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1- Introduction 

 

 Objective: problem of consistency  between QM and GR. 

Motivated by:  

 Extra-dimension dynamics: Kaluza and Klein [1,2]  

 Semi-classical approach to QM : de Broglie & Bohm [3,4]. 

 (However: Violation of Bell inequalities in [5,6]).  

 Technical  tool:  time-like EDs: 

  Anti-de Sitter geometry: Maldacena [7]: AdS/CFT; Randall [8]: (hierarchy). 

  Induced matter models: Wesson [9,10]; Koch [11,12]. 

o  Our  study  based on space-time symmetry [13,14]: following induced 

matter models where quantum mechanical equations is identical to a  

micro gravitational geodesic description of curved time-like EDs. 

 Present work: Application of the model to deal with lepton generations 
and their mass hierarchy  (all charged leptons and neutrinos). 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (1) 

 Constructing an ideal 6D flat time-space 𝑡1, 𝑡2, 𝑡3|𝑥1, 𝑥2, 𝑥3  

consisting of orthogonal sub-spaces 3D-time (3T) and 3D-space (3X): 

   𝒅𝑺𝟐 = 𝒅𝒕𝒌
𝟐 − 𝒅𝒙𝒍

𝟐 ; summation: 𝑘, 𝑙 = 1 ÷ 3. 

 We are working further at its symmetrical “light-cone”  : 

𝒅𝒌𝟐 = 𝒅𝒍 𝟐      (or      𝑑𝑡𝑘
2 =  𝑑𝑥𝑙

2
; summation: 𝑘, 𝑙 = 1 ÷ 3)    (1) 

Natural units (ħ = 𝑐 = 1) used unless it needs an explicit quantum dimensions.  

 For transformation from 6D time-space to 4D space-time let’s postulate 

A Conservation of Linear Translation principle (CLT) in  transformation 

from higher dimensional geometries to 4D space-time for  all linear 

translational elements of more general geometries.  

This means that the Eq. (1) of linear time & space intervals ( 𝒅𝒌𝟐 = 𝒅𝒍 𝟐) is to 

be conserved not only for flat Euclidean/ Minkowski geometries, which bases on 

evidence of Lorentz invariance-homogeneity-isotropy of 4D space-time. 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (2) 

 Introducing a 6D isotropic plane wave equation: 

 
𝝏𝟐𝝍0(𝒕𝒌,𝒙𝒍)

𝝏𝒕𝒌
𝟐 =

𝝏𝟐𝝍0(𝒕𝒌,𝒙𝒍)

𝝏𝒙𝒍
𝟐     ; (2) 

 Where 𝝍0  is a harmonic correlation of 𝑑𝑡 and 𝑑𝑥, containing only linear variables. 

 Assuming: Wave transmission (2) and “displacements” 𝑑𝑡 and 𝑑𝑥 serve 

primitive sources of formation of energy-momentum and vacuum potentials 

𝑉𝑇 or 𝑉𝑋 (in terms of time-like or space-like cosmological constant Λ𝑇 and Λ𝐿): 

           𝑉𝑇 & Λ𝑇 ∈ 3𝑇 ;       𝑉𝑋 & Λ𝐿 ∈ 3𝑋 ;  

 Potential  𝑽𝑻 is able to generate quantum fluctuations with circular 

polarization about linear axis  𝒕𝟑 , keeping evolution to the future, which is 

constrained by a time-like cylindrical condition and simultaneously leading to 

violation of space-time symmetry (in analogue to Higgs mechanism).   

In according to CLT principle, during transformation from 6D- to 4D space-time:  

𝝍0(6D)  → 𝝍0( 𝟒𝑫: 𝒕𝒌 → 𝒕𝟑 )== 𝝍(𝟒𝑫)𝑒𝑖𝝋(𝟒𝑫);  

It needs a suggestion equivalent to the Lorentz condition in 4D space-time (for 

compensation of longitudinal fluctuations): 
𝝏𝝋

𝝏𝒕𝟑

𝟐
=

𝝏𝝋

𝝏𝒙𝒍

𝟐
;  (3) 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (3) 

 We use for cylinder in 3D-time polar coordinates 𝛙(𝐭𝟎), 𝛗(𝐭𝟎), 𝐭𝟑  :  

𝒅𝒕𝟐 = 𝒅𝝍(𝒕𝟎)
𝟐 +  𝝍(𝒕𝟎)

𝟐𝒅𝝋(𝒕𝟎)
𝟐 + 𝒅𝒕𝟑

𝟐 = 𝒅𝒔𝟐 + 𝒅𝒕𝟑
𝟐 ;   (4) 

linear time 𝒅𝒕𝟑 in (4) is identical to 𝒅𝒌 in (1).  

as 𝒅𝒕𝟑 orthogonal to 𝒅𝒕𝟎 : 𝜴𝒅𝒕 = 𝜴𝟎𝒅𝒕𝟎 +𝜴𝟑 𝒅𝒕𝟑   𝒅𝒕𝟐=𝒅𝒕𝟎
𝟐+𝒅𝒕𝟑

𝟐 as definition of t. 

