A unifying description of dark energy

Filippo Vernizzi - IPhT, CEA Saclay

Based on:

- 1504.05481 with J. Gleyzes M. Mancarella and D. Langlois
- 1411.3712 with J. Gleyzes and D. Langlois
- 1304.4840 with J. Gleyzes, D. Langlois and F. Piazza
- 1210.0201 with G. Gubitosi and F. Piazza

ICISE, Quy Nhon - August 13, 2015

Standar Model: ^CDM

O Observations well consistent with LCDM

$$
w \equiv \frac{P_{\mathrm{DE}}}{\rho_{\mathrm{DE}}}=-1.019_{-0.080}^{+0.075} \quad(95 \%) \quad \text { Planck }+\mathrm{BAO}+\mathrm{SN}
$$

Standar Model: ^CDM

O Observations well consistent with LCDM
$w \equiv \frac{P_{\mathrm{DE}}}{\rho_{\mathrm{DE}}}=-1.019_{-0.080}^{+0.075}(95 \%) \quad$ Planck $+\mathrm{BAO}+\mathrm{SN}$

O LCDM background evolution predicts a unique w growth of structures consistent with data:

Standar Model: ^CDM

O Observations well consistent with LCDM
$w \equiv \frac{P_{\mathrm{DE}}}{\rho_{\mathrm{DE}}}=-1.019_{-0.080}^{+0.075}(95 \%) \quad$ Planck $+\mathrm{BAO}+\mathrm{SN}$

O LCDM background evolution predicts a unique w growth of structures consistent with data:

\wedge ?

Motivations

O New dynamics imply time/space deviations w.r.t. GR
DTime evolution: $\phi=\phi(t)$
Bpatial fluctuations: $\phi=\phi(t, \vec{x})$. Fluid dynamics, pressure, speed of sound, stresses, etc.

Motivations

O New dynamics imply time/space deviations w.r.t. GR
(Time evolution: $\phi=\phi(t)$
Spatial fluctuations: $\phi=\phi(t, \vec{x})$. Fluid dynamics, pressure, speed of sound, stresses, etc.

O Small scales: stringent solar system tests (screening)

O Large scales: Linear regime is applicable. Growth of structure is not unique.
New physics in time/scale dependent modifications of growth

Motivations

O New dynamics imply time/space deviations w.r.t. GR
(Time evolution: $\quad \phi=\phi(t)$
Spatial fluctuations: $\phi=\phi(t, \vec{x})$. Fluid dynamics, pressure, speed of sound, stresses, etc.

O Small scales: stringent solar system tests (screening)

O Large scales: Linear regime is applicable. Growth of structure is not unique.

New physics in time/scale dependent modifications of growth

O Current and future surveys will accurately measure the growth history of LSS.
Expected 1-2 order-of-magnitude improvement over larger redshift range.

O Given current models, democratic bridging of theoretical modelling with observations: unifying and effective treatment.

Effective approach

O No redundancies: minimal action. Theories that share
*/4/" same physical degrees of freedom
// same interactions (e.g. to matter)
same regime of validity
are the same

Effective approach

O No redundancies: minimal action. Theories that share
same physical degrees of freedom
same interactions (e.g. to matter)
same regime of validity
single scalar field fluctuations
universal couplings
linear regime, ...
are the same

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

ADM (3+1) decomposition in unitary gauge:
Creminelli et al. '06; Cheung et al. '07

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

ADM (3+1) decomposition in unitary gauge:
Creminelli et al. '06; Cheung et al. `07

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

2. Action: all terms that respect spatial diffs in the action (Jordan frame)

$$
S=\int d^{4} x \sqrt{-g} L\left[t ; N, K_{j}^{i},{ }^{(3)} R_{j}^{i}, \ldots\right]
$$

Lapse	N	time kinetic energy of scalar	$\sim \dot{\phi}$
Extrinsic curvature	$K_{i j}$	time kinetic energy of metric	$\sim \partial_{t} g_{i j}$
Intrinsic 3d curvature	${ }^{(3)} R_{i j}$	spatial kinetic energy of metric	$\sim \partial_{k} g_{i j}$

$$
K_{i j}=\frac{1}{2 N}\left(\dot{h}_{i j}-\nabla_{i} N_{j}-\nabla_{j} N_{i}\right)
$$

