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The negative cosmological constant Λ = −3/κ2L2 is tuned so that the
ground state is the AdS metric (1) with curvature scale L.

As we reviewed in Section 2, the metric is dual to the boundary stress
tensor Tµν and the gauge field is dual to a conserved current Jµ. We won’t
turn on any other fields in the bulk, but all the results that we describe
below will hold for any bulk theory with an Einstein-Maxwell sector

We will compute the conductivity associated to the current Jµ. Before
we do this, there are a few rudimentary concepts that we need to introduce
into our gravitational model. These are the temperature and chemical po-
tential of the boundary theory. As we now review, both are associated with
black holes in the bulk.

4.1. Black Holes

The first thing that we want to do is to place the boundary theory at
some finite temperature T . This is done by placing a black hole in the bulk
of AdS [15]. In the Poincaré patch, the black hole is really a black brane;
the horizon lies parallel to the (spatial) boundary.

There are a few ways to see that the black hole corresponds to thermal
field theory. Perhaps the easiest is to Wick rotate to Euclidean signature.
Equilibrium thermal physics in quantum field theories is captured by com-
pactifying Euclidean time with period β = 1/T . Solving the bulk equations
of motion with a such a compact Euclidean circle, one finds the Euclidean
AdS black hole.

Wick rotating back to Lorentzian signature, we have the AdS Schwarzchild
black hole with metric,

ds2 =
L2

r2

�

−f(r)dt2 +
dr2

f(r)
+ ηµνdx

µdxν
�

(24)

and

f(r) = 1−
�

r

rh

�3

(25)

so that the black hole horizon sits at r = rh where f(r) = 0. The claim
is that this background continues to describe the boundary field theory at
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some finite temperature T . This is done by placing a black hole in the bulk
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There are a few ways to see that the black hole corresponds to thermal
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The negative cosmological constant Λ = −3/κ2L2 is tuned so that the
ground state is the AdS metric (??) with curvature scale L.

As we reviewed in Section ??, the metric is dual to the boundary stress
tensor Tµν and the gauge field is dual to a conserved current Jµ. We won’t
turn on any other fields in the bulk, but all the results that we describe
below will hold for any bulk theory with an Einstein-Maxwell sector

We will compute the conductivity associated to the current Jµ. Before
we do this, there are a few rudimentary concepts that we need to introduce
into our gravitational model. These are the temperature and chemical po-
tential of the boundary theory. As we now review, both are associated with
black holes in the bulk.

4.1. Black Holes

The first thing that we want to do is to place the boundary theory at
some finite temperature T . This is done by placing a black hole in the bulk
of AdS [?]. In the Poincaré patch, the black hole is really a black brane; the
horizon lies parallel to the (spatial) boundary.

There are a few ways to see that the black hole corresponds to thermal
field theory. Perhaps the easiest is to Wick rotate to Euclidean signature.
Equilibrium thermal physics in quantum field theories is captured by com-
pactifying Euclidean time with period β = 1/T . Solving the bulk equations
of motion with a such a compact Euclidean circle, one finds the Euclidean
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The negative cosmological constant Λ = −3/κ2L2 is tuned so that the
ground state is the AdS metric (??) with curvature scale L.

As we reviewed in Section ??, the metric is dual to the boundary stress
tensor Tµν and the gauge field is dual to a conserved current Jµ. We won’t
turn on any other fields in the bulk, but all the results that we describe
below will hold for any bulk theory with an Einstein-Maxwell sector
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some finite temperature T . This is done by placing a black hole in the bulk
of AdS [?]. In the Poincaré patch, the black hole is really a black brane; the
horizon lies parallel to the (spatial) boundary.

There are a few ways to see that the black hole corresponds to thermal
field theory. Perhaps the easiest is to Wick rotate to Euclidean signature.
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finite temperature, now in Lorentzian signature. The temperature of the

boundary is given by the Hawking temperature of the black hole,

T =
3

4πrh
(26)

However, in Lorentzian signature, the identification of the black hole with a

thermal field theory is much more powerful than the corresponding identifi-

cation in Euclidean space. This is because the bulk no longer captures only

equilibrium physics. Instead, dynamics in the bulk spacetime corresponds

to real time dynamics in the boundary thermal field theory. Usually it’s

rather challenging to do such computations in field theory. But, within the

context of holography, it’s conceptually trivial: we simply need to solve the

time dependent Einstein equations. This ease with which one can compute

transport properties — even far from equilibrium transport — is one of

the real powers of holography. Note, in particular, that dynamics at finite

temperature exhibits a new phenomenon that does not arise at zero tem-

perature: dissipation. This is captured in the bulk by stuff falling into the

black hole horizon.