 And using in 3D-space spherical coordinates: 𝝍(𝒙𝒏), 𝜽(𝒙𝒏), 𝝋(𝒙𝒏) : 

 𝒅𝝀𝟐= 𝒅𝝍(𝒙𝒏)
𝟐 +𝝍(𝒙𝒏)

𝟐[𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐 𝜽𝒅𝝋(𝒙𝒏)
𝟐] + 𝒅𝒙𝒍

𝟐 

= 𝒅𝝈𝒆𝒗
𝟐 + 𝒅𝝈𝑳

𝟐 + 𝒅𝒍𝟐;   (5)  

Where: 𝒅𝝈𝒆𝒗 local interval characterizing P-even contribution of lepton spinning 𝒔;  

𝒅𝝈𝑳  P-odd contribution of intrinsic space-like curvature. 

𝒔𝑳 // 𝒙𝒍 (left-handed helicity) local rotation in orthogonal plane 𝑷𝒏 local proper 𝒙𝒏 ∈ 𝑷𝒏 

serves an affine parameter  to describe a weak curvature in 3D-space. 

EDs turn into the dynamical depending on other 4D space-time dimensions: 

𝝍 = 𝝍(𝒕𝟎, 𝒕𝟑, 𝒙𝒏, 𝒙𝒍) and  𝝋 = 𝜴𝒕 − 𝒌𝒋𝒙𝒋 = 𝜴𝟎𝒕𝟎 +𝜴𝟑 𝒕𝟑 − 𝒌𝒏𝒙𝒏 − 𝒌𝒍𝒙𝒍. 

  6D time-space (1) generalized with curvature gets a new quadratic form: 

𝒅𝒕𝟐 − 𝒅𝒔𝟐 = 𝒅𝝀𝟐−𝒅𝝈𝒆𝒗
𝟐 − 𝒅𝝈𝑳

𝟐 ;   (6) 

Leading to generalized 4D Minkowski space-time with translation and rotation:      

𝒅𝜮𝟐 = 𝒅𝒔𝟐 − 𝒅𝝈𝒆𝒗
𝟐 − 𝒅𝝈𝑳

𝟐 = 𝒅𝒕𝟐 − 𝒅𝝀𝟐 ;   (7) 

 

 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (4) 
The derivation here is following [14]: Vo Van Thuan, arXiv:1507.00251[gr-qc], 2015. 

 Let’s assume that any local deviation from the linear translation in 3D-time should 

be compensated by a local deviation in 3D-space  for conserving space-time 

symmetry (1):   𝑫𝒖 𝒕𝟎 = 𝑫𝒖 𝒙𝒏 ⧧𝟎 ; with velocity 𝒖 𝒔 =
𝝏𝝍

𝝏𝒔
 ; 

 Their validity means a pumping of P- or  T- violations, which are small. Then 3D local 

deviations are almost realized independently and  exactly:  

𝑫𝒖 𝒕𝟎 = 𝑫𝒖 𝒙𝒏 = 𝟎;   (8) 

 We derive a symmetrical equation of geodesic acceleration of the deviation 𝝍: 

𝝏𝟐𝝍

𝝏𝒕𝟎
𝟐 + 𝜞𝜶𝜷 

𝝍 𝝏𝒕𝜶

𝝏𝒕𝟎

𝝏𝒕𝜷

𝝏𝒕𝟎
=

𝝏𝟐𝝍

𝝏𝒙𝒏
𝟐 + 𝜞𝜸 𝝈 

𝝍 𝝏𝒙𝜸

𝝏𝒙𝒏

𝝏𝒙𝝈

𝝏𝒙𝒏
 ;   (9) 

 Where: 𝒕𝜶, 𝒕𝜷 ∈ 𝝍(𝒕𝟎), 𝛗(𝒕𝟎), 𝒕𝟑 ;𝒙𝜸, 𝒙𝝈 ∈ 𝝍(𝒙𝒏), 𝛗(𝒙𝒏), 𝒙𝒍 . There are two terms valid:  

𝜞𝝋(𝒕𝟎) 𝝋(𝒕𝟎) 
𝝍

= −𝝍  and  𝜞𝝋(𝒙𝒏) 𝝋(𝒙𝒏) 
𝝍

= −𝝍. 𝒔𝒊𝒏𝟐 𝜽 ; other terms with  Γαβ 
ψ

=Γγ  σ 
ψ

= 0.  

 Applying a Lorentz-like condition (3)  leads to  the differential equation of linear elements 

similar to (2):  
𝝏𝟐𝝍

𝝏𝒕𝟑
𝟐 =

𝝏𝟐𝝍

𝝏𝒙𝒍
𝟐  ; (10) 

Adding  (10) to (9) we obtain equation including rotation and linear translation: 

𝝏𝟐𝝍

𝝏𝒕𝟎
𝟐 −𝝍

𝝏𝝋

𝝏𝒕𝟎

𝟐
+

𝝏𝟐𝝍

𝝏𝒕𝟑
𝟐 =

𝝏𝟐𝝍

𝝏𝒙𝒏
𝟐 −𝝍𝒔𝒊𝒏𝟐 𝜽

𝝏𝝋

𝝏𝒙𝒏

𝟐
+

𝝏𝟐𝝍

𝝏𝒙𝒍
𝟐  ; (11) 