Examples

General Relativity:

$$
L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2}{ }^{(4)} R
$$

Examples

General Relativity:

$$
\begin{aligned}
& L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2} {\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right] } \\
&{ }^{(4)} R \text { by Gauss-Codazzi }
\end{aligned}
$$

Examples

B General Relativity:

$$
L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2}\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right]
$$

General Relativity + minimal quintessence:

$$
L_{\mathrm{GR}+\mathrm{Q}}=\left[\frac{M_{\mathrm{Pl}}^{2}}{2}{ }^{(4)} R-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)\right]
$$

Examples

() General Relativity:

$$
L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2}\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right]
$$

General Relativity + minimal quintessence:

$$
L_{\mathrm{GR}+\mathrm{Q}}=\left[\frac{M_{\mathrm{Pl}}^{2}}{2}\left(K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right)+\frac{c(t)}{2 N^{2}}-V(t)\right]
$$

Scalar kinetic term $\quad-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi \quad \rightarrow \quad-\frac{1}{2} g^{00}=\frac{\dot{\phi}_{0}^{2}(t)}{2 N^{2}}$
Scalar potential term

$$
V(\phi) \quad \rightarrow \quad V(t)
$$

Examples

B General Relativity:

$$
L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2}\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right]
$$

B General Relativity + minimal quintessence:

$$
L_{\mathrm{GR}+\mathrm{Q}}=\left[\frac{M_{\mathrm{Pl}}^{2}}{2}\left(K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right)+\frac{c(t)}{2 N^{2}}-V(t)\right]
$$

$f(R):$

$$
L_{f(R)}=\frac{M_{\mathrm{Pl}}^{2}}{2} f\left({ }^{(4)} R\right)
$$

Examples

() General Relativity:

$$
L_{\mathrm{GR}}=\frac{M_{\mathrm{Pl}}^{2}}{2}\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right]
$$

() General Relativity + minimal quintessence:

$$
L_{\mathrm{GR}+\mathrm{Q}}=\left[\frac{M_{\mathrm{Pl}}^{2}}{2}\left(K_{i j} K^{i j}-K^{2}+{ }^{(3)} R\right)+\frac{c(t)}{2 N^{2}}-V(t)\right]
$$

$f(R)$:

$$
L_{f(R)}=\frac{M_{\mathrm{Pl}}^{2}}{2} f^{\prime}(t)\left[K_{i j} K^{i j}-K^{2}+{ }^{(3)} R+2 \frac{f^{\prime \prime}(t)}{f^{\prime}(t)} \frac{K}{N}+V(t)\right]
$$

Scalar kinetic term comes from mixing with metric: braiding

Constructing the action

1. Scalar field breaks time diffs; gravitational action preserves spatial diffs

ADM (3+1) decomposition in unitary gauge:
Creminelli et al. '06; Cheung et al. '07

$$
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(N^{i} d t+d x^{i}\right)\left(N^{j} d t+d x^{j}\right)
$$

2. Action: all terms that respect spatial diffs in the action (Jordan frame)

$$
S=\int d^{4} x \sqrt{-g} L\left[t ; N, K_{j}^{i},{ }^{(3)} R_{j}^{i}, \ldots\right]
$$

3. Expand at quadratic order (i.e. linear theory)

$$
\begin{aligned}
& \text { 3-d tensors: } \quad \delta N \equiv N-1, \quad \delta K_{i j} \equiv K_{i j}-H h_{i j}, \quad{ }^{(3)} R_{i j} \\
& L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots
\end{aligned}
$$

Second-order Lagrangian

$$
\begin{aligned}
L^{(2)}= & \frac{1}{2} L_{N N} \delta N^{2}+\frac{1}{2} \frac{\partial^{2} L}{\partial K_{j}^{i} \partial K_{l}^{k}} \delta K_{j}^{i} \delta K_{l}^{k}+\frac{1}{2} \frac{\partial^{2} L}{\partial R_{j}^{i} \partial R_{l}^{k}} \delta R_{j}^{i} \delta R_{l}^{k}+ \\
& +\frac{\partial^{2} L}{\partial K_{j}^{i} \partial R_{l}^{k}} \delta K_{j}^{i} \delta R_{l}^{k}+\frac{\partial^{2} L}{\partial N \partial K_{j}^{i}} \delta N \delta K_{j}^{i}+\frac{\partial^{2} L}{\partial N \partial R_{j}^{i}} \delta N \delta R_{j}^{i}+\ldots
\end{aligned}
$$

