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Main epochs of the Universe evolution
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ

Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 8 0.3



Main advantages of inflation

1. Aesthetic elegance
Inflation – hypothesis about an almost maximally symmetric
(quasi-de Sitter) stage of the evolution of our Universe in the
past, before the hot Big Bang. If so, preferred initial
conditions for (quantum) inhomogeneities with sufficiently
short wavelengths exist – the adiabatic in-vacuum ones. In
addition, these initial conditions represent an attractor for a
much larger compact open set of initial conditions having a
non-zero measure in the space of all initial conditions.

2. Predictability, proof and/or falsification
Given equations, this gives a possibility to calculate all
subsequent evolution of the Universe up to the present time
and even further to the future. Thus, any concrete inflationary
model can be proved or disproved by observational data.



3. Naturalness of the hypothesis
Remarkable qualitative similarity between primordial and
present dark energy.

4. Relates quantum gravity and quantum cosmology to
astronomical observations
Makes quantum gravity effects observable at the present time
and at very large – cosmological – scales.

5. Produces (non-universal) arrow of time for our Universe
Origin – initial quasi-vacuum fluctuation with a fantastically
large correlation radius.



Present status of inflation
Now we have numbers.
P. A. R. Ade et al., arXiv:1502.01589

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1 has been discovered (using
the multipole range ` > 40):

< ζ2(r) >=

∫
Pζ(k)

k
dk , Pζ(k) =

(
2.21+0.07

−0.08

)
10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.005

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1.



From ”proving” inflation to using it as a tool
Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).

Present status of inflation: transition from ”proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ns(k)− 1 and
r(k).

The reconstruction approach – determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity – H , Ḣ
2) for super-high energy particle physics – m2

infl .



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. H ∼
√

PζM̃Pl ∼ 1014GeV

In the simplest inflationary models, H gives the curvature (the
Hubble function) value around ∼ 55 e-folds before the end of
inflation.

II. m ∼ H
√
|1− ns | ∼ 1013GeV

In the simplest models, m gives the inflaton mass after the end
of inflation.

New range of mass-energy scales significantly less than the
GUT scale.



Often another energy scale E = (~3c3V )1/4 ∼
√

HMPl is
introduced which is indeed of the order of the GUT scale. But
does this quantity correspond to energy of some physical
process indeed?

Two cases when this procedure does not lead to reasonable
and experimentally confirmed results.

I. Water:

E = (1 g
cm3 × c2)1/4 = 45 keV.

Completely misleading (but instructive) result showing that
one has to be cautious applying such an estimate to ”cold”
physical systems.

II. Present dark energy

The corresponding ”energy scale” ∼ 10−3 eV has not yet
shown itself in any physical process.



Outcome of inflation

In the super-Hubble regime in the coordinate representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l , m = 1, 2, 3

hlm = 2ζ(r)δlm +
2∑

a=1

g (a)(r) e
(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ζ describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).



Quantum-to-classical transition

In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in ζ, g).

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



Visualizing small differences in the number of

e-folds

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different is different point of space: Ntot = Ntot(r). Then

ζ(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot(r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



CMB temperature anisotropy

Tγ = (2.72548± 0.00057)K

∆T (θ, φ) =
∑
`m

a`mY`m(θ, φ)

< a`ma`′m′ >= C`δ``′δmm′

Theory: averaging over realizations.
Observations: averaging over the sky for a fixed `.

For scalar perturbations, generated mainly at the last
scattering surface (the surface or recombination) at
zLSS ≈ 1090 (the Sachs-Wolfe, Silk and Doppler effects), but
also after it (the integrated Sachs-Wolfe effect).
For GW – only the ISW works.



For ` . 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

∆T (θ, φ)

Tγ

= −1

5
ζ(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,

`(` + 1)C`,s =
2π

25
Pζ

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV,

δt ∼ 5tPl !





FLRW dynamics with a scalar field

In the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Inflationary slow-roll dynamics

Slow-roll occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′ dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model.



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

Pζ(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2
k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d ln Pζ(k)

d ln k
=

1

κ2

(
2

V ′′
k

Vk
− 3

(
V ′

k

Vk

)2
)



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d ln Pg (k)

d ln k
= − 1

κ2

(
V ′

k

Vk

)2

The consistency relation:

r(k) ≡ Pg

Pζ

=
16|Ḣk |

H2
k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60).