 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (5) 
 

Due to orthogonality of each pair of differentials  (𝒅𝒕𝟑  & 𝒅𝒕𝟎) and (𝒅𝒙𝒍 & 𝒅𝒙𝒏)  

their second derivatives are combined together: 

𝝏𝟐𝝍

𝝏𝒕𝟎
+𝟐
+

𝝏𝟐𝝍

𝝏𝒕𝟑
𝟐 =

𝝏𝟐𝝍

𝝏𝒕𝟐
   ;    (12)    and 

𝝏𝟐𝝍

𝝏𝒙𝒏𝟐
+

𝝏𝟐𝝍

𝝏𝒙𝒍
𝟐 =

𝝏𝟐𝝍

𝝏𝒙𝒋𝟐
   ;    (13) 

 

 Transformation from 6D-time-space to 4D-space-time is performed in the result of 

two operations: 

 Defining 𝝍 as a deviation parameter;  

 The unification of time-like dimensions (12). 

 

 Finally, from (11) we obtain the geodesic equation as follows: 

−
𝝏𝟐𝝍

𝝏𝒕𝟐
+

𝝏𝟐𝝍

𝝏𝒙𝒋
𝟐 = − 𝜦 𝑻 − 𝐵𝑒 𝒌𝒏. μ𝒆 𝒆𝒗𝒆𝒏

𝟐 − 𝜦 𝑳 𝝍; (14) 

  Where : Effective potentials V 𝑻 of a time-like “cosmological constant” 𝚲 𝑻 and an odd 

component 𝜦 𝑳 of the space-like 𝚲:   [𝚲 
𝑻
−𝚲 𝑳]𝝍 =

𝝏𝝋

𝝏𝒕𝟎
+

𝟐

−
𝝏𝝋

𝝏𝒙𝒏
𝑳

𝟐

𝝍.  

𝐵𝑒  is a calibration scale factor  and μ𝒆 is magnetic dipole moment of charged lepton;  

its orientation is in correlation with spin vector 𝒔 and being P-even.  

HTGRG-2, Quy Nhon, 9-15 August 2015 
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2- Geodesic equation in 6D time-space (6) 

−
𝝏𝟐𝝍

𝝏𝒕𝟐
+

𝝏𝟐𝝍

𝝏𝒙𝒋
𝟐 = − 𝚲 𝑻 − 𝐵𝑒 𝒌𝒏. μ𝒆 𝒆𝒗𝒆𝒏

𝟐 − 𝚲 𝑳 𝝍; (14*) 

 

 During transformation from 6D time-space to 4D space-time, the time-space symmetry is to 

be broken: the time-like curvature is dominant, while the space-like ones are almost hidden 

in 3D-space,  leaving a small PNC effect. 

 

 As 𝝍- function characterizes  a strong time-like curvature   Equation (14) is an 

emission law of a specific kind of micro gravitational waves in time-space 

from the source  𝑽𝑻 . In this case we have to extend the notion of gravitational 

waves carried by other quanta, than that was for the macroscopic gravitational 

wave carried by graviton. 

 

 In Laboratory frame  without polarization analyzer it is able to observe in Eq. (14) 

only linear translation in 3D-space, because the intrinsic P-even spinning is 

compensated by the local 3D-space geodesic condition, in according to (8):    

           
𝝏𝟐𝝍

𝝏𝒙𝒏
𝟐 = 𝝍𝒔𝒊𝒏𝟐 𝜽

𝝏𝝋

𝝏𝒙𝒏

𝟐
 = 𝝍𝐵𝑒 𝒌𝒏. μ𝒆 𝒆𝒗𝒆𝒏

𝟐  ; (15) 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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3- Quantum equations and indeterminism (1) 

 

 For formulation of quantum mechanical equations adopting the 

quantum operators, such as:  

𝝏

𝝏𝒕
→ 𝒊. ħ

𝝏

𝝏𝒕
= 𝑬      and       

𝝏

𝝏𝒙𝒋
→ −𝒊. ħ

𝝏

𝝏𝒙𝒋
= 𝒑 𝒋   

 

 Equation (19) leads to the basic quantum equation of motion: 

−ħ𝟐
𝝏𝟐𝝍

𝝏𝒕𝟐
+ ħ𝟐

𝝏𝟐𝝍

𝝏𝒙𝒋
𝟐 −𝒎𝟐𝝍 = 𝟎  ; (16) 

 

Where :     𝒎𝟐 = 𝒎𝟎
𝟐 −𝜹𝒎𝟐 = 𝒎𝟎

𝟐 −𝒎𝑺
𝟐 −𝒎𝑳

𝟐  

 𝒎𝟎 is the conventional rest mass, defined by 𝚲 𝑻; 

 𝒎𝑺  as a P-even contribution links with an external rotational curvature in 3D-space 

which vanishes due to the geodesic condition (8) and (15); 

 𝒎𝑳 ≪ 𝒎𝑺 is a tiny mass factor generated by 𝚲 𝑳, related to a P-odd effect of parity non-

conservation (PNC).  