Second-order Lagrangian

$$
\begin{aligned}
L^{(2)}= & \frac{1}{2} L_{N N} \delta N^{2}+\frac{1}{2} \frac{\partial^{2} L}{\partial K_{j}^{i} \partial K_{l}^{k}} \delta K_{j}^{i} \delta K_{l}^{k}+\frac{1}{2} \frac{\partial^{2} L}{\partial R_{j}^{i} \partial R_{l}^{k}} \delta R_{j}^{i} \delta R_{l}^{k}+ \\
& +\frac{\partial^{2} L}{\partial K_{j}^{i} \partial R_{l}^{k}} \delta K_{j}^{i} \delta R_{l}^{k}+\frac{\partial^{2} L}{\partial N \partial K_{j}^{i}} \delta N \delta K_{j}^{i}+\frac{\partial^{2} L}{\partial N \partial R_{j}^{i}} \delta N \delta R_{j}^{i}+\ldots
\end{aligned}
$$

4. Remove higher time and space derivatives and define convenient coefficients (using Bellini \& Sawicki notation)

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

1304.4840 with Gleyzes, Langlois, Piazza

Most general second-order action without higher (spatial and time) derivatives

Second-order Lagrangian

$$
\begin{aligned}
L^{(2)}= & \frac{1}{2} L_{N N} \delta N^{2}+\frac{1}{2} \frac{\partial^{2} L}{\partial K_{j}^{i} \partial K_{l}^{k}} \delta K_{j}^{i} \delta K_{l}^{k}+\frac{1}{2} \frac{\partial^{2} L}{\partial R_{j}^{i} \partial R_{l}^{k}} \delta R_{j}^{i} \delta R_{l}^{k}+ \\
& +\frac{\partial^{2} L}{\partial K_{j}^{i} \partial R_{l}^{k}} \delta K_{j}^{i} \delta R_{l}^{k}+\frac{\partial^{2} L}{\partial N \partial K_{j}^{i}} \delta N \delta K_{j}^{i}+\frac{\partial^{2} L}{\partial N \partial R_{j}^{i}} \delta N \delta R_{j}^{i}+\ldots
\end{aligned}
$$

4. Remove higher time and space derivatives and define convenient coefficients (using Bellini \& Sawicki notation) $\quad 1404.3713$ Bellini \& Sawicki

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

1304.4840 with Gleyzes, Langlois, Piazza

Most general second-order action without higher (spatial and time) derivatives

- For $\dot{M}=\alpha_{i}=0$ second-order action for General Relativity
- Deviations from GR (LCDM) on linear scales independent of background evol.

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}\left(\text { th }^{2}\right)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* General Relativity (LCDM)

Building blocks of dark energy

$$
S^{(2)}=\int d^{4} x a^{3} \frac{M^{2}(\not ้)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right.
$$

$$
\left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
$$

* Standard kinetic term: quintessence, k-essence $\quad P\left(\phi,(\partial \phi)^{2}\right)$
α_{K} parametrizes kineticity of dark energy $\sim(1+w) \Omega_{D E} / c_{s}{ }^{2}$

kineticity					
	α_{K}	α_{B}	α_{M}	α_{T}	α_{H}
quintessence, k-essence	\boldsymbol{V}				

Building blocks of dark energy

$$
S^{(2)}=\int d^{4} x a^{3} \frac{M^{2}(\not ้)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right.
$$

$$
+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
$$

* Kinetic braiding: DGP, KGB $K\left(\phi,(\partial \phi)^{2}\right) \square \phi$
α_{B} parametrizes braiding (kinetic mixing with gravity)

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* Non-minimal couplings: Brans-Dicke, $\mathrm{f}(\mathrm{R}) \quad f(\phi) R, f(R), f(G)$

$$
\alpha_{M}=\frac{d \ln M^{2}}{H d t} \quad \text { parametrizes non-minimal coupling to } R\left(\mathrm{ex}: \mathrm{a}_{\mathrm{M}}=-2 \mathrm{a}_{\mathrm{B}} \text { in } f(R)\right)
$$

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	α_{T}	α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& \left.+\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R\right]
\end{aligned}
$$

* Enhanced tensor sound speed: all Horndeski theories
α_{T} parametrizes deviation from tensor sound-speed $=c$

