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Gravitational wave BBH events [LIGO/VIRGO collaboration 2016, 2017]

For BH binaries the detectors are mostly sensitive to the merger phase and a few
cycles are observed before coalescence
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Modelling the compact binary dynamics
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Modelling the compact binary dynamics
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Methods to compute GW templates
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Methods to compute GW templates
[see Blanchet 2014 for a review]

m
1

m
2

r

Numerical 
Relativity

log
10

(m
2 
/m

1
)

0 1 2 3

0

1

2

3

4

4

Perturbation 
Theory

(C
om

pa
ct

ne
ss

)

Mass Ratio

−1

Post­Newtonian 
Theory

log
10

(r
 
/m)

[courtesy Alexandre Le Tiec]

Luc Blanchet (GRεCO) PN modelling of ICBs HTGRG 4 / 41



Methods to compute GW templates
[Detweiler 2008; Barack 2009]
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The gravitational chirp of compact binaries

merger phase

inspiralling phase
post-Newtonian theory

numerical relativity

ringdown phase
perturbation theory

Effective methods such as EOB that interpolate between the PN and NR are also
very important notably for the data analysis
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Comparisons between PN and GSF

COMPARISONS BETWEEN THE PN
AND GRAVITATIONAL SELF-FORCES
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Comparisons between PN and GSF

Problem of the gravitational self-force (GSF)
[Mino, Sasaki & Tanaka 1997; Quinn & Wald 1997; Detweiler & Whiting 2003]

A particle is moving on a background
space-time of a massive black hole

Its stress-energy tensor modifies the
background gravitational field

Because of the back-reaction the motion of
the particle deviates from a background
geodesic hence the gravitational self force

Mm

a  = F
 


a  = 0

GSF

āµ = FµGSF = O
(m
M

)
The GSF is computed to high accuracy by

numerical methods [Sago, Barack & Detweiler 2008; Shah, Friedmann & Whiting 2014]

analytical ones [Mano, Susuki & Takasugi 1996; Bini & Damour 2013, 2014]
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Comparisons between PN and GSF

Common regime of validity of GSF and PN
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Comparisons between PN and GSF

Why and how comparing PN and GSF predictions?

Both the PN and SF approaches use a self-field regularization for point particles
followed by a renormalization. However, the prescription are very different

1 SF theory is based on a prescription for the Green’s function GR based on
Hadamard’s elementary solution [Detweiler & Whiting 2003]

2 PN theory uses dimensional regularization and it was shown that subtle issues
appear at the 3PN order due to the appearance of poles ∝ (d− 3)−1

How can we make a meaningful comparison?

1 Restrict attention to the conservative part (circular orbits) of the dynamics

2 Find a gauge-invariant observable computable in both formalisms
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Comparisons between PN and GSF

Circular orbit means Helical Killing symmetry

K
K K1

u
1



 

particle's trajectories

light cylinder
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Comparisons between PN and GSF

Looking at the conservative part of the dynamics
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Comparisons between PN and GSF

The redshift observable [Detweiler 2008]

1 For exactly circular orbits the geometry admits a
helical Killing vector with

Kµ∂µ = ∂t + Ω ∂ϕ

2 The four-velocity of the particle is tangent to the
Killing vector hence

Kµ
1 = z1 u

µ
1

3 This z1 is the Killing energy of the particle
associated with the HKV and can also be viewed
as a redshift factor

4 For eccentric orbits one considers the averaged
redshift [Barack & Sago 2011]

〈z1〉 =
1

P

∫ P

0

dt z1(t)

u

k

black hole

R

particle

 

space
space

time
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Comparisons between PN and GSF

Post-Newtonian calculation of the redshift factor

In a coordinate system such that Kµ∂µ = ∂t + ω ∂ϕ we have

z1 =
1

ut1
=

(
− (gµν)1︸ ︷︷ ︸

regularized metric

vµ1 v
ν
1

c2

)1/2

v
1

y
1

y
2

r
12

v
2

One needs a self-field regularization

Hadamard’s partie finie regularization is extremely useful in practical
calculations but yields (UV and IR) ambiguity parameters at high PN orders

Dimensional regularization is an extremely powerful regularization which
seems to be free of ambiguities at any PN order
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Comparisons between PN and GSF