 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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3- Quantum equations and indeterminism (2) 

Based on local geodesic deviation acceleration conditions, we can 

understand some QM phenomena: 

 Bohm quantum Potential:  for the exact condition of geodesic deviation (8), 

with the even spinning, Equation (15) leads to:  

𝝏𝑺

𝝏𝒙𝒏

𝟐
= 𝐵𝑒 ħ. 𝒌𝒏. μ𝒆 𝒆𝒗𝒆𝒏

𝟐 =
ħ𝟐

𝝍

𝝏𝟐𝝍

𝝏𝒙𝒏𝟐
= −𝟐𝒎𝑸𝑩; (17) 

which is proportional to Bohm’s quantum potential 𝑸𝑩 assumed in [4]. 

 Schrödinger’s  Zitterbewegung:  

 The existence of the spin term in (16) is reminiscent of ZBW  of free electron [15].  

 When we describe a linear translation of the freely moving particle by Equation (16), 

the ZBW term is almost compensated by the condition (15) except a tiny P-odd 

term. However the latter is hard to observe.  

 For depolarized fields, applying condition (15) and ignoring 𝚲 𝑳, i.e. 𝒎 → 𝒎𝟎, 

Equation (16) is identified as the traditional Klein-Gordon-Fock equation: 

−ħ𝟐
𝝏𝟐𝝍

𝝏𝒕𝟐
+ ħ𝟐

𝝏𝟐𝝍

𝝏𝒙𝒍
𝟐 −𝒎𝟎

𝟐𝝍 = 𝟎  ; (18) 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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3- Quantum equations and indeterminism (3) 

 Heisenberg Indeterminism: 

A. Coordinate-momentum inequality: 

 The local geodesic condition (8) leads to:  
𝟏

𝝍
𝒅

𝝏𝝍

𝝏𝒙𝒏
. 𝒅𝒙𝒏 = 𝒔𝒊𝒏𝟐 𝜽𝒅𝝋𝟐 ≥ 𝟎 ; (19) 

 ∆𝒑 . ∆𝒙 ≥ ∆𝒑𝒏 . ∆𝒙𝒏 > 𝝍−𝟏 𝒅 𝒊. ħ
𝝏𝝍

𝝏𝒙𝒏
. 𝒅𝒙𝒏 = 𝒊. ħ . 𝒔𝒊𝒏𝟐 𝜽𝒅𝝋𝟐≥ 𝟎;      (20) 

Accepting the conditions: i/ Spatial quantization equivalent to cylindrical condition: 

𝒔𝒊𝒏𝟐 𝜽 = 𝟏 i.e. 𝜽 =(n+1/2)π , as a consequence of Lorentz-like condition (3);  

ii/ For Poisson distribution of quantum statistics: < 𝝋 >= 2π and 𝒅𝝋 ≈ 𝝈𝝋 = 2π.  

 Then, from (20): ∆𝒑 . ∆𝒙 > 2π ħ. 

B. Time-energy inequality: 

Following the local geodesic condition (8) in 3D-time: 
𝟏

𝝍
𝒅

𝝏𝝍

𝝏𝒕𝟎
. 𝒅𝒕𝟎 = 𝒅𝝋𝟐 ≥ 𝟎 ; (21) 

 ∆𝑬 . ∆𝒕 ≥ ∆𝑬𝟎 . ∆𝒕𝟎 > 𝝍−𝟏 𝒅 𝒊. ħ
𝝏𝝍

𝝏𝒕𝟎
. 𝒅𝒕𝟎 = 𝒊. ħ . 𝒅𝝋𝟐≥ 𝟎 ;    (22) 

 With the condition (ii): ∆𝑬 . ∆𝒕 > 2π ħ. 

The inequalities (20) and (22), could turn equal to zero only for flat time-space of  

Euclidean geometry. (see [14]: V.V.Thuan,arXiv:1507.00251[gr-qc], 2015). 
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4- Charged lepton generations (1) 

 In 4D space-time assuming that all leptons, as a material points, are to 
involve in a common basic time-like cylindrical geodesic evolution with a 
internal 1D circular curvature of the time-like circle  𝑺𝟏(𝜑+), where 𝜑+is 
azimuth rotation in the plane {𝑡1, 𝑡2} about 𝑡3 and its sign “+” means a 
fixed time-like polarization to the future; 

Developing more generalized 3D spherical system, described by 
nautical angles {𝜑+, 𝜃𝑇 , 𝛾𝑇}, where 𝜃𝑇 is a zenith in the plane {𝑡1, 𝑡3} and 𝛾𝑇 is 
another zenith in the orthogonal plane {𝑡2, 𝑡3} .  

 For n-hyper spherical surfaces their highest order curvatures 𝑪𝒏 is 
inversely proportional to n-power of time-like radius: 

    𝑪𝒏~𝝍
−𝒏   ;    𝑛 = 1,3  ; 

 In according to general relativity, the energy density 𝝆𝒏 correlates 
with its scalar curvature and the density 𝝆𝟏 of lightest lepton as: 

   𝝆𝒏 =
𝝐𝟎

𝝍𝒏 =
𝝐𝟎

𝝍
 

𝟏

𝝍𝒏−𝟏=𝝆𝟏 
𝟏

𝝍𝒏−𝟏  ;  (23) 

     Where the factor 𝝐𝟎 is assumed a universal lepton energy factor 

(universal, because all 3 generations are involved  in cylindrical condition). 
 