We should elaborate on this a little more. In Section ??, we briefly men-

tioned that, when performing holographic calculations, you must impose

some appropriate boundary conditions in the infra-red of the geometry. In

the presence of the black hole, this means appropriate boundary conditions

at the horizon. But which boundary conditions? In fact, we have a choice

and this choice corresponds to the choice of Lorentzian propagator in the

boundary field theory. The most useful and physically motivated choice

is simply to impose ingoing boundary conditions on the horizon, ensuring

that stuff only falls into the black hole and nothing comes out. In the

boundary field theory, this corresponds to working with retarded propaga-

tors. This is the choice relevant for linear response calculations. (Had we

imposed outgoing boundary conditions at the horizon, we would have ad-

vanced propagators on the boundary). For more details of this relationship,

see [?].
So black holes in the bulk correspond to placing the boundary field

theory at some finite temperature. We would now like to throw in a finite

density of stuff in the boundary which is achieved by placing the theory

at a chemical potential µ. This corresponds to charging the black hole,

so it emits an electric field [?]. This is the Reissner-Nordström black hole

solution. It again has metric (??), now with the function f(r) taking the

form
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The horizon is again at r = rh where f(rh) = 0. The coefficient γ is a ratio
of the gravitational and electromagnetic couplings,

γ =
2e2L2

κ2
(28)

The Hawking temperature of the black hole horizon is now given by
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Meanwhile, the temporal component of the gauge field takes the form

A0 = µ
�
1− r

rh

�
(30)

Note that A0 = 0 at the horizon. This is necessary because the Killing
vector ∂/∂t degenerates at the horizon and the gauge field A0 is ill-defined
unless it vanishes there.

From our discussion in Section ??, we can read off the physics from the
profile of A0. We know that in the boundary field theory the gauge field
couples to a conserved current, Lboundary ∼ AµJµ. The leading order term
in A0 should be interpreted as the source for J0. This is indeed the chemical
potential µ. Meanwhile, the subleading term should be interpreted as the
expectation value �J0�, which is simply the charge density. We see that

�J0 � ∼ µ

rh
(31)

We can then use (??) to re-express rh in terms of T and µ.

4.2. Computing Conductivity

The Reissner-Nordström black hole describes the boundary field theory
at finite temperature and density. Now we want to perturb the boundary
by turning on an electric field with frequency ω. This is a source for the
current Jx. We would like to extract the response of the current �Jx�.

We can implement this using the basic techniques described in Section
??. We work with an electric field in the Ax direction and turn on a source
Ax = (E/iω)eiωt on the boundary. Obviously, then, the electric field is
Ȧx = Eeiωt as required. In the bulk, the leading order terms in Ax take the
form,

Ax =
E

iω
eiωt + �Jx�r + . . . (32)
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3. Basics of Conductivity

In this section, we leave ideas of holography behind. Instead, we will take
something of a diversion to explain a few basic features of conductivity. Our
goal is to simply review some essential facts in order to place the holographic
calculations of the next section in some kind of context.

We all learned about Ohm’s law in kindergarten. It is “V = IR”, relat-
ing the voltage drop V to an induced current I. The ratio is the resistance
R. Here we work in slightly more grown-up language. We will discuss the
induced current density �j(t, �x) due an applied electric field �E(t, �x).

In what follows, we will work with an electric field that is constant in
space, but varying in time. It is most convenient to work with the Fourier
transform of the fields vibrating at some fixed frequency ω,

�E(t) =
�

dω

2π
e−iωt �E(ω) , �j(t) =

�
dω

2π
e−iωt�j(ω) (19)

In this notation, Ohm’s law reads

�j(ω) = σ(ω) �E(ω) (20)

J(ω) = σ(ω)E(ω) (21)

Note that if we shake the electric field at frequency ω then the system
responds at the same frequency ω. This is the regime of linear response.

The ratio σ(ω) is the optical conductivity. Because we are working in
Fourier space, σ is complex. The real part captures what you would intu-
itively call the conductivity (or inverse resistivity) of the system: it describes
the dissipation of the current. The imaginary part is the reactive part. We
will illustrate this with some examples below.