High-order PN result for the redshift factor
[Blanchet, Detweiler, Le Tiec & Whiting 2010, 2011]

The redshift factor of particle 1 through 3PN order and augmented by 4PN and
5PN logarithmic terms is

ut1 = 1 +

(
3

4
− 3

4

√
1− 4ν − ν

2

)
x+

1PN︷ ︸︸ ︷
[· · · ] x2 +

2PN︷ ︸︸ ︷
[· · · ] x3 +

3PN︷ ︸︸ ︷
[· · · ] x4

+

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

4PN log

)
x5 +

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

5PN log

)
x6 +O

(
x7
)

where we pose ν = m1m2

m2 and x =
(
GmΩ
c3

)3/2
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Comparisons between PN and GSF

High-order PN result for the redshift factor
[Blanchet, Detweiler, Le Tiec & Whiting 2010, 2011]

We re-expand in the small mass-ratio limit q = m1/m2 � 1 so that

uT = uTSchw + q uTSF︸ ︷︷ ︸
self-force

+ q2 uTPSF︸ ︷︷ ︸
post-self-force

+O(q3)

Posing y =
(
Gm2Ω
c3

)3/2
we find

uTSF = −y − 2y2 − 5y3 +

3PN︷ ︸︸ ︷(
−121

3
+

41

32
π2

)
y4

+

(
a4 +

64

5
ln y

)
y5︸ ︷︷ ︸

4PN

+

(
a5 −

956

105
ln y

)
y6︸ ︷︷ ︸

5PN

+o(y6)
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Comparisons between PN and GSF

High-order PN fit to the numerical self-force
Numerical SF data is fitted with a PN series in y =

(
Gm2Ω
c3

)2/3
z1 =

∑
a

[anPN + bnPN ln y + · · · ] yn+1

The 3PN prediction agrees with the SF value with 7 significant digits

3PN value SF fit

a3PN = − 121
3 + 41

32π
2 = −27.6879026 · · · −27.6879034± 0.0000004

Logarithmic coefficients b4PN and b5PN also perfectly agree

Post-Newtonian coefficients are measured up to 7PN order

a4PN −114.34747(5)
a5PN −245.53(1)
a6PN −695(2)
b6PN +339.3(5)
a7PN −5837(16)
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Comparisons between PN and GSF

Further developments

1 4PN coefficient known analytically by GSF calculation [Bini & Damour 2013]

a4PN = −1157

15
+

677

512
π2 − 256

5
ln 2− 128

5
γE

and agrees with numerical value [Blanchet, Detweiler, Le Tiec & Whiting 2011]

2 Super-high precision analytical and numerical GSF calculations of the redshift
factor up to 10PN order, including a previously unexpected existence of
half-integral PN terms starting at 5.5PN order [Shah, Friedman & Whiting 2013]

3 Half-integral conservative PN terms [Blanchet, Faye & Whiting 2013, 2014]

a5.5PN = −13696

525
π , a6.5PN =

81077

3675
π , a7.5PN =

82561159

467775
π
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Comparisons between PN and GSF

Standard PN theory agrees with GSF calculations

utSF = −y − 2y2 − 5y3 +

(
−121

3
+

41

32
π2

)
y4

+

(
−1157

15
+

677

512
π2 − 128

5
γE −

64

5
ln(16y)

)
y5

− 956

105
y6 ln y − 13696π

525
y13/2 − 51256

567
y7 ln y +

81077π

3675
y15/2

+
27392

525
y8 ln2 y +

82561159π

467775
y17/2 − 27016

2205
y9 ln2 y

− 11723776π

55125
y19/2 ln y − 4027582708

9823275
y10 ln2 y

+
99186502π

1157625
y21/2 ln y +

23447552

165375
y11 ln3 y + · · ·

1 Integral PN terms such as 3PN permit checking dimensional regularization

2 Half-integral PN terms starting at 5.5PN order permit checking the
non-linear tails (and tail-of-tails)
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First law of compact binary mechanics

FIRST LAW OF COMPACT BINARY MECHANICS
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First law of compact binary mechanics

Four laws of black hole dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Bardeen, Carter & Hawking 1973]