HTGRG-2, Quy Nhon, 9-15 August 2015 
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4- Charged lepton generations (2) 

 4D observers (coexisting in the same time-like cylindrical curved 
evolution 𝜑+) see electron oscillating on a fixed line-segment of  the 
time-like amplitude 𝜱, formulating 1D proper (or comoving) “volume”: 

 𝑽𝟏 𝜑+ = 𝜱 = 𝝍𝑻;  

 where 𝑻 is  the 1D time-like Lagrange radius.  

 For instance, 𝜱 plays a role of the time-like micro Hubble radius and the 
wave function 𝝍 plays a role of the time-like scale factor. They are 
probably changeable during the expansion of the Universe (!).  

 The mass of electron defined by 1D Lagrange “volume” will be: 

  𝒎𝟏 = 𝝆𝟏𝑽𝟏 = 𝝆𝟏𝜱 =
𝝐𝟎

𝝍
𝝍𝑻 = 𝝐𝟎𝑻  ;  (24) 

For muon and tauon except the basic time-like cylindrical curved evolution 
𝜑+, the 4D-observers can see some more additional ED curvatures come 
from evolution in simplest configurations of hyper-spherical  “surfaces”: 

i/  𝑺𝟏 (𝜃𝑇) and 𝑺𝟏 (𝛾𝑇)  or   ii/  𝑺𝟐(𝜃𝑇 , 𝛾𝑇).  

(the additional curvatures are external, as the observers are not involved in). 
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4- Charged lepton generations (3) 

 The “comoving volumes” 𝑽𝒏 𝜱  with fixed 𝜱 are calculated as:  

𝑽𝒏 𝜱 =  𝑺𝒏−𝟏 𝑣 𝒅𝒗
𝜱

𝟎

= 𝑺𝒏−𝟏 𝜱  𝒅𝒗
𝜱

𝟎

= 𝑺𝒏−𝟏𝜱 = 𝑽𝟏𝑺𝒏−𝟏 

 

 For homogeneity condition the simplest “2D-rotational comoving  volume” is:  
𝑽𝟐 𝜑+, "𝜃𝑇 + 𝛾𝑇" = 𝑽𝟏 𝜑+ 𝑺𝟏 𝜃𝑇 + 𝑺𝟏 𝛾𝑇 = 𝜱. 𝟐𝑺𝟏 = 𝟒𝝅𝜱𝟐  

 Accordingly, the lepton mass of 2D time-like curved particle (muon) is: 

 𝒎𝟐 = 𝝆𝟐𝑽𝟐 = 𝝆𝟏
𝟏

𝝍
𝜱. 𝟐𝑺𝟏 =

𝝐𝟎

𝝍𝟐 𝟒𝝅𝜱
𝟐 = 𝝐𝟎𝟒𝝅𝑻

𝟐;  (25) 

 The next simplest “3D-rotational comoving volume” is:  

𝑽𝟑 𝜑+, "𝜃𝑇 ∗ 𝛾𝑇" = 𝑽𝟏 𝜑+ 𝑺𝟐 𝜃𝑇 , 𝛾𝑇 = 𝜱. 𝑺𝟐 = 𝟒𝝅𝜱𝟑 

 Accordingly, the lepton mass of 3D time-like curved particle (tauon) is: 

𝒎𝟑 = 𝝆𝟑𝑽𝟑 = 𝝆𝟏
𝟏

𝝍𝟐𝜱. 𝑺𝟐 =
𝝐𝟎

𝝍𝟑 𝟒𝝅𝜱
𝟑 = 𝝐𝟎𝟒𝝅𝑻

𝟑; (26) 

In principle, we could use the precise experimental data of electron and muon 
masses to determine 𝝐𝟎 and 𝑻 in according to (24) and (25) as two free 
parameters, and then to calculate the tauon mass by (26), as a prediction. 
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4- Charged lepton generations (4) 

However, assuming (qualitative) for estimation of Lagrange radius 𝑻: 

 During the Big-Bang inflation, we suggest, the following a scenario similar to the 

standard cosmological model: micro factor 𝝍 increases exponentially ( time-like 

Hubble constant 𝑯𝑻 = Λ𝑻 =7.764*1020 𝑠𝑒𝑐−1 and the instant of inflation 

Δ𝑡1 = 1.926 ∗ 10−18 sec after 1 sec from the Big-Bang).  For the next time-life of 

the Universe 13.7 Bill. years assuming: 𝝍 ~ 𝑡1/2 for radiation dominant era and 

 ~𝑡2/3  for matter dominant era.  

 The time-like Lagrange radius 𝑻 decreases from  𝑻0 =
𝜱

𝝍𝟎
=1 for Δ𝑡1 then steps up 

to the present value 𝑻 =
𝜱

𝝍
≈ 16.5.  

