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Summary of known PN orders

Method Equations of motion Energy flux Waveform

Multipolar-post-Minkowskian & post-Newtonian 4PN non-spin 3.5PN non-spin1 3.5PN non-spin
(MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO

3PN (NL) SS 3PN (NL) SS 2PN (L) SS
3.5PN (NL) SSS 3.5PN (NL) SSS

Canonical ADM Hamiltonian 4PN non-spin
3.5PN (NNL) SO

4PN (NNL) SS
3.5PN (NL) SSS

Effective Field Theory (EFT) 3PN non-spin 2PN non-spin
2.5PN (NL) SO
4PN (NNL) SS 3PN (NL) SS

Direct Integration of Relaxed Equations (DIRE) 2.5PN non-spin 2PN non-spin 2PN non-spin
1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO

2PN (L) SS 2PN (L) SS 2PN (L) SS
Surface Integral 3PN non-spin

Many works devoted to spins:

Spin effects (SO, SS, SSS) are known in EOM up to 4PN order

SO effects are known in radiation field up to 4PN

SS in radiation field known to 3PN

1The 4.5PN coefficient is also known
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The 4PN equations of motion

THE 4PN EQUATIONS OF MOTION
Based on collaborations with

Laura Bernard, Alejandro Bohé, Guillaume Faye & Sylvain Marsat

[PRD 93, 084037 (2016); PRD 95, 044026 (2017); PRD submitted (2017)]

Tanguy Marchand, Laura Bernard & Guillaume Faye

[PRL submitted (2017)]
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The 4PN equations of motion

The 1PN equations of motion
[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]

d2rA
dt2

= −
∑
B 6=A

GmB

r2AB
nAB

[
1− 4

∑
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GmC
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1
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The 4PN equations of motion

4PN: state-of-the-art on equations of motion

dvi1
dt

=− Gm2

r212
ni12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
ni12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

2PN


[Otha, Okamura, Kimura & Hiida 1973, 1974; Damour & Schäfer 1985]

[Damour & Deruelle 1981; Damour 1983]

[Kopeikin 1985; Grishchuk & Kopeikin 1986]

[Blanchet, Faye & Ponsot 1998]

[Itoh, Futamase & Asada 2001]

ADM Hamiltonian

Harmonic coordinates

Extended fluid balls

Direct PN iteration

Surface integral method
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[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001ab]

[Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002]

[Itoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic EOM

Surface integral method

Effective field theory

4PN

 [Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017ab]

[Foffa & Sturani 2012, 2013] (partial results)

ADM Hamiltonian

Fokker Lagrangian

Effective field theory
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The 4PN equations of motion

Fokker action of N particles [Fokker 1929]

1 Gauge-fixed Einstein-Hilbert action for N point particles

Sg.f. =
c3

16πG

∫
d4x
√
−g
[
R −1

2
gµνΓµΓν︸ ︷︷ ︸

Gauge-fixing term

]

−
∑
A

mAc
2

∫
dt
√
−(gµν)A v

µ
Av

ν
A/c

2︸ ︷︷ ︸
N point particles

2 Fokker action is obtained by inserting an explicit PN solution of the Einstein
field equations

gµν(x, t) −→ gµν(x;yB(t),vB(t), · · ·)
3 The PN equations of motion of the N particles (self-gravitating system) are

δSF

δyA
≡ ∂LF

∂yA
− d

dt

(
∂LF

∂vA

)
+ · · · = 0
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The 4PN equations of motion

Problem of point particles and UV divergences

x

y
1 2

y(t) (t)

+

m1 m
2

U(x, t) =
Gm1

|x− y1(t)|
+

Gm2

|x− y2(t)|

d2y1

dt2
= (∇U) (y1(t), t)

?
= −Gm2

y1 − y2

|y1 − y2|3

For extended bodies the self-acceleration of the body cancels out by
Newton’s action-reaction law

For point particles one needs a self-field regularization to remove the infinite
self-field of the particle
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The 4PN equations of motion

Dimensional regularization for UV divergences
[t’Hooft & Veltman 1972; Bollini & Giambiagi 1972; Breitenlohner & Maison 1977]

1 Einstein’s field equations are solved in d spatial dimensions (with d ∈ C) with
distributional sources. In Newtonian approximation

∆U = −4π
2(d− 2)

d− 1
Gρ

2 For two point-particles ρ = m1δ(d)(x− y1) +m2δ(d)(x− y2) we get

U(x, t) =
2(d− 2)k

d− 1

(
Gm1

|x− y1|d−2
+

Gm2

|x− y2|d−2

)
with k =

Γ
(
d−2
2

)
π

d−2
2

3 Computations are performed when <(d) is a large negative number, and the
result is analytically continued for any d ∈ C except for isolated poles