3.1. The Drude Model

Let’s go right back to basics. The Drude model is a simple description
of charge transport, based on the idea of billiard ball-like charge carriers
bouncing off things in a solid. It is nothing more than Newtonian physics.
However, rather surprisingly, several features of the Drude model are ex-
tremely robust, surviving many subsequent revolutions in physics. Indeed,
in the next section we’ll see aspects of the Drude model emerging from
general relativity! But we’re getting ahead of ourselves...

Consider a particle of mass m, charge q and velocity �v. The essence of
the Drude model is Newtonian “F = ma”, where the force is due to the
electric field, together with a linear friction term,

m
d�v

dt
+

m

τ
�v = q �E (22)
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Reσ(ω) ∼ K δ(ω)
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27 eV
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Hi Bobby - hope you’re well. And welcome to the long-promised musings on the Alfy

project. Below I’ve concentrated on the hyper-kähler quotient construction of ALF spaces.
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A	
  rippled	
  black	
  hole	
  

:	
  spa/ally	
  varying	
  chemical	
  poten/al	
  

D-BRANES ON ALF SPACES

ds2 =
L2

z2

�
− gtt(z, x)dt

2 + gzz(z, x)dz
2 + gxx(z, x)(dx+ a(z, x)dz)2 + gyy(z, x)dy

2
�

ds2 =
L2

z2

�
− gttdt

2 + gzzdz
2 + gxx(dx+ a dz)2 + gyydy

2
�

Φ(x, z)

A0(z, x)

Φ ←→ O

m2
ΦL

2 = −1

Φ → zφ0 + z2φ1 + . . .
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Mpl ≈ 1027 eV

Λ ≈ (10−3 eV )4

Λobserved = Λbare + Λinduced

Λobserved ≈ (10−3 eV )4

Λinduced ≈ (1012 eV )4 (1)
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= 10120 Λobserved

1



Op/cal	
  Conduc/vity	
  

0 5 10 15 20 25
0

2

4

6

8

Ω�T

Re
�Σ�

0 5 10 15 20 25

0

1

2

3

4

5

6

Ω�T

Im
�Σ�

Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im σ without the lattice reflects the existence of a ω = 0 delta-function in Re σ.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ω = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, σ(ω), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ω � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Reσ, now rises at low ω. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im σ, has now disappeared, with Im σ(ω) → 0, as ω → 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3
The resolution of a delta-function into a Drude-like peak has been seen in a somewhat different context in

conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather

than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Delta	
  func/on	
  spreads	
  out.	
  The	
  low-­‐frequency	
  curve	
  is	
  a	
  perfect	
  fit	
  to	
  the	
  Drude	
  model!	
  

Horowitz,	
  Santos,	
  Tong,	
  2012	
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3. Basics of Conductivity

In this section, we leave ideas of holography behind. Instead, we will take
something of a diversion to explain a few basic features of conductivity. Our
goal is to simply review some essential facts in order to place the holographic
calculations of the next section in some kind of context.

We all learned about Ohm’s law in kindergarten. It is “V = IR”, relat-
ing the voltage drop V to an induced current I. The ratio is the resistance
R. Here we work in slightly more grown-up language. We will discuss the
induced current density �j(t, �x) due an applied electric field �E(t, �x).

In what follows, we will work with an electric field that is constant in
space, but varying in time. It is most convenient to work with the Fourier
transform of the fields vibrating at some fixed frequency ω,

�E(t) =
�

dω

2π
e−iωt �E(ω) , �j(t) =

�
dω

2π
e−iωt�j(ω) (19)

In this notation, Ohm’s law reads

�j(ω) = σ(ω) �E(ω) (20)

J(ω) = σ(ω)E(ω) (21)

Note that if we shake the electric field at frequency ω then the system
responds at the same frequency ω. This is the regime of linear response.

The ratio σ(ω) is the optical conductivity. Because we are working in
Fourier space, σ is complex. The real part captures what you would intu-
itively call the conductivity (or inverse resistivity) of the system: it describes
the dissipation of the current. The imaginary part is the reactive part. We
will illustrate this with some examples below.

3.1. The Drude Model

Let’s go right back to basics. The Drude model is a simple description
of charge transport, based on the idea of billiard ball-like charge carriers
bouncing off things in a solid. It is nothing more than Newtonian physics.
However, rather surprisingly, several features of the Drude model are ex-
tremely robust, surviving many subsequent revolutions in physics. Indeed,
in the next section we’ll see aspects of the Drude model emerging from
general relativity! But we’re getting ahead of ourselves...