 For leptons born after the inflation era, assuming following anthropic principle 

(very qualitatively) that the Hubble radius of any quantum fluctuations should 

adapt the contemporary value 𝜱, while the scale factor 𝝍 being governed by a 

contemporary chaotic Higgs-like potential in such a way, that is to meet the 

contemporary time-like Lagrange radius 𝑻 (for today, 𝑻 =16.5). 

 Using  𝑻 = 𝟏𝟔. 𝟓, and the lepton energy factor 𝝐𝟎 = 𝟑𝟏. 𝟎 𝑘𝑒𝑉 calibrated to 𝒎𝒆, we 

come to mass ratios of all three charged lepton generations: 

𝒎𝒆:𝒎𝝁:𝒎𝝉 = 𝒎𝟏:𝒎𝟐:𝒎𝟑=1:207.4:3421.5=0.511:106.0:1748.4 (MeV);     (27) 
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4- Charged lepton generations (5) 
The result (as for the 1rst order of approximation) is resumed in the Table 1: 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

*) Same value 𝒎𝒆 for calibration. 

**) J. Beringer et al. (Particle Data Group), PR D86 (2012) 010001 . 

 

 The deviation from masses of muon and tau-lepton < +1% and - 2%.  

 This may be a solution to the problem of charged lepton mass hierarchy 
and  to the puzzle why there are exactly 3 (three) generations. 

 In opposite, this fact is a promising argument for adopting the 3D-time 
geometry (not less nor higher dimensional than 3D).  

n-Lepton 1-electron 2-muon 3-tau lepton 

Density,𝜌𝑛  𝜖0
𝜓

 
𝜖0
𝜓2

 
𝜖0
𝜓3

 

Comoving volume, 𝑽𝑛 𝜱 4𝜋𝜱2 4𝜋𝜱3 

Formulas of  mass, 𝒎𝒏 𝜖0𝑇 𝜖04𝜋𝑇
2 𝜖04𝜋𝑇

3 

Calculated mass ratio 

𝑻 ≈ 𝟏𝟔. 𝟓; 

𝝐𝟎 = 𝟑𝟏. 𝟎 𝑘𝑒𝑉  

1 207.4 3421.5 

Experimental leton 

mass, 𝒎𝒏 (𝑀𝑒𝑉) ** 
0.510998928(11) 105.6583715(35) 1776.82(16) 

Calculated lepton 

mass, 𝒎𝒏 (𝑀𝑒𝑉) 
0.511* 106.0 1748.4 
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4- Charged lepton generations (6) 

 From  (6), a  reminiscence of  de-Sitter (dS) geometry is applied : 

  𝑑𝑡2 − 𝒅𝒍𝟐 − 𝑑𝑠2 = −𝑑𝜎𝐿
2;     (6*) 

When 𝑠 = 𝑠(ψ,φ) is a combination of ED variables (not an invariant) we got:      

 𝑡2 − 𝒍(𝟑𝑿)2 − 𝑠(ψ,φ)2 = −𝜎𝐿
2 ; (28)        (a)   

Because 𝑠(ψ,φ) is not a space-like ED, then: the physical time t can be 

parametrized: 𝑑𝑡2 = 𝑑𝑡3
2 + 𝑑𝑠2  and as 𝜎𝐿

2<< 𝑠2,  the hyperboloid (28) is 

getting to its asymptotical  “light-cone” (see Figs. a,b,c):  

   𝑡2 − 𝑠 𝜓, 𝜑 2 = 𝑡3
2 = 𝒍(𝟑𝑿)2;  (28*) 

 Each hyperbola in Fig.a as an intersection of  the “light-cone” with a flat 

plane at 𝑠 = 𝑠𝑛serves the world-line of lepton n, e.g. e,μ,τ.                             

                  (b) 

 Being constructed at a flat plane (3X-t) 4D-Minkowski at the origin O on 

which all hyperbolas of different 𝑠𝑛 are projected (see Fig.c)  Quantum 

mechanics serves as an 4D effective holography  for restoration of 

physics on the extended “light-cone”  of 6D time-space.   

            (c) 

 Being coexisting at level < 𝑠1>, the 4D observers can not see any mass 

change of electron  during the cosmological expansion. However, they 

can measure the changeable masses of μ and τ with Big-Bang standard 

expansion. The estimation of  changeable mass ratio 𝑅21 = 𝒎𝝁:𝒎𝒆 =

𝟒𝝅𝑻 and as 𝑇~𝑡1/3 then for 10 years  
∆𝑹𝟐𝟏

𝑅21
= 𝟐. 𝟒 ∗ 𝟏𝟎−𝟏𝟎. Therefore, it 

needs to improve precision of experimental data of 𝒎𝒆 and 𝒎𝝁 by two 

orders more, before going on for comparison and observation of any 

change of their ratio: it would be a new window for experiments.     

a 

 

 

  

b 

 

 

  

 

c 
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5- Mass hierarchy of neutrinos (1) 

 

Assuming: neutrinos are free in 3D-time (𝚲𝑻=0) and curved in 3D-space. From the 

geodesic equation (14): 

