm} + 3 \pi_{\varphi}^2 b_{\overline{n},\pm} \Big) \bigg] \\ - e^{-2\alpha} \bigg(\frac{1}{\pi_{\varphi}} e^{6\alpha} \widetilde{m}^2 \varphi + \pi_{\alpha} + 3 \frac{\pi_{\varphi}^2}{\pi_{\alpha}} \bigg) v_{\overline{n},\pm} \,.$$

• The Mukhanov-Sasaki momentum is independent of $(\pi_{a_{\bar{n},\pm}}, \pi_{b_{\bar{n},\pm}})$.

The perturbative Hamiltonian constraint is independent of $\pi_{b_{\bar{n},\pm}}$. The perturbative momentum constraint depends through $\pi_{a_{\bar{n},\pm}} - \pi_{b_{\bar{n},\pm}}$.

• It is straightforward to complete the transformation:

$$\widetilde{C}_{\uparrow 1}^{\vec{n},\pm} = 3 b_{\vec{n},\pm}, \qquad \breve{C}_{1}^{\vec{n},\pm} = -\frac{1}{\pi_{\alpha}} (a_{\vec{n},\pm} + b_{\vec{n},\pm}).$$

The redefinition of the perturbative Hamiltonian constraint amounts to a redefinition of the lapse at our order of truncation in the action:

$$H = \breve{N}_0 \Big[H_0 + \sum_{\vec{n},\pm} H_2^{\vec{n},\pm} \Big] + \sum_{\vec{n},\pm} g_{\vec{n},\pm} \breve{H}_1^{\vec{n},\pm} + \sum_{\vec{n},\pm} k_{\vec{n},\pm} \widetilde{H}_{\uparrow\uparrow}^{\vec{n},\pm} ,$$
$$\breve{N}_0 = N_0 + 3 e^{3\alpha} \sum_{\vec{n},\pm} g_{\vec{n},\pm} a_{\vec{n},\pm} .$$

Full system

We now include the zero modes as variables of the system, and complete the canonical transformation.

 We re-write the Legendre term of the action, keeping its canonical form at the considered **perturbative order**:

$$\int dt \left[\sum_{a} \dot{w}_{q}^{a} w_{p}^{a} + \sum_{l,\vec{n},\pm} \dot{X}_{q_{l}}^{\vec{n},\pm} X_{p_{l}}^{\vec{n},\pm} \right] \equiv \int dt \left[\sum_{a} \dot{\tilde{w}}_{q}^{a} \tilde{w}_{p}^{a} + \sum_{l,\vec{n},\pm} \dot{V}_{q_{l}}^{\vec{n},\pm} V_{p_{l}}^{\vec{n},\pm} \right]$$

- <u>Zero modes</u>: **Old** $\left\{w_q^a, w_p^a\right\} \rightarrow$ **New** $\left\{\tilde{w}_q^a, \tilde{w}_p^a\right\}$. $\left(\left\{w_q^a\right\} = \left\{\alpha, \varphi\right\}.\right)$
- Inhomogeneities: Old $\left\{X_{q_l}^{\vec{n},\pm}, X_{p_l}^{\vec{n},\pm}\right\} \rightarrow \text{New:}$

$$\Big\{V_{q_l}^{\vec{n},\pm}, V_{p_l}^{\vec{n},\pm}\Big\} = \Big\{\Big(v_{\vec{n},\pm}, \breve{C}_1^{\vec{n},\pm}, \widetilde{C}_{\uparrow 1}^{\vec{n},\pm}\Big), \big(\bar{\pi}_{v_{\vec{n},\pm}}, \breve{H}_1^{\vec{n},\pm}, \widetilde{H}_{\uparrow 1}^{\vec{n},\pm}\Big)\Big\}.$$

• Using that the change of perturbative variables is linear, it is not difficult to find the **new zero modes**, which include modifications quadratic in the perturbations.

Expressions:

$$w_{q}^{a} = \tilde{w}_{q}^{a} - \frac{1}{2} \sum_{l,\vec{n},\pm} \left[X_{q_{l}}^{\vec{n},\pm} \frac{\partial X_{p_{l}}^{\vec{n},\pm}}{\partial \tilde{w}_{p}^{a}} - \frac{\partial X_{q_{l}}^{\vec{n},\pm}}{\partial \tilde{w}_{p}^{a}} X_{p_{l}}^{\vec{n},\pm} \right],$$

$$w_{p}^{a} = \tilde{w}_{p}^{a} + \frac{1}{2} \sum_{l,\vec{n},\pm} \left[X_{q_{l}}^{\vec{n},\pm} \frac{\partial X_{p_{l}}^{\vec{n},\pm}}{\partial \tilde{w}_{q}^{a}} - \frac{\partial X_{q_{l}}^{\vec{n},\pm}}{\partial \tilde{w}_{q}^{a}} X_{p_{l}}^{\vec{n},\pm} \right].$$

 $\{X_{q_i}^{\vec{n},\pm}, X_{p_i}^{\vec{n},\pm}\} \rightarrow$ Old perturbative variables in terms of the new ones.