Inflation in f (R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

S =
1

16πG

∫
f (R)

√
−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1

8πG

(
Rν

µ −
1

2
δν
µR

)
= −

(
T ν

µ (vis) + T ν
µ (DM) + T ν

µ (DE)

)
,

where G = G0 = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

8πGT ν
µ (DE) = F ′(R) Rν

µ−
1

2
F (R)δν

µ+
(
∇µ∇ν − δν

µ∇γ∇γ
)
F ′(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = RdS of the algebraic equation

Rf ′(R) = 2f (R) .

The special role of f (R) ∝ R2 gravity: admits de Sitter
solutions with any curvature.



Transformation to the Einstein frame and back
In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.
From the Jordan (physical) frame to the Einstein one:

gE
µν = f ′g J

µν , κφ =

√
3

2
ln f ′, V (φ) =

f ′R − f

2κ2f ′2

where κ2 = 8πG .
Inverse transformation:

R =

(√
6κ

dV (φ)

dφ
+ 4κ2V (φ)

)
exp

(√
2

3
κφ

)

f (R) =

(√
6κ

dV (φ)

dφ
+ 2κ2V (φ)

)
exp

(
2

√
2

3
κφ

)
V (φ) should be at least C 1.



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

In particular,

f (R) ≈ R2

6m2 ln2(R/m2)

for R � m2 to have the same ns , r as for V = m2φ2/2.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈

2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Comparison with some simple models
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The simplest models producing the observed scalar

slope

I. In the Einstein gravity:

V (φ) =
m2φ2

2

m ≈ 1.3× 10−6

(
55

N

)
MPl ≈ 1.6× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

8

N
≈ 0.15

HdS(N = 55) = 1.0× 1014 GeV

Almost excluded by data.



II. In the modified f (R) gravity:

f (R) = R +
R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.2× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

HdS(N = 55) = 1.4× 1014 GeV

The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the
Brout-Englert-Higgs inflationary model.
Note similar predictions for the masses m and M and for
HdS(N = 55).



The Lagrangian density for this model

L =
R

16πG
+

N2

288π2Pζ(k)
R2 =

R

16πG
+ 5× 108 R2

The specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ

for which A� 1, A� |B |.



Smooth potential reconstruction from scalar power

spectrum in GR
In the slow-roll approximation:

V 3

V ′2 = CPζ(k(t(φ))), C =
12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d ln V

dN

First derived in H. M. Hodges and G. R. Blumenthal, Phys.
Rev. D 42, 3329 (1990).
An ambiguity in the form of V (φ) because of an integration
constant in the first equation. Information about Pg (k) (even
a negative one) helps to remove this ambiguity.



In particular, if primordial GW are not discovered in the order
ns − 1:

r � 8|ns − 1| ≈ 0.3 ,

then
(

V ′

V

)2 � |V ′′

V
|, |ng | = r

8
� |ns − 1|, |ng |N � 1 .

This is possible only if V = V0 + δV , |δV | � V0 – a
plateau-like potential. Then

δV (N) =
κ4V 2

0

12π2

∫
dN

Pζ(N)

κφ =

∫
dN√
V0

√
d(δV (N))

dN

Here, integration constants renormalize V0 and shift φ. Thus,
the unambiguous determination of the form of V (φ) without
knowledge of Pg (k) becomes possible.



”Scale-free” reconstruction

Numerical coincidence between 2/N(kH) and 1− ns .

Let us assume that it is not a coincidence but happens for all
1� N . 60:

Pζ = P0N
2

Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√

N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit on r : N0 < 100
for N = 57.



Another example: Pζ = P0N
3/2.

V (φ) = V0
φ2 + 2φφ0

(φ + φ0)2

Not bounded from below (of course, in the region where the
slow-roll approximation is not valid anymore). Crosses zero
linearly.