−
𝝏𝟐𝝍

𝝏𝒕𝟐
+

𝝏𝟐𝝍

𝝏𝒙𝒋
𝟐 = − 𝜦𝑻 −𝑩𝒆 𝒌𝒏. μ𝒆 𝒆𝒗𝒆𝒏

𝟐 − 𝜦𝑳 𝝍; (14**) 

As 𝜦𝑳 very small: t𝑡3 ≡ 𝑡 and 𝑥𝑗 ≈ 𝑥𝑙 , rewriting an equation for neutrino as: 

−
𝝏𝟐𝝍𝒗

𝝏𝒕𝟐
+

𝝏𝟐𝝍𝒗

𝝏𝒙𝒍
𝟐 = − B𝒗 Ω𝟎. 𝒅𝒗

𝟐 − 𝜦𝑳 𝝍𝒗; (29) 

There is added a super-weak CP violation term with calibration scale factor B𝒗, which 

is too tiny and often ignored due to electrical dipole moment 𝒅𝒗. Rescaled (29) with 

Planck constant seems to be an equation for time-like lepton with a tiny mass 𝒊.𝒎𝑳:  

−ħ𝟐
𝝏𝟐𝝍𝒗

𝝏𝒕𝟐
+ ħ𝟐

𝝏𝟐𝝍𝒗

𝝏𝒙𝒍
𝟐 = −𝒎𝑳

𝟐𝝍𝒗; (30) 

However, if quantum operators exchange the role of momentum-energy: 𝑬  ↔ 𝒑 𝒍, 

 Eq. (30) turns into a squared Majorana-like equation with “real mass”.   

In practice, because neutrino mass is too small, (29) or (30) appear as equations of 

microscopic gravitational waves, transmitting almost with a speed of light and 

carrying out a very weak space-like curvature characterized by wave function 𝝍𝒗. 
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5- Mass hierarchy of neutrinos (2) 

 

Experimental status [16]: 

 Direct measurements in single beta decays are far from the expected masses 

(<2.2 eV) for neutrino with given lepton number (electron neutrino). 

 

 Double beta decay searches is approaching to the finest upper limits of absolute 

masses (<0.2 eV) with electron neutrino as well. 

 

 Neutrino oscillations give only square differences of neutrino masses with the 

record precisions of the masses:  

∆𝑚21
2 = 7.50 x 10−5𝑒𝑉2  (2.3%) 

∆𝑚31
2 = 2.46 x 10−3𝑒𝑉2  (1.9%) 

∆𝑚32
2 = 2.45 x 10−3𝑒𝑉2  (1.9%) 

 

 The squared oscillation angles can show the relative probability of each 

oscillation channel. In this work we consider the mass eigenstates and discuss on 

the absolute masses of  𝑚1, 𝑚2, 𝑚3; but not their mixing eigenstates with given 

lepton numbers (𝑣𝑒 , 𝑣μ, 𝑣τ ). 
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5- Mass hierarchy of neutrinos (3) 

Neutrino masses of three generations: 

 In analogue to the charged leptons we accept the normal ordering:  𝑚1 being the 

lightest neutrino with a basic space-like cylindrical curvature; 𝑚2 has additional 𝑆1  

curvatures and 𝑚3 being heaviest neutrino has an additional 𝑆2  curvature. 

 

 

 

 

 

 

 

 

  

               Normal ordering. 

 

 according to the normal ordering, i.e.123   

       and  𝑚3 >> 𝑚1 , then ∆𝑚31
2 = 𝑚3

2 ; if 𝑚2 >> 𝑚1 , then ∆𝑚21
2 = 𝑚2

2. 

𝑚3 

𝑚3 

𝑚2 

𝑚2 

𝑚1 

𝑚1 

Inverted ordering 
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5- Mass hierarchy of neutrinos (4) 

 

 In analogue to the charged lepton model, extending the space-like curvature of 

neutrinos to higher orders than the cylindrical one, we can estimate the masses of 

all three neutrino generations: 

𝑚1 = ϵ𝑣𝑋𝑣;   𝑚2 = ϵ𝑣4π𝑋𝑣
2;    𝑚3 = ϵ𝑣4π𝑋𝑣

3;  (31) 

Where 𝑋𝑣 = 𝛷𝑣/ψ𝑣, is the micro space-like Lagrange radius.  

 

 Based on the two “experimental masses” of neutrino-2 and neutrino-3:  

 𝑚3=4.96 ∗ 10−2 eV; 𝑚2=8.66 ∗  10−3eV ;  (32) 

we define two parameters: 

 𝑋𝑣 = 5.728 ; and ϵ𝑣 = 2.10 ∗ 10−5 eV; (33) 

 

 Consequently, we are able to calculate the mass 𝑚1 of  the lightest neutrino-1:   

𝑚1 = ϵ𝑣𝑋𝑣 = 1.20 ∗ 10−4eV;  (34) 

For alternative, determining:   ϵ𝑣
∗ =

𝐺𝐹𝑚𝑒
2

𝛼
ϵ0 = 1.27 ∗ 10−5eV ; (35) 

 There is found  ϵ𝑣
∗  is of order of ϵ𝑣 within a factor of 2, which would be fixed prior 

for calculating the Lagrange radius 𝑋𝑣 = 6.77 from “experimental mass” 𝑚3.  
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5- Mass hierarchy of neutrinos (5) 