New Hamiltonian

Since the change of the zero modes is quadratic in the perturbations, the new scalar constraint at our truncation order is

$$H_0(w^a) + \sum_{\vec{n},\pm} H_2^{\vec{n},\pm}(w^a, X_l^{\vec{n},\pm}) \Rightarrow$$

$$\begin{split} H_{0}(\tilde{w}^{a}) + \sum_{b} \left(w^{b} - \tilde{w}^{b} \right) \frac{\partial H_{0}}{\partial \tilde{w}^{b}} (\tilde{w}^{a}) + \sum_{\vec{n},\pm} H_{2}^{\vec{n},\pm} \left[\tilde{w}^{a}, X_{l}^{\vec{n},\pm} (\tilde{w}^{a}, V_{l}^{\vec{n},\pm}) \right], \\ w^{a} - \tilde{w}^{a} = \sum_{\vec{n},\pm} \Delta \tilde{w}_{\vec{n},\pm}^{a}. \end{split}$$

The perturbative contribution to the new scalar constraint is:

$$\bar{H}_{2}^{\vec{n},\pm} = H_{2}^{\vec{n},\pm} + \sum_{a} \Delta \tilde{w}_{\vec{n},\pm}^{a} \frac{\partial H_{0}}{\partial \tilde{w}^{a}}.$$

New Hamiltonian

Carrying out the calculation explicitly, one obtains:

$$\bar{H}_{2}^{\vec{n},\pm} = \breve{H}_{2}^{\vec{n},\pm} + F_{2}^{\vec{n},\pm} H_{0} + \breve{F}_{1}^{\vec{n},\pm} \breve{H}_{1}^{\vec{n},\pm} + \left(F_{\uparrow 1}^{\vec{n},\pm} - 3 \frac{e^{-3\tilde{\alpha}}}{\pi_{\tilde{\alpha}}} \breve{H}_{1}^{\vec{n},\pm} + \frac{9}{2} e^{-3\tilde{\alpha}} \widetilde{H}_{\uparrow 1}^{\vec{n},\pm} \right) \widetilde{H}_{\uparrow 1}^{\vec{n},\pm},$$

$$\breve{H}_{2}^{\vec{n},\pm} = \frac{e^{-\tilde{\alpha}}}{2} \left\{ \left[\omega_{n}^{2} + e^{-4\tilde{\alpha}} \pi_{\tilde{\alpha}}^{2} + \tilde{m}^{2} e^{2\tilde{\alpha}} \left(1 + 15 \,\tilde{\varphi}^{2} - 12 \,\tilde{\varphi} \frac{\pi_{\tilde{\varphi}}}{\pi_{\tilde{\alpha}}} - 18 \, e^{6\tilde{\alpha}} \,\tilde{m}^{2} \frac{\tilde{\varphi}^{4}}{\pi_{\tilde{\alpha}}^{2}} \right) \right] (v_{\vec{n},\pm})^{2} + (\bar{\pi}_{v_{\vec{n},\pm}})^{2} \right\}$$

• The F 's are well determined functions.

• The term $\breve{H}_{2}^{\vec{n},\pm}$ is the Mukhanov-Sasaki Hamiltonian.

- It has no linear contributions of the Mukhanov-Sasaki momentum.
- It is linear in the momentum $\pi_{\tilde{\varphi}}$.

• We re-write the **total Hamiltonian** of the system at our **truncation order**, redefining the Lagrange multipliers:

$$\bar{H}_{2}^{\vec{n},\pm} = \breve{H}_{2}^{\vec{n},\pm} + F_{2}^{\vec{n},\pm} H_{0} + \breve{F}_{1}^{\vec{n},\pm} \breve{H}_{1}^{\vec{n},\pm} + \left(F_{\uparrow 1}^{\vec{n},\pm} - 3\frac{e^{-3\tilde{\alpha}}}{\pi_{\tilde{\alpha}}} \breve{H}_{1}^{\vec{n},\pm} + \frac{9}{2}e^{-3\tilde{\alpha}} \widetilde{H}_{\uparrow 1}^{\vec{n},\pm} \right) \widetilde{H}_{\uparrow 1}^{\vec{n},\pm} \quad \Rightarrow$$

$$H = \bar{N}_0 \Big[H_0 + \sum_{\vec{n},\pm} \breve{H}_2^{\vec{n},\pm} \Big] + \sum_{\vec{n},\pm} \breve{G}_{\vec{n},\pm} \breve{H}_1^{\vec{n},\pm} + \sum_{\vec{n},\pm} \widetilde{K}_{\vec{n},\pm} \widetilde{H}_{\uparrow 1}^{\vec{n},\pm}.$$

Hybrid quantization

Approximation: Quantum geometry effects are especially relevant in the background

 Adopt a quantum cosmology scheme for the zero modes and a Fock quantization for the perturbations. The scalar constraint couples them.

• We assume:

a) The zero modes **commute** with the perturbations under quantization. b) Functions of $\tilde{\phi}$ act by multiplication.