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	tensor soundspeed α_{T}	α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& +\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
\end{aligned}
$$

* Kinetic mixing with matter: beyond Horndeski theories
α_{H} parametrizes extensions of Horndeski theories

	kineticity α_{K}	kinetic braiding α_{B}	non-minimal coupling α_{M}	tensor soundspeed α_{T}	kinetic mixing with matter α_{H}
quintessence, k-essence	\checkmark				
DGP, kinetic braiding	\checkmark	\checkmark			
Brans-Dicke, f(R)	\checkmark	\checkmark	\checkmark		
Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	
Beyond Horndeski	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& +\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
\end{aligned}
$$

* Kinetic mixing with matter: beyond Horndeski theories
α_{H} parametrizes extensions of Horndeski theories

Consistent nonlinear theories beyond Horndeski: two extra functions of ϕ and X
1404.6495 \& 1408.1952 with Gleyzes, Langlois, Piazza
confirmed by 1408.0670 Lim, Mukohyama, Namba, Saitou and 1506.01974 Deffayet, Esposito-Farese, Steer

New unexplored territory!

Building blocks of dark energy

$$
\begin{aligned}
S^{(2)} & =\int d^{4} x a^{3} \frac{M^{2}(t)}{2}\left[\delta K_{i j} \delta K^{i j}-\delta K^{2}+\delta_{2}\left(\sqrt{h} / a^{3(3)} R\right)+\delta N^{(3)} R\right. \\
& +\alpha_{K}(t) H^{2}(t) \delta N^{2}+4 \alpha_{B}(t) H(t) \delta N \delta K+\alpha_{T}(t) \delta_{2}\left(\sqrt{h} / a^{3} R\right)+\alpha_{H}(t) \delta N^{(3)} R
\end{aligned}
$$

* Kinetic mixing with matter: beyond Horndeski theories

$$
\alpha_{H} \text { parametrizes extensions of Horndeski theories }
$$

- Stability conditions:

Scalar

$$
\alpha_{K}+6 \alpha_{B}^{2}>0 \quad M^{2}>0
$$

$$
c_{s}^{2}\left(\alpha_{i}\right) \geq 0 \quad \alpha_{T} \geq-1
$$

Theoretical restriction on the parameter space

Universal couplings

- Horndeski case ($\alpha_{H}=0$):

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

Equivalence Principle. All species are coupled to the same metric:
For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(g_{\mu \nu}, \psi_{\mathrm{m}}\right)$

Non-universal couplings

1504.05481 with Gleyzes, Langlois, Mancarella

B Horndeski case $\left(\alpha_{H}=0\right)$:

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

- Equivalence Principle. Species are coupled to different metrics:

For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(\tilde{g}_{\mu \nu}, \psi_{\mathrm{m}}\right)$

$$
\tilde{g}_{\mu \nu}=C(\phi) g_{\mu \nu}+D(\phi) \partial_{\mu} \phi \partial_{\nu} \phi
$$

Two new parameters per secies:

$$
\alpha_{C} \equiv \frac{1}{2} \frac{d \ln C}{d \ln a}
$$

$$
\alpha_{D} \equiv \frac{D}{C-D}
$$

Non-universal couplings

1504.05481 with Gleyzes, Langlois, Mancarella

B Horndeski case $\left(\alpha_{H}=0\right)$:

$$
S_{\text {gravity }}=\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right)
$$

B Equivalence Principle. Species are coupled to different metrics:
For each species: $\quad S_{\mathrm{m}}=\int d^{4} x \sqrt{-g} \mathcal{L}\left(\tilde{g}_{\mu \nu}, \psi_{\mathrm{m}}\right)$

$$
\tilde{g}_{\mu \nu}=C(\phi) g_{\mu \nu}+D(\phi) \partial_{\mu} \phi \partial_{\nu} \phi
$$

Two new parameters per secies:

$$
\alpha_{C} \equiv \frac{1}{2} \frac{d \ln C}{d \ln a}
$$

$$
\alpha_{D} \equiv \frac{D}{C-D}
$$

B Structure of Horndeski invariant under the above metric transformation

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2 \mathrm{~N}_{\mathrm{s}}$ parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

B With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{S}}-2=2\left(\mathrm{~N}_{\mathrm{S}}+1\right)$

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2$ Ns parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