Consider a particle of mass m, charge q and velocity �v. The essence of
the Drude model is Newtonian “F = ma”, where the force is due to the
electric field, together with a linear friction term,

m
d�v

dt
+

m

τ
�v = q �E (22)
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The

data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-

parameter Drude form

σ(ω) =
Kτ

1− iωτ
(3.2)

with both the scattering time τ and the overall amplitude K constants, independent of ω. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the

1% level) with the coefficient of the pole (3.1) in the translationally invariant case. All interesting

physics in this regime is therefore captured by the single parameter, τ . We have varied the

temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack

of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency

behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ω = 0 delta-function leaves behind a well-defined DC resistivity, ρ = (Kτ)−1
.

The Drude amplitude K is essentially independent of temperature T and all temperature de-

pendence in the resistivity ρ(T ) is inherited from τ . The results depend strongly on the lattice

wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since

the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 × R2
, the

dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,

with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity

in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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•  First	
  term	
  is	
  power	
  law	
  in	
  temperature	
  

•  Second	
  term	
  is	
  power	
  law	
  in	
  temperature	
  

•  Inverse	
  MaQhiessen	
  rule	
  



Some	
  Uses	
  

Hartnoll	
  2014	
  (see	
  also	
  Bruin	
  et	
  al;	
  Sachdev,	
  Zaanen)	
  

• LSCO, Takenaka et al. ‘03

• BSCCO, Hwang et al. ‘07

• YBCO, Boris et al. ‘04

1

τ
∼ kBT

�

LSCO	
  
Takenaka	
  et	
  al	
  	
  

Possible	
  explana/on	
  for	
  linear	
  resis/vity?	
  

Data	
  suggests	
  that	
  second	
  
term	
  is	
  responsible	
  for	
  DC	
  
conduc/vity	
  in	
  cuprates	
  

Hartnoll	
  (2014)	
  

Blake	
  and	
  Donos,	
  2014	
  But,	
  in	
  the	
  presence	
  of	
  magne/c	
  field,	
  first	
  term	
  dominates	
  

“Over	
  broad	
  regions	
  of	
  doping,	
  the	
  two	
  kinds	
  of	
  relaxa9on	
  rates,	
  the	
  one	
  for	
  	
  
the	
  conduc9vity	
  and	
  the	
  one	
  for	
  the	
  Hall	
  rota9on,	
  seem	
  to	
  add	
  as	
  inverses:	
  
	
  conduc9vity	
  is	
  propor9onal	
  to	
  1/T	
  +	
  1/T2.	
  That	
  is,	
  it	
  obeys	
  an	
  an9-­‐MaGhiessen	
  law”	
  

P.W.	
  Anderson	
  



Much	
  much	
  more…	
  

Black	
  holes	
  offer	
  a	
  framework	
  to	
  answer	
  the	
  simple	
  ques/on:	
  	
  
	
  

“What	
  can	
  strongly	
  coupled	
  maQer	
  do?”	
  
	
  
	
  
	
  

They	
  are	
  providing	
  new	
  ways	
  to	
  think	
  about	
  old	
  problems	
  in	
  
condensed	
  maQer	
  physics	
  and	
  fluid	
  dynamics.	
  



Thank	
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DC	
  Conduc/vity:	
  Surprise	
  1	
  

The	
  first	
  term	
  varies	
  as	
  a	
  power-­‐law	
  in	
  temperature.	
  

There	
  must	
  be	
  low-­‐energy	
  degrees	
  of	
  freedom	
  at	
  finite	
  momentum	
  k	
  
	
  
In	
  a	
  metal,	
  these	
  come	
  from	
  the	
  Fermi	
  surface.	
  But	
  not	
  in	
  a	
  black	
  hole…	
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Low-­‐Energy	
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  in	
  a	
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  hole	
  
Finite	
  momentum	
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  arise	
  in	
  a	
  more	
  exo/c	
  way.	
  Consider	
  dispersion	
  rela/ons	
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Something	
  Fun	
  About	
  Black	
  Holes	
  

In	
  metals,	
  a	
  charged	
  impurity	
  gives	
  Friedel	
  Oscilla9ons	
  



Friedel	
  Oscilla/ons	
  for	
  Black	
  Holes	
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on	
  horizon	
  

distance	
  from	
  	
  
impurity	
  

Blake,	
  Donos,	
  Tong,	
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  also	
  Horowitz,	
  Iqbal,	
  	
  
Santos,	
  Way	
  2014	
  



DC	
  Conduc/vity:	
  Surprise	
  2	
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Pair	
  Crea/on	
  at	
  Weak	
  Coupling	
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“Pair	
  Crea/on”	
  at	
  Strong	
  Coupling	
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Intui/on	
  behind	
  this	
  remains	
  unclear.	
  