δM − ωH δJ =
κ

8π
δA

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]

δA > 0

THIRD LAW
It is impossible to achieve κ = 0 in any process
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Four laws of black hole dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Christodoulou 1970, Smarr 1973]

M − 2ωH J =
κ

4π
A

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]

δA > 0

THIRD LAW
It is impossible to achieve κ = 0 in any process
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First law of compact binary mechanics

Black hole thermodynamics [Bekenstein 1972, Hawking 1976]

Using arguments involving a piece of matter with entropy thrown into a BH,
Bekenstein derived the BH entropy

SBH = αA

This would require TBH = κ
8πα but the thermodynamic temperature of a

classical BH is absolute zero since a BH is a perfect absorber

However Hawking proved that quantum particle creation effects near a BH
result in a black body temperature TBH = κ

2π

This yields the famous Bekenstein-Hawking entropy of a stationary black hole

SBH =
c3k

~G
A
4

The analogy between BH dynamics and the laws of thermodynamics is
complete although still mysterious today
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First law of compact binary mechanics

Toward a generalized first law for a system of BHs

S r

 r



H

The mass and angular momentum of the BH are given by Komar surface
integrals at spatial infinity

M = − 1

8π
lim
r→∞

∮
Sr

∇µtν dSµν

J =
1

16π
lim
r→∞

∮
Sr

∇µφν dSµν

where tµ and φµ are the two stationary and axi-symmetric Killing vectors
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First law of compact binary mechanics

Toward a generalized first law for a system of BHs

The first law of BH dynamics expresses the
change

δQ = δM − ωH δJ

in the Noether charge Q between two nearby BH
configurations, where Q is associated with the
Killing vector

Kµ = tµ + ωH φ
µ

which is the null generator of the BH horizon

K

congruence 
of horizon's
generators
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First law of compact binary mechanics

Toward a generalized first law for a system of BHs

A generalized First Law valid for systems of BHs can be obtained when the
geometry admits a Helical Killing Vector (HKV)

Kµ∂µ = ∂t + Ω ∂ϕ

where ∂t is time-like and ∂ϕ is space-like (with closed orbits), even when ∂t
and ∂ϕ are not separately Killing vectors

This applies to the case of two Kerr BHs moving on exactly circular orbits
with orbital frequency Ω

The two BHs should be in corotation, so that ωH should approximately be
equal to Ω

In particular the spins should be aligned with the orbital angular momentum
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First law of compact binary mechanics

Toward a generalized first law for a system of BHs


L

S

S1 2m

m
2

1

H

H

H
=

CM






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First law of compact binary mechanics

Mass and angular momentum of compact binaries

The mass M and angular momentum J are checked to satisfy for all the terms up
to 3PN order, and also for the 4PN and 5PN log terms, the thermodynamic
relation valid for circular orbits

∂M

∂Ω
= Ω

∂J

∂Ω

which constitutes the first ingredient in the First Law of binary black holes

The thermodynamic relation states that the flux of energy emitted in the
form of gravitational waves is proportional to the flux of angular momentum

It is used in numerical computations of the binary evolution based on a
sequence of quasi-equilibrium configurations [Gourgoulhon et al 2002]
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First law of compact binary mechanics

First law of binary point particle mechanics
[Le Tiec, Blanchet & Whiting 2011]

1 We find by direct computation that the redshift factors z1 and z2 are related
to the ADM mass and angular momentum by

∂M

∂m1
− Ω

∂J

∂m1
= z1 and (1↔ 2)

2 Finally those relations can be summarized into the First law of binary
point-particles mechanics

δM − Ω δJ = z1 δm1 + z2 δm2

The first law tells how the ADM quantities change when the individual
masses m1 and m2 of the particles vary
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First law of compact binary mechanics

The generalized first law [Friedman, Uryū & Shibata 2002]

Space-time generated by black holes and perfect fluid matter distributions

Globally defined HKV field

Asymptotic flatness

Generalized law of perfect fluid and black hole mechanics

δM − ΩδJ =

∫
Σ

[
µ̄∆(dm) + T̄ ∆(dS) + wµ∆(dCµ)

