Hot Topics in Gen







O Objective: probler

Motivated by:

ving induced
IS identical to a
d time-like EDs.

leal with lepton generations
d leptons and neutrinos).




2- Geodesic equatior

O Constructing an id
consisting of orthog




2- Geodesic equation in 6D time-space (2)

O Introducing a 6D isotropic plane wave equation:
*Po(tix) _ P*Poltx) .
ats 4 dx? . (2)
» Where 3, is a harmonic correlation of dt and dx, containing only linear variables.
O Assuming: Wave transmission (2) and “displacements” dt and dx serve

primitive sources of formation of energy-momentum and vacuum potentials
Vr or Vy (in terms of time-like or space-like cosmological constant A and A;):

Ve & Ap € 3T ; Vy & A, € 3X ;
- Potential Vy is able to generate quantum fluctuations with circular
polarization about linear axis t;, keeping evolution to the future, which is

constrained by a time-like cylindrical condition and simultaneously leading to
violation of space-time symmetry (in analogue to Higgs mechanism).

In according to CLT principle, during transformation from 6D- to 4D space-time:
Po(6D) - Yo(4D:t;, - t3)== II)(4-D)ei‘P(4D);

It needs a suggestion equivalent to the Lorentz condition in 4D space-time (for

. - L (99\% _ [39\2.
compensation of longitudinal fluctuations): (6t3) = (ax,) : ©))
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2- Geodesic equation in 6D time-space (3)

d We use for cylinder in 3D-time polar coordinates {W(ty), @(ty), t3} :
dt? = dy(ty)* + P(te) de(ty)?* + dt5 = ds* + dt5; (4)
linear time dt; in (4) is identical to dk in (2).
as dtz orthogonal to dt, : 2dt = Qydt, +025 dt; = dt’=dts+dt3 as definition of t.
O And using in 3D-space spherical coordinates: {¥(x;,), 0(x,), (x,)}:
dA%= dyp(x,)? + P(x,)*[dO? + sin? 0 de(x,)?*] + dx?
=do,,” +do> +dI?, (5
Where: do,, local interval characterizing P-even contribution of lepton spinning s;

do; P-odd contribution of intrinsic space-like curvature.

s; Il x; (left-handed helicity) local rotation in orthogonal plane P,, ->local proper x,, € P,
serves an affine parameter to describe a weak curvature in 3D-space.

EDs turn into the dynamical depending on other 4D space-time dimensions:
II} = ll)(to, t3, x5, xl) and P = 0Nt — k]x] = ﬂoto +.Qg t3 — knxn = klxl.

0 6D time-space (1) generalized with curvature gets a new quadratic form:
dt? — ds? = d2%2 -do,,” — do,%; (6)

Leading to generalized 4D Minkowski space-time with translation and rotation:
d2? = ds? — do,,” —do 2 = dt> —dA%; (7)
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2- Geodesic equation in 6D time-space (4)
The derivation here is following [14]: Vo Van Thuan, arXiv:1507.00251[gr-gc}, 2015.

O Let's assume that any local deviation from the linear translation in 3D-time should
be compensated by a local deviation in 3D-space for conserving space-time

symmetry (1): Du(ty) = Du(x,,)+0 ; with velocity u(s) = %-

Their validity means a pumping of P- or T- violations, which are small. Then 3D local
deviations are almost realized independently and exactly:

Du(ty) = Du(x,) = 0; ©)
0 We derive a symmetrical equation of geodesic acceleration of the deviation :
Y |y (0t (Otg\ _ %Y | o (0%y) (0% .
dto” d raﬁ (ato) (ato) ax121 4 [' (6xn) (6xn) )

> Where: t,, tﬁ € {Y(ty), (p(to), t3};x,,,x € {Y(x,), (x,), x;}. There are two terms valid:

Y v _pb
Tyt oty = W and F¢(xn) oty = W sin® @ ; other terms with F=ly s =0
» Applying a Lorentz-like condition (3) leads to the differential equation of linear elements
0%y %y

similar to (2): (10)

at2 - (’ixl2 ’

Adding (10) to (9) we obtain equation including rotation and linear translation:
2 2 2 2 2

a—¢—¢(6—¢) + 2% a¢ — 1 sin? 9( ) +a—¢; (11)

atoz dt 6t32 Xn
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2- Geodesic equation in 6D time-space (5)

Due to orthogonality of each pair of differentials (dt; & dtpy) and (dx; & dx,,)
their second derivatives are combined together:

2 2 2 2
"y 9y 9y | (12) "y

+ - 1
oy’ otz®  ar? dxp2

2 2
o’y _ 07y | (13)

axlz . asz :

and

O Transformation from 6D-time-space to 4D-space-time is performed in the result of
two operations:

» Defining ¥ as a deviation parameter,
» The unification of time-like dimensions (12).