4 Dimensional regularization is then followed by a renormalization of the
worldline of the particles so as to absorb the poles ∝ (d− 3)−1
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The 4PN equations of motion

Fokker action in the PN approximation

We face the problem of the near-zone limitation of the PN expansion

Lemma 1: The Fokker action can be split into a PN (near-zone) term plus a
contribution involving the multipole (far-zone) expansion

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg + FP

B=0

∫
d4x

( r
r0

)B
M(Lg)

Lemma 2: The multipole contribution is zero for any “instantaneous” term
thus only “hereditary” terms contribute to this term and they appear at least
at 5.5PN order

SgF = FP
B=0

∫
d4x

( r
r0

)B
Lg

The constant r0 will play the role of an IR cut-off scale

IR divergences appear at the 4PN order
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The 4PN equations of motion

Gravitational wave tail effect at the 4PN order
[Blanchet & Damour 1988; Blanchet 1993, 1996]

At the 4PN order there is an imprint
of gravitational wave tails in the local
(near-zone) dynamics of the source

This leads to a non-local-in-time
contribution in the Fokker action

This corresponds to a 1.5PN
modification of the radiation field
beyond the quadrupole approximation
(already tested by LIGO)

4PN

1.5PN

matter source

field point

Stail
F =

G2M

5c8
Pf
s0

∫∫
dtdt′

|t− t′|
I
(3)
ij (t) I

(3)
ij (t′)

where the Hadamard partie finie (Pf) is parametrized by an arbitrary constant s0
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The 4PN equations of motion

Problem of the IR ambiguity parameter

1 Using dimensional regularization one can properly regularize the UV
divergences and renormalize the UV poles

2 The result depends on two constants

r0 the IR cut-off scale in the Einstein-Hilbert part of the action
s0 the Hadamard regularization scale coming from the tail effect

3 Modulo unphysical shifts these combine into a single parameter

α = ln

(
r0
s0

)
which is left undetermined at this stage

4 This parameter is equivalent to the constant C in the 4PN ADM Hamiltonian
formalism [Damour, Jaranowski & Schäfer 2014]

5 It is fixed by computing the conserved energy of circular orbits and comparing
with gravitational self-force (GSF) results
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The 4PN equations of motion

Conserved energy for a non-local Hamiltonian
1 Because of the tail effect at 4PN order the Lagrangian or Hamiltonian

becomes non-local in time

H [x,p] = H0 (x,p) + Htail [x,p]︸ ︷︷ ︸
non-local piece at 4PN

2 Hamilton’s equations involve functional derivatives

dxi

dt
=
δH

δpi

dpi
dt

= −δH
δxi

3 The conserved energy is not given by the Hamiltonian on-shell but
E = H + ∆HAC + ∆HDC where the AC term averages to zero and

∆HDC = −2GM

c3
FGW = −2G2M

5c5
〈
(
I
(3)
ij

)2
〉

4 On the other hand [DJS] perform a non-local shift to transform the
Hamiltonian into a local one, and both procedure are equivalent
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The 4PN equations of motion

Conserved energy for circular orbits at 4PN order

The 4PN energy for circular orbits in the small mass ratio limit is known from
GSF of the redshift variable [Le Tiec, Blanchet & Whiting 2012; Bini & Damour 2013]

This permits to fix the ambiguity parameter α and to complete the 4PN
equations of motion

E4PN = −µc
2x

2

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3
)
x3

+

(
−3969

128
+

[
−123671

5760
+

9037

1536
π2 +

896

15
γE +

448

15
ln(16x)

]
ν

+

[
−498449

3456
+

3157

576
π2

]
ν2 +

301

1728
ν3 +

77

31104
ν4
)
x4
}

(1)
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The 4PN equations of motion

Periastron advance for circular orbits at 4PN order

The periastron advanced (or relativistic precession) constitutes a second invariant
which is also known in the limit of circular orbits from GSF calculations

K4PN = 1 + 3x+

(
27

2
− 7ν

)
x2

+

(
135

2
+

[
−649

4
+

123

32
π2

]
ν + 7ν2

)
x3

+

(
2835

8
+

[
−275941

360
+

48007

3072
π2 − 1256

15
lnx

−592

15
ln 2− 1458

5
ln 3− 2512

15
γE

]
ν

+

[
5861

12
− 451

32
π2

]
ν2 − 98

27
ν3
)
x4
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The 4PN equations of motion

Problem of the second ambiguity parameter

The initial calculation of the Fokker action was based on the Hadamard
regularization (HR) to treat the IR divergences (FP procedure when B → 0)