B With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{S}}-2=2\left(\mathrm{~N}_{\mathrm{S}}+1\right)$

B Ghost and gradient stability conditions are invariant under rotation in par. space

B Observables invariant. Example: $\quad \frac{\tilde{c}_{I}^{2}}{\tilde{c}_{J}^{2}}=\frac{c_{I}^{2}}{c_{J}^{2}}$

B Inflation: no matter $\left(\mathrm{N}_{\mathrm{S}}=0\right)$. We have 2 independent parameters, ex. α_{K} and α_{B}

$$
\delta N^{2}, \quad \delta N \delta K
$$

Parameter-space rotation

1504.05481 with Gleyzes, Langlois, Mancarella

Total of $4+2$ Ns parameters:

$$
\begin{aligned}
S_{\text {gravity }} & =\int d^{4} x \mathcal{L}_{g}\left(g_{\mu \nu} ; \alpha_{K}, \alpha_{B}, \alpha_{M}, \alpha_{T}\right) \\
S_{\text {matter }} & =\sum_{I}^{\mathrm{N}_{\mathrm{S}}} \int d^{4} x \sqrt{-g} \mathcal{L}_{I}\left(g_{\mu \nu} ; \alpha_{C, I}, \alpha_{D, I} ; \psi_{I}\right)
\end{aligned}
$$

B With a rotation in parameter space, $\tilde{\alpha}_{i}=\mathcal{F}_{i}\left(\alpha_{j}\right)$, we can choose a base where one of the species is minimally coupled: $4+2 \mathrm{~N}_{\mathrm{S}}-2=2\left(\mathrm{~N}_{\mathrm{S}}+1\right)$

B Ghost and gradient stability conditions are invariant under rotation in par. space

B Observables invariant. Example: $\quad \frac{\tilde{c}_{I}^{2}}{\tilde{c}_{J}^{2}}=\frac{c_{I}^{2}}{c_{J}^{2}}$

B Inflation: no matter $\left(\mathrm{N}_{\mathrm{S}}=0\right)$. We have 2 independent parameters, ex. α_{K} and α_{B}

$$
\delta N^{2}, \quad \delta N \delta K
$$

Constraining dark energy

- Can we constrain these parameters?

Constraining dark energy

- Can we constrain these parameters?
- Undo unitary gauge: $\quad t \rightarrow t+\pi(t, \vec{x})$
- Newtonian gauge:

Scalar fluctuations: $\quad d t^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) d \vec{x}^{2}$

Constraining dark energy

- Can we constrain these parameters?
- Undo unitary gauge: $\quad t \rightarrow t+\pi(t, \vec{x})$
- Newtonian gauge:

B Scalar fluctuations: $\quad d t^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) d \vec{x}^{2}$

- Quasi-static approximations - valid on scales $k \gg a H c_{s}^{-1}$. Sawicki, Bellini ${ }^{4} 15$
E.g., for surveys such as Euclid $c_{s} \gtrsim 0.1$.

Standard case

Modified gravity

+ Nonminimal coupling

Baryons + coupled CDM

- Fisher matrix analysis, Euclid-like specifications
- Fiducial I: LCDM. Unmarginalized 1σ contours:

in preparation with
Gleyzes, Langlois, Mancarella

$$
\begin{aligned}
\alpha_{B} & =\alpha_{B, 0} \frac{1-\Omega_{\mathrm{m}}}{1-\Omega_{\mathrm{m}, 0}} \\
\alpha_{M} & =\alpha_{M, 0} \frac{1-\Omega_{\mathrm{m}}}{1-\Omega_{\mathrm{m}, 0}} \\
\beta_{\gamma}^{2} & =\text { const. }
\end{aligned}
$$

Baryons + coupled CDM

- Fisher matrix analysis, Euclid-like specifications
- Fiducial II: Interacting. Unmarginalized 1σ contours:

in preparation with
Gleyzes, Langlois, Mancarella

$$
\begin{aligned}
\alpha_{B} & =\alpha_{B, 0} \frac{1-\Omega_{\mathrm{m}}}{1-\Omega_{\mathrm{m}, 0}} \\
\alpha_{M} & =\alpha_{M, 0} \frac{1-\Omega_{\mathrm{m}}}{1-\Omega_{\mathrm{m}, 0}} \\
\alpha_{T} & =\alpha_{T, 0} \frac{1-\Omega_{\mathrm{m}}}{1-\Omega_{\mathrm{m}, 0}} \\
\beta_{\gamma}^{2} & =\text { const. }
\end{aligned}
$$