O Finally, from (11) we obtain the geodesic equation as follows:

9> 9>
I atlzp + axlp _[/1 —B (kn Ue)even L]II); (14)

Where : Effective potentials V ; of a time-like “cosmological constant” A y and an odd

component A ;, of the space-like A: [A —A ;] = [(:;p) ax ]t[)
0 n

B, Is a calibration scale factor and i, IS magnetic dipole moment of charged lepton;
its orientation is in correlation with spin vector s and being P-even.
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2- Geodesic equation in 6D time-space (6)

%y %y .
e + asz == —[A T — Be(kn. p,e)gven — A L]]I)’ (14*)

O During transformation from 6D time-space to 4D space-time, the time-space symmetry is to
be broken: the time-like curvature is dominant, while the space-like ones are almost hidden
in 3D-space, leaving a small PNC effect.

» As - function characterizes a strong time-like curvature - Equation (14) is an
emission law of a specific kind of micro gravitational waves in time-space
from the source V7 . In this case we have to extend the notion of gravitational
waves carried by other quanta, than that was for the macroscopic gravitational
wave carried by graviton.

> In Laboratory frame without polarization analyzer it is able to observe in Eq. (14)
only linear translation in 3D-space, because the intrinsic P-even spinning is

compensated by the local 3D-space geodesic condition, in according to (8):

92 : a9 \?
4 = II) Sln2 0 (ﬁ) > 1I)Be (kn- Ue)gven ; (15)

axnz n
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3- Quantum equatior

1 For formulation of ©
guantum operata

> in 3D-space

>-0dd effect of parity non-




3- Quantum equations and indeterminism (2)

Based on local geodesic deviation acceleration conditions, we can
understand some QM phenomena:

O Bohm quantum Potential: for the exact condition of geodesic deviation (8),
with the even spinning, Equation (15) leads to:

as z 2
(E) = B, (h. k,. P-e)even = ¢ 2, ¢ = —2mQp,; (17)

which is proportional to Bohm’s quantum potential Qg assumed in [4].
Q Schrédinger’s Zitterbewegung:
» The existence of the spin term in (16) is reminiscent of ZBW of free electron [15].

» When we describe a linear translation of the freely moving particle by Equation (16),
the ZBW term is almost compensated by the condition (15) except a tiny P-odd
term. However the latter is hard to observe.

O For depolarized fields, applying condition (15) and ignoring A ;, i.e. m - m,,
Equation (16) is identified as the traditional Klein-Gordon-Fock equation:

7228 2%% 2y =0; (18)

axl
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3- Quantum equations and indeterminism (3)

O Heisenberg Indeterminism:
A. Coordinate-momentum inequality:

» The local geodesic condition (8) leads to: —d( ) dx, = sin*0de* >0; (19)

> |Ap|. |Ax| = |Ap,,|. |Ax,| > Pp1 |d(i.ha—;'l;) |dx,| = |i.h].sin?0d@?>0;  (20)

Accepting the conditions: i/ Spatial quantization equivalent to cylindrical condition:
sin®* 6 = 1i.e. 8 =(n+1/2)m, as a consequence of Lorentz-like condition (3);

li/ For Poisson distribution of quantum statistics: < ¢ >= 2w and d¢ ~ o, = V2Tr.
- Then, from (20): [Ap|. |Ax| > 27T h.

B. Time-energy inequality:

Following the local geodesic condition (8) in 3D-time: id (a ) dty, =dep*>0; (21)
to

> |AE|. |At] 2 |AEo|. |Ato] > 1 |d (i.h3 )| ldto] = |i.hl.d@?>0: (22

- With the condition (ii): |AE|. |At| > 21T h.

The inequalities (20) and (22), could turn equal to zero only for flat time-space of
Euclidean geometry. (see [14]: V.V.Thuan,arXiv:1507.00251[gr-qgc], 2015).