Computing the periastron advance for circular orbits it did not agree with
GSF calculations (offending coefficient − 275941

360 )

We found that the problem was due to the HR and conjectured that a
different IR regularization would give (modulo shifts)

L = LHR +
G4mm2

1m
2
2

c8r412

(
δ1(n12v12)2 + δ2v

2
12

)
︸ ︷︷ ︸

two ambiguity parameters δ1 and δ2

One combination of the two parameters δ1 and δ2 is equivalent to the
previous ambiguity parameter α

Matching with GSF results for the energy and periastron we have

δ1 = −2179

315
δ2 =

192

35
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The 4PN equations of motion

Dimensional regularization of the IR divergences

The Hadamard regularization of IR divergences reads

IHR
R = FP

B=0

∫
r>R

d3x
( r
r0

)B
F (x)

The corresponding dimensional regularization reads

IDR
R =

∫
r>R

ddx

`d−30

F (d)(x)

The difference between the two regularization is of the type (ε = d− 3)

DI =
∑
q

[
1

(q − 1)ε︸ ︷︷ ︸
IR pole

− ln

(
r0
`0

)]∫
dΩ2+ε ϕ

(ε)
3,q(n) +O (ε)
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The 4PN equations of motion

Computing the tail effect in d dimensions

1 The 4PN tail terms arises from the solution of the matching equation

M(hµν) =M
(
h
µν)

2 The PN-expanded field in the near zone reads [PB 2002, BFN 2005]

h
µν

=
16πG

c4
�−1ret

[
rη τµν

]
+Hµν

3 The first term is a particular retarded solution of the PN expanded EFE

�−1ret

[
rη τµν

]
= − k̃

4π

∫
ddx′ |x′|η

∫ +∞

1

dz γ 1−d
2

(z)
τµν(x′, t− z|x− x′|/c)

|x− x′|d−2

with γ 1−d
2

(z) associated to the Green’s function of the wave equation

4 We employ a specific generalization of dimensional regularization where a
regulator rη is inserted in all formulas and called it the “εη” regularization
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The 4PN equations of motion

Computing the tail effect in d dimensions
1 The tail effect comes from the second term of the PN solution which is a

specific homogeneous solution of the wave equation regular when r → 0

Hµν(x, t) =

+∞∑
`=0

+∞∑
j=0

1

c2j
∆−j x̂L f

(2j)µν
L (t)

where

fµνL (t) =
(−)`+1k̃

4π`!

∫ +∞

1

dz γ 1−d
2

(z)

∫
ddx′ |x′|η ∂̂′L

[
M(Λµν)(y, t− zr′/c)

r′d−2

]
y=x′

2 In practice the multipole expansion is computed by the MPM algorithm hence

M(hµν) = hµνMPM =

+∞∑
n=0

Gnhµνn

and for the tail effect we must look at the interaction between the static
mass monopole M and the varying mass quadrupole Iij(t)
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The 4PN equations of motion

Computing the tail effect in d dimensions

1 In a particular gauge the 4PN tail effect is entirely described by a single
scalar potential in the 00 component of the metric

gtail
00 = −8G2M

5c8
xij
∫ +∞

0

dτ

[
ln

(
c
√
q̄ τ

2`0

)
− 1

2ε︸︷︷︸
UV pole

+
41

60

]
I
(7)
ij (t−τ)+O

(
1

c10

)

2 The conservative part of the 4PN tail effect corresponds in the action

Stail
g =

G2M

5c8
Pf
sDR
0

∫∫
dtdt′

|t− t′|
I
(3)
ij (t) I

(3)
ij (t′)

with ln sDR
0 = ln

(
2`0
c
√
q̄

)
+

1

2ε
− 41

60

3 The result is in full agreement with [Galley, Leibovich, Porto & Ross 2016] how
computed the tail effects as a Feynman diagram within the EFT
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The 4PN equations of motion

Ambiguity-free completion of the 4PN EOM

1 The tail effect contains a UV pole which cancels the IR pole coming from the
instantaneous part of the action (the cancellation is also expected to occur in
the EFT [Porto & Rothstein 2017])

2 Adding up all contributions the constants r0, s0 and `0 cancel out as well and
we obtain the conjectured form of the ambiguity terms with the correct values

δ1 = −2179

315
δ2 =

192

35

3 This constitutes the first complete (i.e., ambiguity-free) derivation of the
equations of motion at the 4PN order

4 It is likely that the EFT formalism will also succeed in deriving the full EOM
without ambiguities

5 It seems that the lack of a consistent matching in the ADM Hamiltonian
formalism [DJS] forces this formalism to be still plagued by one ambiguity
parameter
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