 
The result is resumed in the Table 2: 
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Neutrino (n) neutrino (1) neutrino (2) neutrino (3) 

Density, 𝝆𝒗  𝝐𝒗
𝝍𝒗

 
𝝐𝒗

𝝍𝒗
𝟐

 
𝝐𝒗

𝝍𝒗
𝟑

 

Comoving volume, 𝑽𝒗 𝜱𝒗 𝟒𝝅𝜱𝒗
𝟐 𝟒𝝅𝜱𝒗

𝟑 

Formulas of  mass, 𝒎𝒏 𝝐𝒗𝑿𝒗 𝝐𝒗𝟒𝝅𝑿𝒗
𝟐 𝝐𝒗𝟒𝝅𝑿𝒗

𝟑 

Oscillation squared 

masses,  (𝒆𝑽𝟐) **: 

[16] 

∆𝒎𝟑𝟏
𝟐 − ∆𝒎𝟑𝟐

𝟐 = 

𝟐. 𝟒𝟔 − 𝟐. 𝟒𝟓 𝟏𝟎−𝟑 

= (𝟎. 𝟎𝟏 ∓ 𝟎. 𝟎𝟕)𝟏𝟎−𝟑. 

∆𝒎𝟐𝟏
𝟐 = 

𝟕. 𝟓𝟎 ∗ 𝟏𝟎−𝟓 

(∓2.3%). 

∆𝒎𝟑𝟏
𝟐 = 

𝟐. 𝟒𝟔 ∗ 𝟏𝟎−𝟑 

(∓1.9%). 

Absolute masses (eV): ?  𝟖. 𝟔𝟔 ∗ 𝟏𝟎−𝟑 (∓𝟏.2%) 𝟒. 𝟗𝟔 ∗ 𝟏𝟎−𝟐(∓𝟏.0%) 

a/ Calculated masses, 

𝒎𝒏 (𝒆𝑽): 𝑿𝒗 = 𝟓. 𝟕𝟐𝟖 

𝝐𝒗=2.10*𝟏𝟎−𝟓 eV 

 𝟏. 𝟐𝟎 ∗ 𝟏𝟎−𝟒  8.66 ∗ 𝟏𝟎−𝟑 (*) 

Calibration  

 4.96𝟏𝟎−𝟐 (*) 

Calibration  

b/ Alternative, 𝒎𝒏 (𝒆𝑽): 

𝑿𝒗 = 𝟔. 𝟕𝟕𝟒  

𝝐𝒗
∗ =1.27*𝟏𝟎−𝟓 eV 

  

𝟖. 𝟔𝟎 ∗ 𝟏𝟎−𝟓 

  

7.32 ∗ 𝟏𝟎−𝟑 

  

 4.96𝟏𝟎−𝟐 (*) 

Calibration  

∆m(a-b) % 33% 15.5% (*) 
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5- Mass hierarchy of neutrinos (6) 

 

 Out puts of the model:  

 

  Neutrinos with mass eigenvalues can not travel with v<c: their helicity is fixed 

strictly, while the electrical properties are not conserved (due to CPV term), which 

is  the appearance of Majorana neutrinos.  

 

 The fact that electron and neutrino energy factors are well correlated as:  

ϵ𝑣
∗ =

𝐺𝐹𝑚𝑒
2

𝛼
ϵ0 in an applicable time-space symmetry shows up an argument that 

charged leptons and neutrinos may be time-space partners. 

 

  The absolute mass values of all 3 generations fit the normal ordering of hierarchy 

(not to the inverted ordering). 

 

  It needs to improve the precision of experimental values ∆𝑚31
2 and/or ∆𝑚32

2  

by almost 2 orders better to prove the predicted absolute mass 𝑚1 of the lightest 

neutrino. 
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6- Conclusions 
 There are strong arguments for existence of time-like EDs in terms of the 

wave function 𝝍 and the proper time 𝒕𝟎  (see Vo Van Thuan  [13]). 

 The curvature are revealing in emission  of a specific kind of micro scopic 
gravitational waves which is described by the quantum Klein-Gordon-Fock 
equation.  

 

 The 3D local geodesic acceleration conditions of deviation 𝝍  shed light on: 
 Bohm’s quantum potential;  

 Zitterbewegung (Schrödinger’s ZBW) of a spinning free electron; 

 Heisenberg inequalities.  

 In particular, triumph of Heisenberg indeterminism serves a strong  
  argument for  the curvature of microscopic time-space.  

(see [14] Vo Van Thuan, arXiv:1507.00251[gr-qc], 2015). 

 
 Number of lepton generations is equal to the maximal time-like dimension (3D): 

 Based on the common cylindrical 1D-mode: extending the curvature to additional 
2D and 3D time-like hyper-spherical configurations to estimate the mass ratios 
of all charged leptons and neutrinos: quantitatively satisfactory.  

It would serve a solution of problems of number  “3” of lepton generations 
and  lepton mass hierarchy. 

Finally, we have shown more evidence of a deep consistency  between:  

Quantum Mechanics  and  General Relativity. 
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