Vo Van Thuan HTGRG-2, Quy Nhon, 9-15 August 2015 12



4- Charged lepton generations (1)

O In 4D space-time assuming that all leptons, as a material points, are to
involve in a common basic time-like cylindrical geodesic evolution with a
internal 1D circular curvature of the time-like circle S;(¢ "), where ¢*is
azimuth rotation in the plane {t;, t;} about t; and its sign “+” means a
fixed time-like polarization to the future;

Developing more generalized 3D spherical system, described by
nautical angles {¢™, 0;,yr}, where 6; is a zenith in the plane {t;, t;} and y7 is
another zenith in the orthogonal plane {t,, t3} .

 For n-hyper spherical surfaces their highest order curvatures C,, is
inversely proportional to n-power of time-like radius:

Co~p™ ; n=13 ;

—2 In according to general relativity, the energy density p,, correlates
with its scalar curvature and the density p, of lightest lepton as:

€ _€0 1 _ 1 .
Pn = II)(:l _ll) Ipn—l_pl l[)n_l p (23)

Where the factor €y Is assumed a universal lepton energy factor

(universal, because all 3 generations are involved in cylindrical condition).
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4- Charged lepton generations (2)

» 4D observers (coexisting in the same time-like cylindrical curved
evolution ¢*) see electron oscillating on a fixed line-segment of the
time-like amplitude @, formulating 1D proper (or comoving) “volume”:

Vilp™) = @ = YT;
where T is the 1D time-like Lagrange radius.

» For instance, @ plays a role of the time-like micro Hubble radius and the
wave function y plays a role of the time-like scale factor. They are
probably changeable during the expansion of the Universe (!).

» The mass of electron defined by 1D Lagrange “volume” will be:
€
my = pVy = p1P = EOIIJT =€oT ; (24)

For muon and tauon except the basic time-like cylindrical curved evolution
", the 4D-observers can see some more additional ED curvatures come
from evolution in simplest configurations of hyper-spherical “surfaces”:

I/ $; (67) and S1 (y7) or il S,(01,v7).
(the additional curvatures are external, as the observers are not involved in).
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4- Charged lepton generations (3)

a The “comoving volumes” V,, (@) with fixed @ are calculated as:

V(@) = jo ’

» For homogeneity condition the simplest “2D-rotational comoving volume” is:
Vo(*,"0r +yr") = Vil@)[S1(07) + S1(yr)] = @.2S; = 4 d?

» Accordingly, the Iepton mass of 2D time-like curved particle (muon) is:

()]
Sy 1(0)dv = Sy (®) f dv = S;_1® = V1Sn_1
0

my = paVz = Py, Ld.25, = ;‘; Atd? = €x4nT?;  (25)

» The next simplest 3D-rotationa| comoving volume” is:
Vi(o™,"0r xyr") = V(@ T)S2(67,v7) = D.S; = 4P’

» Accordingly, the lepton mass of 3D time-like curved particle (tauon) is:
m3 = p3V3 = p1; cp S, = ¢03 4nd3 = € 4nT3;  (26)
In principle, we could use the precise experimental data of electron and muon

masses to determine €, and T in according to (24) and (25) as two free
parameters, and then to calculate the tauon mass by (26), as a prediction.
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4- Charged lepton generations (4)

However, assuming (qualitative) for estimation of Lagrange radius T:

O During the Big-Bang inflation, we suggest, the following a scenario similar to the
standard cosmological model: micro factor ¥ increases exponentially ( time-like
Hubble constant Hy = /Ay =7.764*102° sec™! and the instant of inflation
At; = 1.926 = 10718 sec after 1 sec from the Big-Bang). For the next time-life of
the Universe 13.7 Bill. years assuming: ¥ ~ t'/? for radiation dominant era and
~t2/3 for matter dominant era.

- The time-like Lagrange radius T decreases from T, = 1/,2:1 for At, then steps up

0
to the present value T = % ~ 16.5.

O For leptons born after the inflation era, assuming following anthropic principle
(very qualitatively) that the Hubble radius of any quantum fluctuations should
adapt the contemporary value @, while the scale factor ¥ being governed by a
contemporary chaotic Higgs-like potential in such a way, that is to meet the
contemporary time-like Lagrange radius T (for today, T =16.5).