More generally, the two ”aesthetic” assumptions – ”no-scale”
scalar power spectrum and V ∝ φ2n, n = 1, 2... at the
minimum of the potential – lead to
Pζ = P0N

n+1, ns − 1 = −n+1
N

unambiguously. From this, only
n = 1 is permitted by observations. Still an additional scale
appears due to tensor power spectrum – no preferred
one-parameter model (if the V (φ) ∝ φ2 model is excluded).



Inflation reconstruction in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

Pζ(N)

ln R = const +

∫
dN

√
−2 d ln A

3 dN

Here, the additional assumptions that Pζ ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



Where is the primordial GW contribution to CMB

temperature anisotropy?
For 1� ` . 50, the Sachs-Wolfe plateau occurs for the
contribution from GW, too:

`(` + 1)C`,g =
π

36

(
1 +

48π2

385

)
Pg

assuming nt = 1 (A. A. Starobinsky, Sov. Astron. Lett. 11,
133 (1985)). So,

C` = C`,s + C`,g = (1 + 0.775r)C`,s

.
For larger ` > 50, `(` + 1)C`,s grows and the first acoustic
peak forms at ` ≈ 200, while `(` + 1)C`,g decreases quickly.
Thus, the presence of GW should lead to a step-like
enhancement of `(` + 1)C` for ` . 50.
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The most critical argument against r ∼ 0.1:
no sign of GW in the CMB temperature anisotropy power
spectrum.

Instead of the ∼ 10% increase of `(` + 1)C` over the multipole
range 2� ` < 50, a ∼ 10% depression is seen for 20 . ` . 40
(see e.g. Fig. 39 of arXiv:1303.5076). The feature exists even
if r � N−1 but the presence of r ∼ 0.1 makes it larger.

More detailed analysis in D. K. Hazra, A. Shafieloo,
G. F. Smoot and A. A. Starobinsky, JCAP 1406, 061 (2014),
arXiv:1403.7786 :
the power-law form of Pζ(k) is excluded at more than 3σ CL.



Next step: studying of local features in the same

range

The effect of at least the same order: an upward wiggle at
` ≈ 40 (the Archeops feature) and a downward one at ` ≈ 22.

Lesson: irrespective of the search for primordial GW from
inflation, features in the anisotropy spectrum for 20 . ` . 40
confirmed by WMAP and Planck should be taken into account
and studied seriously. Some new physics beyond one
slow-rolling inflaton may show itself through them.



A more elaborated class of model suggested by previous
studies of sharp features in the inflaton potential caused, e.g.
by a fast phase transition occurred in another field coupled to
the inflaton during inflation:
D. K. Hazra, A. Shafieloo, G. F. Smoot and A. A. Starobinsky,
JCAP 1408, 048 (2014); arXiv:1405.2012

In particular, the potential with a sudden change of its first
derivative:

V (φ) = γφ2 + λφp(φ− φ0) θ(φ− φ0)

which generalizes the exactly soluble model considered in
A. A. Starobinsky, JETP Lett. 55, 489 (1992) produces
−2∆ lnL = −11.8 compared to the best-fitted power law
scalar spectrum, partly due to the better description of wiggles
at both ` ≈ 40 and ` ≈ 22.



Conclusions

I Inflation is being transformed into a normal physical
theory, based on some natural assumptions confirmed by
observations and used to obtain new theoretical
knowledge from them.

I First quantitative observational evidence for small
quantities of the first order in the slow-roll parameters:
ns(k)− 1 and r(k).

I The quantitative theoretical prediction of these quantities
is based on gravity (space-time metric) quantization and
requires very large space-time curvature in the past of our
Universe with a characteristic length only five orders of
magnitude larger than the Planck one.



I Using the measured value of ns − 1 and assuming a
scale-free scalar power spectrum leads to the prediction
that the region r > 10−3 is well expected. Under the same
assumptions, r can be even larger and close to its present
observational upper limit in two-parametric inflationary
models having large, but not too large N0 ∼ N . However,
this requires a moderate amount of parameter tuning.

I Regarding CMB temperature anisotropy, small features in
the multipole range 20 . ` . 40 at the accuracy level
∼ 1 µK which mask the GW contribution to CMB
temperature anisotropy have to be investigated and
understood. They may reflect some fine structure of
inflation (i.e. fast phase transitions in other quantum
fields coupled to an inflaton during inflation).

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.
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