Uniqueness of the Fock description

The Fock representation in QFT is fixed (up to unitary equivalence) by:
1) The background isometries; 2) The demand of a UNITARY evolution.

- The proposal selects a UNIQUE canonical pair for the Mukhanov-Sasaki field, precisely the one we chose to fix the ambiguity in the momentum.
- We can use the massless representation (due to compactness), with its creation and annihilation operators, and the corresponding basis of occupancy number states $|N\rangle$.

- We admit that the operators that represent the linear constraints (or an integrated version of them) act as derivatives (or as translations).
- Then, physical states are independent of $(\breve{C}_1^{\vec{n},\pm}, \widetilde{C}_{\uparrow 1}^{\vec{n},\pm})$.
- We pass to a space of states $H_{kin}^{grav} \otimes H_{kin}^{matt} \otimes F$ that depend on the **zero modes** and the **Mukhanov-Sasaki modes**, with **no gauge fixing**.
- In this covariant construction, physical states still must satisfy the scalar constraint given by the FLRW and the Mukhanov-Sasaki contributions.

$$H_{S} = e^{-3\alpha} \Big(H_{0} + \sum_{\vec{n}, \pm} \breve{H}_{2}^{\vec{n}, \pm} \Big) = 0.$$

Born-Oppenheimer ansatz

• Consider states whose dependence on the FLRW geometry and the inhomogeneities (N) split:

 $\Psi = \Gamma(\tilde{\alpha}, \tilde{\varphi}) \psi(N, \tilde{\varphi}),$

The FLRW state is normalized, peaked and evolves unitarily:

 $\Gamma(\tilde{\alpha},\tilde{\varphi})=\hat{U}(\tilde{\alpha},\tilde{\varphi})\chi(\tilde{\alpha}).$

• \hat{U} is a unitary evolution operator close to the **unperturbed** one.

 Using the Born-Oppenheimer form of the constraint (diagonal in the FLRW geometry) and assuming a direct effective counterpart:

Effective Mukhanov-Sasaki equations

 $\left(d_{\eta_{\Gamma}}^{2} v_{\vec{n},\pm} = -v_{\vec{n},\pm} \left[4 \pi^{2} \omega_{n}^{2} + \langle \hat{\theta} \rangle_{\Gamma} \right], \qquad [\hat{\pi}_{\tilde{\varphi}}, \hat{U}] = \hat{\widetilde{H}}_{0},$

$$\begin{split} \langle \hat{\theta} \rangle_{\Gamma} &= 2 \pi^2 \frac{\langle 2 \hat{\vartheta}_e^q + \hat{\vartheta}_o \hat{\widetilde{H}}_0 + \hat{\widetilde{H}}_0 \hat{\vartheta}_o + [\hat{\pi}_{\tilde{\varphi}} - \hat{\widetilde{H}}_0 \hat{\vartheta}_o] \rangle_{\Gamma}}{\langle e^{2\hat{\alpha}} \rangle_{\Gamma}}, \qquad H_0^{(2)} &= \pi_{\tilde{\alpha}}^2 - e^{6\tilde{\alpha}} \, \tilde{m}^2 \tilde{\varphi}^2, \\ \vartheta_o &= -12 e^{4\tilde{\alpha}} \, \tilde{m}^2 \frac{\tilde{\varphi}}{\pi_{\tilde{\alpha}}}, \qquad \vartheta_e^q &= e^{-2\tilde{\alpha}} \, H_0^{(2)} \left(19 - 18 \frac{H_0^{(2)}}{\pi_{\tilde{\alpha}}^2} \right) + \tilde{m}^2 e^{4\tilde{\alpha}} \left(1 - 2 \, \tilde{\varphi}^2 \right), \end{split}$$

where we have defined the state-dependent conformal time

 $2\pi d \eta_{\Gamma} = \langle e^{2\hat{\alpha}} \rangle_{\Gamma} dT$, with $dt = \sigma e^{3\hat{\alpha}} dT$.

• For all modes:

$$d_{\eta_{\Gamma}}^{2} v_{\vec{n},\pm} = -v_{\vec{n},\pm} [4 \pi^{2} \omega_{n}^{2} + \langle \hat{\theta} \rangle_{\Gamma}].$$

- The expectation value depends (only) on the conformal time, through \(\tilde{\varphi}\). It is the time dependent part of the frequency, but it is mode independent.
- The effective equations are of harmonic oscillator type, with no dissipative term, and hyperbolic in the ultraviolet regime.

Conclusions

- We have considered a FLRW universe with a massive scalar field perturbed at **quadratic** order in the action.
- We have found a canonical transformation for the **full system** that respects *covariance* at the perturbative level of truncation.
- The system is described by the Mukhanov-Sasaki gauge invariants, linear perturbative constraints and their momenta, and zero modes.
- We have discussed the hybrid quantization of the system. This can be applied to a variety of quantum FLRW cosmology approaches.
- A Born-Oppenheimer ansatz leads to Mukhanov-Sasaki equations that include quantum corrections. The ultraviolet regime is hyperbolic.