0 Using T = 16.5, and the lepton energy factor e, = 31.0 kel calibrated to m,, we
come to mass ratios of all three charged lepton generations:

Mg: M, M, = my: my: m3=1:207.4:3421.5=0.511:106.0:1748.4 (MeV);  (27)
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4- Charged lepton generations (9)

The result (as for the 1rst order of approximation) is resumed in the Table 1:

n-Lepton 1-electron 3-tau lepton
Density,p,, €o
W3

Comoving volume, V,, A3

Formulas of mass, m, 6047TT3

Calculated mass ratio . 3421.5
T ~ 16.5;
€0 = 31.0 keV

Experimental  leton 0.510998928(11) 105.6583715(35)  1776.82(16)

mass, m,, (MeV/) **

Calculated lepton 0.511* 106.0 1748.4
mass, m,, (MeV)

*) Same value m,, for calibration.
**) J. Beringer et al. (Particle Data Group), PR D86 (2012) 010001 .

» The deviation from masses of muon and tau-lepton < +1% and - 2%.

» This may be a solution to the problem of charged Ilepton mass hierarchy

and to the puzzle why there are exactly 3 (three) generations.

> |In opposite, this fact is a promising argument for adopting the 3D-time

geometry (not less nor higher dimensional than 3D).
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4- Charged lepton generations (6)

Q From (6), a reminiscence of de-Sitter (dS) geometry is applied :

dt? — dlI?> — ds? = —do;?; (6%
When s = s({, @) is a combination of ED variables (not an invariant) we got:

t? —I3X)* —s(¥, @)* = —a,?;  (28)
Because s(ys, @) is not a space-like ED, then: the physical time t can be
parametrized: dt? = dt;* + ds® and as og;°<<s?, the hyperboloid (28) is
getting to its asymptotical “light-cone” (see Figs. a,b,c):

t? — s, @) = ts* = 1(3X)%; (28*)
» Each hyperbola in Fig.a as an intersection of the “light-cone” with a flat
plane at s = s, serves the world-line of lepton n, e.g. e,y,T.

» Being constructed at a flat plane (3X-t) 4D-Minkowski at the origin O on
which all hyperbolas of different s,, are projected (see Fig.c) - Quantum
mechanics serves as an 4D effective holography for restoration of
physics on the extended “light-cone” of 6D time-space.

» Being coexisting at level < s;>, the 4D observers can not see any mass
change of electron during the cosmological expansion. However, they
can measure the changeable masses of y and 1 with Big-Bang standard
expansion. The estimation of changeable mass ratio R,; = m,:m, =

4nT and as T~t'/3 then for 10 years A}f“ = 2.4 107 1°, Therefore, it

21
needs to improve precision of experimental data of m, and m,, by two

orders more, before going on for comparison and observation of any
change of their ratio: it would be a new window for experiments.
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5- Mass hierarchy of neutrinos (1)

Assuming: neutrinos are free in 3D-time (Ar=0) and curved in 3D-space. From the
geodesic equation (14):

2 2
4 % + ZT;I; P _[AT P Be(kn- lle)gven = AL]IP; (14**)

As Ap very small: t=>t3 = t and x; ~ x; , rewriting an equation for neutrino as:

3Py | Yy :
T 9t2 + 9x;2 = _[Bv(QO-dv)z = AL]¢va (29)
There is added a super-weak CP violation term with calibration scale factor B,,, which
is too tiny and often ignored due to electrical dipole moment d,,. Rescaled (29) with
Planck constant seems to be an equation for time-like lepton with a tiny mass i.m;:

3’y O’y .
—h? 92 + h? Flz = —mLle)v, (30)

However, if quantum operators exchange the role of momentum-energy: E < py,

-2 Eq. (30) turns into a squared Majorana-like equation with “real mass”.

In practice, because neutrino mass is too small, (29) or (30) appear as equations of
microscopic gravitational waves, transmitting almost with a speed of light and
carrying out a very weak space-like curvature characterized by wave function ..
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5- Mass hierarchy of neutrinos (2)

Experimental status [16]:

O Direct measurements in single beta decays are far from the expected masses
(<2.2 eV) for neutrino with given lepton number (electron neutrino).

O Double beta decay searches is approaching to the finest upper limits of absolute
masses (<0.2 eV) with electron neutrino as well.