]
+
∑
a

κa
8π

δAa

where ∆ denotes the Lagrangian variation of the matter fluid, where dm is the
conserved baryonic mass element, and where T = zT and µ = z(h− Ts) are the
redshifted temperature and chemical potential
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First law of compact binary mechanics

First law for binary point particles with spins
[Blanchet, Buonanno & Le Tiec 2012]

δM − Ω δJ =
2∑

a=1

[
za δma + (Ωa − Ω) δSa

]
1 The precession frequency Ωa of the spins obeys

dSa
dt

= Ωa × Sa

2 The total angular momentum is related to the orbital angular momentum by

J = L+ S1 + S2

3 For point particles which have no finite extension the notion of rotation
frequency of the body is meaningless and the law is valid for arbitrary spins
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First law of compact binary mechanics

The first law for binary corotating black holes

1 To describe extended bodies such as black holes one must suplement the
point particles with some internal constitutive relation of the type

ma = ma

(
mirr
a , Sa

)
where Sa is the spin and mirr

a is some irreducible constant mass

2 We define the response coefficients associated with the internal structure

ca =

(
∂ma

∂mirr
a

)
Sa

, ωa =

(
∂ma

∂Sa

)
mirr

a

where in particular ωa is the rotation frequency of the body

3 The First Law becomes

δM − Ω δJ =
2∑

a=1

[
za ca δm

irr
a + (za ωa + Ωa − Ω) δSa

]
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First law of compact binary mechanics

The first law for binary corotating black holes

This yields the corotation condition for extended particles

za ωa = Ω− Ωa

The First Law is then in agreement with the first law for two corotating black
holes [Friedman, Uryū & Shibata 2002]

δM − Ω δJ =
2∑

a=1

κa
8π
δAa

provided that we make the identifications

mirr
a ←→

√
Aa
16π

za ca ←→ 4mirr
a κa
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First law of compact binary mechanics

First law of mechanics for binary point particles


L

1m

m
2

CM

δM − Ω δL =
2∑

a=1

za︸︷︷︸
helical

Killing energy

δma
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First law of compact binary mechanics

First law for binary point particles with spins


L

S

S1 2
m

m
2

1

CM

δM − Ω δJ =
2∑

a=1

[
za δma +

(
Ωa︸︷︷︸

precession
frequency

−Ω
)
δSa

]
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First law of compact binary mechanics

First law of mechanics for corotating binary BH


L

S

S1 2m

m
2

1

CM





δM − Ω δJ =
2∑

a=1

κa︸︷︷︸
surface
gravity

δAa
8π
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The first law of compact binary mechanics

FIRST LAW OF MECHANICS
AT THE 4PN ORDER
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The first law of compact binary mechanics

First law for eccentric orbits [Le Tiec 2015]

m

m

1

2

m1

2

m1

m m

E E, L L, R RE, L, R
2

δE = ω δL+ n δR+ 〈z1〉 δm1 + 〈z2〉 δm2

E, L : ADM energy and angular momentum

R =
1

2π

∮
prdr : radial action integral

n, ω : radial and azimuthal frequencies
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The first law of compact binary mechanics

First law versus non-local dynamics

1 The basic variable computed by GSF techniques is the averaged redshift 〈za〉
in the test-mass limit m1/m2 → 0

2 The first law permits to derive from 〈za〉 the binary’s conserved energy E and
periastron advance K for circular orbits

K =
ω

n

3 These results are then used to fix the ambiguity parameters in the 4PN
equations of motion in

Hamiltonian formalism [Damour, Jaranowski & Schäfer 2014, 2016]

Lagrangian formalism [Bernard, Blanchet, Bohé, Faye & Marsat 2015, 2016, 2017]

4 However the first law has been derived from a local Hamiltonian but at 4PN
order the dynamics becomes non-local due to the tail term

Are we still allowed to use the first law in standard form
for the non-local dynamics at the 4PN order ?
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The first law of compact binary mechanics

The 4PN non-local-in-time dynamics
1 At 4PN order the dynamics becomes non-local due to the tail term

H = H0(r, pr, pϕ;ma) +Htail[r, ϕ, pr, pϕ;ma]

with Htail = −m
5
I

(3)
ij (t)

∫ +∞

−∞

dt′

|t− t′|
I

(3)
ij (t′)

