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Introduction



Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, !
PRD81 (2010), 123530.

In string theory, many moduli appear when the extra dimensions get 
compactified.

Some of them (10-100) are expected to behave like scalar fields with 
very tiny mass, which are called string axions.

AXIVERSE SCENARIO



It forms an axion cloud around a rotating astrophysical BH!
by extracting BH’s rotation energy.

If string axion field exists…

Superradiant instability

Nonlinear self-interaction

GW emission
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Superradiant 
condition

Massive Klein-Gordon field

Unstable if positive

Gravitational Atom

Quantum numbers:

`, m, n (or nr)



Wave functions & Growth rates
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Axion Bosenova



It forms an axion cloud around a rotating astrophysical BH!
by extracting BH’s rotation energy.

If string axion field exists…

Superradiant instability

Nonlinear self-interaction

GW emission



Nonlinear Self-Interaction

V = f2
aµ2

[1� cos(�/fa)]
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Simulation

Codes:

Sine-Gordon field in the Kerr background

3D code

Pseudo spectral code

HY and Kodama, PTP128, 153 (2012)(r, ✓,�)

Use rotating coordinates to avoid numerical instability

' =
X

`,m

a`m(t, r⇤)Y`m(✓,�)



Simulations Bosenova?

(1a) 0.99 0.4 Yes

(1b) 0.99 0.3 Yes

(1c) 0.99 0.4 Yes

(2) 0.99 0.8 No

Simulations performed up to now

a⇤ Mµ (`,m)

(1, 1)

(1, 1)

(2, 2)

(1, 1) + (2, 2)



Simulations Bosenova?

(1a) 0.99 0.4 Yes

(1b) 0.99 0.3 Yes

(1c) 0.99 0.4 Yes

(2) 0.99 0.8 No

Simulations performed up to now

a⇤ Mµ (`,m)

(1, 1)

(1, 1)

(2, 2)

(1, 1) + (2, 2)



(l,m) = (3, 1)
(l,m) = (5, 1)
(l,m) = (7, 1)

(l,m) = (1, 1)
(l,m) = (3, 3)
(l,m) = (5, 5)

r⇤/M

r⇤/M

(l,m) = (1, 1)

Time evolution: case (1a) (m = 1, ` = 1, 3, 5, 7)

(m = ` = 1, 3, 5)

a`m

a`m

ra`m

ra`m

'



Summary of the simulation (1a)

Bosenova collapse.

m = -1 mode:

'peak . 0.6 Nothing happens.

'peak & 0.7

Terminates the bosenova,!
About 5% of energy falls into the BH.

higher (l,m) modes: Carry about 20% energy!
to the distant place.

The bosenova collapse is characterized by the infall of positive 
energy due to mode excitation.
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Time evolution: case (1b)

(l,m) = (3, 1)
(l,m) = (5, 1)
(l,m) = (7, 1)

(l,m) = (1, 1)
(l,m) = (3, 3)
(l,m) = (5, 5)

(l,m) = (1, 1)

(m = 1, ` = 1, 3, 5, 7)

(m = ` = 1, 3, 5)

a`m

a`m

' r⇤/M
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Summary of the simulation (1b)

Bosenova collapse.

Nothing happens.'peak . 0.4

'peak . 0.45

The bosenova for smaller           happens with a smaller peak 
value but with a larger energy amount.

Mµ

The bosenova for smaller            is more violent in the sense 
that more amount of higher (l, m) modes are excited.

Mµ
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Simulations Bosenova?

(1a) 0.99 0.4 Yes

(1b) 0.99 0.3 Yes

(1c) 0.99 0.4 Yes

(2) 0.99 0.8 No

Simulations performed up to now

a⇤ Mµ (`,m)

(1, 1)

(1, 1)

(2, 2)

(1, 1) + (2, 2)



Time evolution: cases (1a) and (1c)

'

r⇤/M
· · · (1, 1)
· · · (1, 1) + (2, 2)



Energy flux to the horizon Angular momentum flux !
to the horizon
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Summary of the simulation (1c)

Axion cloud shows very rich dynamical phenomena that highly 
depend on the initial setup.

Adding a small amount of the l=m=2 mode to the l=m=1 axion 
cloud causes fairly large change of scalar field dynamics.

A detailed prediction of the scalar field dynamics would be 
very difficult.

This is because the l=m=2 mode grows analogously to the 
resonance in the forced oscillation.
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Time evolution: case (2)

' '

r⇤/M
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Summary of the simulation (2)

The energy extraction from the BH continues,!
while outgoing flow is formed.

If the axion cloud is in the l=m=2 mode, a bosenova does not 
happen.

Axion cloud in the l=m=2 mode is more like a scalar breather.
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GW emission



It forms an axion cloud around a rotating astrophysical BH!
by extracting BH’s rotation energy.

If string axion fields exists…

Superradiant instability

Nonlinear self-interaction

GW emission



Simulating GWs from bosenova

Calculate scalar behavior in a!
test-field approximation in Kerr background;

Calculate             of the scalar field;

Calculate GWs sourced by          by solving Teukolsky 
equation in time domain.
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Because this work is ongoing, we show the results !
only for the case of Schwarzschild BH



Simulations

(1) Klein-Gordon case

(3) Strongly nonlinear case

Mµ = 0.3

Setup

Initial condition: Quasi-bound state of Klein-Gordon field !
in the mode l = m = 1, nr=0

Schwarzschild black hole

(2) Mildly nonlinear case

HY and Kodama, arXiv:1505.00714.
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GWs from “Bosenova” in the Schwarzschild case
Scalar field Gravitational waves

(˜̀, m̃) = (2, 2), real part
(˜̀, m̃) = (2, 2), imaginary part
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Gravitational Waveform
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Possible constraints



Possible constraints from Cygnus X-1

M ⇡ 15M�

McClintock, et al., arXiv:1106.3688-3690{astro-ph}

d ⇡ 1.86 kpc

In the case of µ = 2.4⇥ 10�12eV (Mµ = 0.3)

a⇤ & 0.983

Constraint from GW observation fa . 1015 GeV

Constraint from BH parameter evolution �a⇤ ⌧ 1

fa . 1011 GeV (PRELIMINARY)



Summary



Summary

We developed reliable codes and numerically studied the 
behavior of axion field around a rotating black hole.
The bosenova collapse happens as a result of superradiant 
instability for axion cloud in the l=m=1 mode, while it does not 
happen for the l=m=2 mode.

Burst-type GWs are emitted during the bosenova. 

Axion Bosenova

GWs

If we take account of BH parameter evolution, it may be difficult 
to detect GWs from BH-axion system.

Such bursts are expected to be emitted intermittently, !
and the BH-axion system can be regarded as a gravitational 
wave geyser.

The bosenova show rich phenomena that depend on setups.



Thank you!