O Neutrino oscillations give only square differences of neutrino masses with the
record precisions of the masses:

Am,.? = 7.50x 107°elV? (2.3%)
Ams.? = 2.46x1073eV? (1.9%)
|Ams,?| = 2.45x 107 3eV? (1.9%)

- The squared oscillation angles can show the relative probability of each
oscillation channel. In this work we consider the mass eigenstates and discuss on
the absolute masses of m,, m,, ms; but not their mixing eigenstates with given
lepton numbers (v,, vy, vr ).
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5- Mass hierarchy of neutrinos (3)

Neutrino masses of three generations:

» In analogue to the charged leptons we accept the normal ordering: m, being the
lightest neutrino with a basic space-like cylindrical curvature; m, has additional S;
curvatures and ms being heaviest neutrino has an additional S, curvature.

N Inverted ordering

—> according to the normal ordering, i.e.1>2->3
and |mz|>>|m,|, then Ams,? = m3? ; if |m,|>>|m,|, then Am,,? = m,2.
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5- Mass hierarchy of neutrinos (4)

O In analogue to the charged lepton model, extending the space-like curvature of
neutrinos to higher orders than the cylindrical one, we can estimate the masses of
all three neutrino generations:

my = €,X,, My, = €,4nX2; m3 = €,41X;; (31)
Where X, = @,/ is the micro space-like Lagrange radius.

» Based on the two “experimental masses” of neutrino-2 and neutrino-3:

m;=4.96 * 1072 eV; m,=8.66 * 10 3eV ; (32)
we define two parameters:
X,=5.728;and e, = 2.10 x 107° eV, (33)

» Conseguently, we are able to calculate the mass m, of the lightest neutrino-1:
my = €,X, = 1.20 * 10~ *eV; (34)

2
For alternative, determining: e GF:% €p = 1.27 x 107 °eV ; €

= There Is found g€, IS of order of €, within a factor of 2, which would be fixed prior
for calculating the Lagrange radius X,, = 6.77 from “experimental mass” m;.
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5- Mass hierarchy of neutrinos (5)

Neutrino (n)
Density, p,,

Comoving volume, V,,

Formulas of mass, m,

Oscillation squared
masses, (eV?) **:
[16]

Absolute masses (eV):

a/ Calculated masses,
m, (eV): X, =5.728
€,=2.10*107° eV

b/ Alternative, m,, (eV):
X,=6.774
€, =1.27*107° eV

Am(a-b) %

Vo Van Thuan

The result is resumed in the Table 2:

neutrino (1)
E‘D

L2
D,

€, Xy

Am3, — Amj, =
(2.46 — 2.45)1073

=(0.01 ¥ 0.07)1073.

?

1.20 « 1074

8.60 x10°°

33%

HTGRG-2, Quy Nhon, 9-15 August 2015

neutrino (2)
E‘D
2
¥,
4td,,

€,41X >

Am3, =
7.50 x 10>
(F2.3%).
8.66 * 1073 (¥1.2%)

8.66 * 1073 (¥
Calibration

neutrino (3)
E‘D

3
v’
4td,,

€, 41X >

Am3, =
2.46 x 1073
(F1.9%).
4.96 * 10%(¥1.0%)

4.961072 (*)
Calibration

4.961072 (*)
Calibration




O Out puts of the model:

> Neutrinos with r
strictly, while

g of hierarchy

ues Ams,? and/or |Ams,?|
)solute mass m, of the lightest
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6- Conclusions

There are strong arguments for existence of time-like EDs in terms of the
wave function ¥ and the proper time £, (see Vo Van Thuan [13]).

The curvature are revealing in emission of a specific kind of micro scopic
gravitational waves which is described by the quantum Klein-Gordon-Fock
equation.

The 3D local geodesic acceleration conditions of deviation ¥ shed light on:
Bohm’s quantum potential,

Zitterbewegung (Schrodinger’'s ZBW) of a spinning free electron;

Heisenberg inequalities.

In particular, triumph of Heisenberg indeterminism serves a strong
argument for the curvature of microscopic time-space.

(see [14] Vo Van Thuan, arXiv:1507.00251[gr-qgc], 2015).

Number of lepton generations is equal to the maximal time-like dimension (3D):

Based on the common cylindrical 1D-mode: extending the curvature to additional
2D and 3D time-like hyper-spherical configurations to estimate the mass ratios
of all charged leptons and neutrinos: quantitatively satisfactory.

21t would serve a solution of problems of number “3” of lepton generations
and lepton mass hierarchy.

Finally, we have shown more evidence of a deep consistency between:

Quantum Mechanics and General Relativity.
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