2 Hamilton’s equations involve functional derivatives

dxi

dt
=
δH

δpi

dpi
dt

= −δH
δxi

3 For the non-local dynamics H and pϕ are no longer conserved but instead

E = H + ∆HDC + ∆HAC

L = pϕ + ∆pDC
ϕ + ∆pAC

ϕ

where HAC and pAC
ϕ (given by Fourier series) average to zero and

∆HDC = −2mFGW ∆pDC
ϕ = −2mGGW
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The first law of compact binary mechanics

Conserved energy for circular orbits at 4PN order

The 4PN energy for circular orbits in the small mass ratio limit is known from
GSF of the redshift variable [Le Tiec, Blanchet & Whiting 2012; Bini & Damour 2013]

This permits to fix the ambiguity parameter α and to complete the 4PN
equations of motion

E4PN = −µc
2x

2

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+

[
−123671

5760
+

9037

1536
π2 +

896

15
γE +

448

15
ln(16x)

]
ν

+

[
−498449

3456
+

3157

576
π2

]
ν2 +

301

1728
ν3 +

77

31104
ν4

)
x4

}

(1)
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The first law of compact binary mechanics

Periastron advance for circular orbits at 4PN order

The periastron advanced (or relativistic precession) constitutes a second invariant
which is also known in the limit of circular orbits from GSF calculations

K4PN = 1 + 3x+

(
27

2
− 7ν

)
x2

+

(
135

2
+

[
−649

4
+

123

32
π2

]
ν + 7ν2

)
x3

+

(
2835

8
+

[
−275941

360
+

48007

3072
π2 − 1256

15
lnx

−592

15
ln 2− 1458

5
ln 3− 2512

15
γE

]
ν

+

[
5861

12
− 451

32
π2

]
ν2 − 98

27
ν3

)
x4
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The first law of compact binary mechanics

Derivation of the first law at 4PN order
[Blanchet & Le Tiec 2017]

1 We perform an unconstrained variation of the Hamiltonian

δH = ϕ̇δpϕ − ṗϕδϕ+ ṙδpr − ṗrδr +
2m

5

(
I

(3)
ij

)2 δn

n

+
∑
a

zaδma + ∆

where ∆ is a complicated double Fourier series but such that 〈∆〉 = 0

2 By averaging we obtain

〈ṙ δpr − ṗr δr〉 = n δR

〈ϕ̇ δpϕ − ṗϕ δϕ〉 = ω δL+ ω δ
(
2mGGW

)
− n δ

(
1

2π

∮
∆pAC

ϕ dϕ

)
3 Here the radial action integral is

R =
1

2π

∮
prdr
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The first law of compact binary mechanics

Derivation of the first law at 4PN order
[Blanchet & Le Tiec 2017]

1 Combining all the terms we obtain a first law in standard form

δE = ω δL+ n δR+
∑
a

〈za〉 δma

but where the radial action integral gets corrected at 4PN order

R = R+ 2m

(
GGW − F

GW

ω

)
− 1

2π

∮
∆pAC

ϕ dϕ

2 The first law admits the first integral relationship

E = 2ωL+ 2nR+
∑
a

ma 〈za〉

3 We have proved that za is the redshift in the sense that

za =
δH

δma
=
√
−gµν(ya)vµavνa
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The first law of compact binary mechanics

Derivation of the first law at 4PN order
[Blanchet & Le Tiec 2017]

1 By performing a non-local-in-time shift of canonical variables

(r, ϕ, pr, pϕ) −→ (rloc, ϕloc, ploc
r , ploc

ϕ )

the non-local Hamiltonian can be transformed into an ordinary local
Hamiltonian [Damour, Jaranowski & Schäfer 2016]

2 Once this is done one can perform an ordinary derivation of the first law

δE = ω δL+ n δRloc +
∑
a

〈za〉 δma

3 The modified action integral in non-local coordinates is identical to the local
one when expressed in terms of E, L and the masses

R(E,L,ma) = Rloc(E,L,ma) =
1

2π

∮
drloc ploc

r (rloc, E, L,ma)

4 With the present derivation of the first law at 4PN order we have fully
confirmed the expressions of E4PN and K4PN in the test-mass limit
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