Conclusions

* General description of linear perturbations in scalar-tensor theories of gravity
* Systematic way to address stability and explore new theories
* Efficient (minimal) way to parametrize observations on large scales (linear regime)
* Forecasts: unmarginalized error $\sim 10^{-3}$ on parameters describing modifications of gravity. Degeneracies and dependence on the fiducial model.
* Future: Relax assumptions (beyond linear regime, more degrees of freedom, etc...), explore phenomenology and forecasts beyond the quasi-static approximation.

Conclusions

* General description of linear perturbations in scalar-tensor theories of gravity
* Systematic way to address stability and explore new theories
* Efficient (minimal) way to parametrize observations on large scales (linear regime)
* Future: Relax assumptions (beyond linear regime, more degrees of freedom, etc...), explore phenomenology and forecasts beyond the quasi-static approximation.

Physical effects: background

Physical effects: perturbations

FIDUCIAL II
FIDUCIAL III

Horndeski theories

Bost general LI scalar-tensor theory with at most second-order equations of motions
(Horndeski '73, Deffayet et al. 'I I)

$$
\begin{array}{rlr}
L_{H} & =G_{2}(\phi, X)+G_{3}(\phi, X) \square \phi+\quad X \equiv \phi_{; \mu} \phi^{; \mu} \equiv \nabla_{\mu} \phi \nabla^{\mu} \phi \\
& +G_{4}(\phi, X)^{(4)} R-2 G_{4, X}(\phi, X)\left[(\square \phi)^{2}-\phi_{; \mu \nu} \phi^{; \mu \nu}\right] \\
& +G_{5}(\phi, X)^{(4)} G^{\mu \nu} \phi_{; \mu \nu}+\frac{1}{3} G_{5, X}(\phi, X)\left[(\square \phi)^{3}-3 \square \phi \phi_{; \mu \nu} \phi^{; \mu \nu}+2 \phi_{; \mu \nu} \phi^{; \nu \lambda} \phi_{; \lambda}^{; \mu}\right]
\end{array}
$$

(Unitary gauge formulation:

$$
\begin{aligned}
& L_{H}=A_{2}(t, N)+A_{3}(t, N) K+ \\
& \\
& \quad+B_{4}(t, N)^{(3)} R+A_{4}(t, N)\left(K^{2}-K_{i j} K^{i j}\right) \\
& +B_{5}(t, N)^{(3)} G^{i j} K_{i j}+A_{5}(t, N)\left(K^{3}-3 K K_{i j} K^{i j}+2 K_{i j} K^{i k} K_{k}^{j}\right) \\
& \quad \text { with } \quad A_{4}=-B_{4}+2 X B_{4, X} \\
& A_{5}=-X B_{5, X} / 3
\end{aligned}
$$

Background

$$
L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots
$$

FRW metric:

$$
d s^{2}=-N_{0}^{2}(t) d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

All background solutions are given in terms of only 3 functions:

$$
S^{(0)}=\int d^{3} x d t a^{3} N_{0} L_{0}\left(N_{0}, K_{j}^{i}=\frac{\dot{a}}{N_{0} a}, R_{j}^{i}=0\right)
$$

Background

$$
L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots
$$

FRW metric:

$$
d s^{2}=-N_{0}^{2}(t) d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

All background solutions are given in terms of only 3 functions:

$$
S^{(0)}=\int d^{3} x d t a^{3} N_{0}\left[\frac{M^{2}(t)}{2}{ }^{(4)} R_{0}\left(N_{0}, a\right)+\frac{c(t)}{N_{0}^{2}}-\Lambda(t)\right]
$$

Background

$$
L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots
$$

FRW metric:

$$
d s^{2}=-N_{0}^{2}(t) d t^{2}+a^{2}(t) d \vec{x}^{2}
$$

All background solutions are given in terms of only 3 functions:

$$
S^{(0)}=\int d^{3} x d t a^{3} N_{0}\left[\frac{M^{2}(t)}{2}{ }^{(4)} R_{0}\left(N_{0}, a\right)+\frac{c(t)}{N_{0}^{2}}-\Lambda(t)\right]
$$