	
  

Is	
  there	
  also	
  a	
  lesson	
  here	
  for	
  strongly	
  coupled	
  electron	
  systems?	
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Summary	
  of	
  Black	
  Hole	
  Conduc/vity	
  

•  Low	
  energy	
  modes	
  at	
  finite	
  momentum	
  
•  But	
  not	
  a	
  Fermi	
  surface	
  

•  Low	
  energy	
  pair	
  crea/on	
  even	
  at	
  finite	
  Q	
  	
  

Two	
  Processes	
  



Are	
  there	
  any	
  similari/es?	
  



Strange	
  Proper/es	
  of	
  Strange	
  Metals	
  

Mackenzie	
  et	
  al	
  1997	
  

Van	
  der	
  Marel	
  et	
  al	
  2001	
  

DC	
  Conduc/vity	
  

Hall	
  Conduc/vity	
  

AC	
  Conduc/vity	
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τ−1
eff ∼ T

τ−1 ∼ kBT

�

σ0 �
�

kBT

σDC ∼ 1/T

σ(ω) ∼ 1/(iω)2/3

21



Lesson	
  1:	
  Hall	
  Angle	
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Drude	
  model	
  	
  
(or	
  Fermi	
  liquid	
  theory)	
  

Experimental	
  data	
  	
  
on	
  strange	
  metals	
  	
  

Suggests	
  two	
  /me	
  scales	
  at	
  play?	
   Anderson,	
  1991	
  
Coleman,	
  Schofield,	
  Tsvelik,	
  1996	
  

“Over	
  broad	
  regions	
  of	
  doping,	
  the	
  two	
  kinds	
  of	
  relaxa9on	
  rates,	
  the	
  one	
  for	
  	
  
the	
  conduc9vity	
  and	
  the	
  one	
  for	
  the	
  Hall	
  rota9on,	
  seem	
  to	
  add	
  as	
  inverses:	
  
	
  conduc9vity	
  is	
  propor9onal	
  to	
  1/T	
  +	
  1/T2.	
  That	
  is,	
  it	
  obeys	
  an	
  an9-­‐MaGhiessen	
  law”	
  

P.W.	
  Anderson	
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  Hall	
  Angle	
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If	
  this	
  term	
  dominates	
  DC	
  transport,	
  	
  
we	
  get	
  two	
  /me	
  scales	
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  2:	
  (In)coherent	
  Transport	
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There	
  is	
  another	
  interpreta/on	
  of	
  these	
  two	
  terms*	
  

*actually	
  it’s	
  slightly	
  more	
  complicated	
   Davison	
  and	
  Gouteraux	
  (last	
  week)	
  
Blake	
  (today)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Coherent	
  Transport	
  
	
  
due	
  to	
  (almost)	
  conserved	
  	
  momentum	
  

Incoherent	
  Transport	
  
	
  
due	
  to	
  charge	
  diffusion	
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which	
  of	
  these	
  processes	
  describes	
  actual	
  materials?	
  



Lesson	
  2:	
  Incoherent	
  Transport	
  

Hartnoll	
  2014	
  (see	
  also	
  Bruin	
  et	
  al;	
  Sachdev,	
  Zaanen)	
  

• LSCO, Takenaka et al. ‘03

• BSCCO, Hwang et al. ‘07

• YBCO, Boris et al. ‘04

1

τ
∼ kBT

�

LSCO	
  
Takenaka	
  et	
  al	
  	
  

τ−1 ∼ T

τ−1
eff ∼ T

τ−1 ∼ kBT

�

21

Conjecture:	
  there	
  is	
  a	
  quantum	
  bound	
  for	
  diffusion	
  	
  

Suggests	
  incoherent	
  transport	
  

τ−1 ∼ T

τ−1
eff ∼ T

τ−1 ∼ kBT

�

σ0 �
�

kBT

21

Does	
  this	
  explain	
  linear	
  rela/vity?	
  Evidence	
  far	
  from	
  conclusive	
  



Summary	
  

•  We’re	
  understanding	
  beQer	
  the	
  conduc/vity	
  proper/es	
  of	
  black	
  holes	
  

•  Are	
  there	
  lessons	
  here	
  for	
  strongly	
  interac/ng	
  electrons?	
  



The	
  End	
  (for	
  real	
  now)	
  