Matter action:

$$
\delta S_{\mathrm{m}}=\frac{1}{2} \int d^{4} x \sqrt{-g} T^{\mu \nu} \delta g_{\mu \nu}
$$

- Friedmann equations:

$$
\begin{aligned}
H^{2} & =\frac{1}{3 M^{2}}\left(\rho_{\mathrm{m}}+\rho_{\mathrm{DE}}\right) & \rho_{\mathrm{DE}}=c+\Lambda-3 H\left(M^{2}\right)_{, t} \\
\dot{H} & =-\frac{1}{2 M^{2}}\left(\rho_{\mathrm{m}}+p_{\mathrm{m}}+\rho_{\mathrm{DE}}+p_{\mathrm{DE}}\right) & p_{\mathrm{DE}}=c-\Lambda+2 H\left(M^{2}\right)_{, t}+\left(M^{2}\right)_{, t t}
\end{aligned}
$$

First-order Lagrangian

$$
\begin{array}{r}
L\left(N, K_{j}^{i}, R_{j}^{i}, \ldots\right)=\bar{L}+L_{N} \delta N+\frac{\partial L}{\partial K_{j}^{i}} \delta K_{j}^{i}+\frac{\partial L}{\partial R_{j}^{i}} \delta R_{j}^{i}+L^{(2)}+\ldots \\
=0 \text { by the bkgd EOM }
\end{array}
$$

Stability

positive kinetic energy
= absence of ghosts
positive sound speed = absence of gradient instabilities

Stability

positive kinetic energy
= absence of ghosts
positive sound speed = absence of gradient instabilities

$$
\begin{aligned}
& h_{i j}=a^{2}(t) e^{2 \zeta}\left(\delta_{i j}+\gamma_{i j}\right), \quad \gamma_{i i}=0=\nabla_{i} \gamma_{i j} \\
& \mathcal{L}=M^{2}(t)\left\{\left(\alpha_{K}(t)+6 \alpha_{B}^{2}(t)\right)\left[\dot{\zeta}^{2}-c_{s}^{2}(\nabla \zeta)^{2}\right]+\left[\dot{\gamma}_{i j}^{2}-\left(1+\alpha_{T}(t)\right)\left(\nabla \gamma_{i j}\right)^{2}\right]\right\}
\end{aligned}
$$

No higher time (and space) derivatives

Stability

positive kinetic energy
= absence of ghosts
positive sound speed = absence of gradient instabilities

$$
\begin{aligned}
& h_{i j}=a^{2}(t) e^{2 \zeta}\left(\delta_{i j}+\gamma_{i j}\right), \quad \gamma_{i i}=0=\nabla_{i} \gamma_{i j} \\
& \mathcal{L}=M^{2}(t)\left\{\left(\alpha_{K}(t)+6 \alpha_{B}^{2}(t)\right)\left[\dot{\zeta}^{2}-c_{s}^{2}(\nabla \zeta)^{2}\right]+\left[\dot{\gamma}_{i j}^{2}-\left(1+\alpha_{T}(t)\right)\left(\nabla \gamma_{i j}\right)^{2}\right]\right\}
\end{aligned}
$$

No higher time (and space) derivatives

	Scalar	Tensor
No ghosts	$\alpha_{K}+6 \alpha_{B}^{2}>0$	$M^{2}>0$
No gradient instability	$c_{s}^{2}\left(\alpha_{i}\right) \geq 0$	$\alpha_{T} \geq-1$

B Theoretical restriction on the parameter space

Growth of structures

Redshift space

$\delta_{\text {gal }}^{z}=\delta_{\text {gal }}+\cos ^{2} \alpha \frac{\vec{\nabla} \cdot \vec{v}_{\text {gal }}}{H} \longrightarrow \vec{\nabla} \cdot \vec{v}_{\text {gal }} \approx \vec{\nabla} \cdot \vec{v}_{\mathrm{m}} \longrightarrow \nabla^{2} \Phi$

$$
\delta_{\text {gal }}=b \delta_{\mathrm{m}}, \quad \ddot{\delta}_{\mathrm{m}}+2 H \dot{\delta}_{\mathrm{m}}=\nabla^{2} \Phi
$$

Weak lensing

$$
M_{i j}=\int_{z_{s}}^{0} w\left(z, z_{s}\right) \partial_{i} \partial_{j}(\Phi+\Psi) d z
$$

