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Motivations

Figure: The history and evolution of our universe over 13.77 billion years. (Picture
credit: NASA / WMAP Science Team).
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Cosmic inflation: history
Inflation = A rapid expansion in a very short time.

Cosmic inflation was firstly proposed by Guth [PRD23(1981)347] as a solution to
several important problems in cosmology such as flatness, horizon, and
magnetic monopole problems, thanks to its rapid expansion.

Flatness problem: why is our present universe mostly flat ?

Horizon problem is related to the homogeneity of our present universe.

Magnetic monopole problem: the failure in searching signals of magnetic
monopoles, which are expected to be produced in the early universe.

The other pioneers of the cosmic inflation paradigm are Starobinsky,
PLB91(1980)99; Linde, PLB108(1982)389, PLB129(1983)177; Albrecht & Steinhardt,
PRL48(1982)1220, and many others.

Figure: The 2014 Kavli Prize Laureates in Astrophysics: A. Guth, A. Linde, and A.
Starobinsky for pioneering the theory of cosmic inflation. (Source: Kavliprize.org)
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Cosmic inflation: facts

After three decades, there have been a huge number of proposed inflationary
models in various theories such as modified gravity, string, supersymmetry (or
supergravity), particle physics, quantum gravity, etc. to understand the
nature of inflaton (scalar) field φ, which is responsible for inflation.

Besides solving classical cosmological problems, inflation also predicts many
properties of early universe through the cosmic microwave background
(CMB), which have been well confirmed by the recent high-tech observations
like WMAP and Planck.

CMB is known as a picture of the primordial light in our universe when it was
approximately 375,000 years old after the Big Bang. CMB has a thermal
black body spectrum with a mean temperature T0 = 2.725 K.

Thanks to cosmological perturbations [generated during the inflationary
phase], the large scale structure of the present universe can be described
through scalar perturbations and the primordial gravitational waves can be
generated through tensor perturbations [Reminder: BICEP 2].
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CMB: anisotropy

Figure: (Left) The isotropy of CMB without temperature fluctuations. (Source:
https://lambda.gsfc.nasa.gov/product/suborbit/POLAR/cmb.physics.wisc.edu/polar/ezexp.html).
(Right) The anisotropies of CMB seen by high-definition Planck satellite. A temperature
fluctuation range is approximately ±300 µK. (Information source and picture credit: ESA and
the Planck Collaboration).
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CMB: anomalous features

Figure: Two CMB anomalous features, the hemispherical asymmetry and the Cold Spot, hinted
by Planck’s predecessor, NASA’s WMAP, are confirmed in the new high precision data from
Planck, both are not predicted by standard inflationary models. (Information source and
picture credit: ESA and the Planck Collaboration).
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Cosmic no-hair conjecture: basic ideas
It turns out that the early universe might be slightly anisotropic. What is the
state of our current universe ? Is it isotropic or still slightly anisotropic ?
It has been widely assumed that the current (and past) universe is just
homogeneous and isotropic such as the flat FLRW (or de Sitter) spacetime:

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
.

If this assumption is the case, how did the universe transform from an
anisotropic state in the early time to an isotropic state in the late time ?
A cosmic no-hair conjecture proposed by Hawking and his colleagues might
provide an important hint to this question. It claims that all classical hairs
of the early universe [anisotropy and/or homogeneity] will disappear at
the late time [Gibbons & Hawking, PRD15(1977)2738; Hawking & Moss,
PLB110(1982)35].

Figure: From left to right: S. W. Hawking, G. W. Gibbons, and I. G. Moss.
(Source: Internet)
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Cosmic no-hair conjecture: (incomplete) proofs

Figure: www.mnswr.com

This conjecture was partially proven by Wald [PRD28(1983)2118] for Bianchi
spacetimes, which are homogeneous but anisotropic, using energy conditions
approach.

Kleban & Senatore, JCAP10(2016)022; East, Kleban, Linde & Senatore,
JCAP09(2016)010: try to extend the Wald’s proof to inhomogeneous and
anisotropic spacetimes.

Carroll & Chatwin-Davies, arXiv:1703.09241: try to prove the conjecture in a
difference approach using the idea of maximum entropy of de Sitter
spacetime.
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Cosmic no-hair conjecture: claimed counterexamples

There are several claimed (Bianchi) counterexamples to the cosmic no-hair
conjecture, e.g., Kaloper, PRD44(1991)2380; Barrow & Hervik, PRD73(2006)023007,
PRD81(2010)023513; Kanno, Soda & Watanabe (KSW), PRL102(2009)191302,
JCAP12(2010)024.

The Wald’s proof appears as a quick test to see the validity of the cosmic
no-hair conjecture. To get correct conclusions, we need to analyze the
studied models at the perturbation level to investigate the stability of their
cosmological solutions, which have been claimed to violate the cosmic no-hair
conjecture.

Some claimed counterexamples have been shown to be unstable by stability
analysis, e.g., Kao & Lin, JCAP01(2009)022, PRD79(2009)043001, PRD83(2011)063004;
Chang, Kao & Lin, PRD84(2011)063014, meaning that they do not violate the
cosmic no-hair conjecture.

It is important to examine all claimed counterexamples to test the validity of
the no-hair conjecture, especially the counterexample associated with the
Bianchi type I found in the Kanno-Soda-Watanabe (KSW) model since it is
the first (valid) counterexample to the cosmic no-hair conjecture.
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Kanno-Soda-Watanabe model: few main points
The KSW action is given by [PRL102(2009)191302, JCAP12(2010)024]:

SKSW =

∫
d4x
√
−g

[
M2

p

2
R − 1

2
∂µφ∂

µφ− V (φ)− 1

4
f 2 (φ)FµνF

µν

]
,

with Fµν = ∂µAν − ∂νAµ the field strength of the electromagnetic (vector)
field Aµ.

Note that in usual scenarios, the gauge kinetic function f (φ) is set to be one.

Einstein field equations:

M2
p

(
Rµν −

1

2
Rgµν

)
− ∂µφ∂νφ+ gµν

[
+

1

2
∂σφ∂σφ+ V (φ) +

1

4
f 2 (φ)FρσFρσ

]
− f 2 (φ)FµγF

γ
ν = 0.

Field equations of vector and scalar fields:

∂

∂xµ
[√
−gf 2 (φ)Fµν

]
= 0,

φ̈+ 3Hφ̇+
∂V (φ)

∂φ
+

1

2
f (φ)

∂f (φ)

∂φ
FµνF

µν = 0.
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Kanno-Soda-Watanabe model: few main points

The vector and scalar fields are given by the forms: Aµ = (0,Ax (t), 0, 0) and
φ = φ (t).

The Bianchi type I metric (BI) is given by

ds2 =− dt2 + exp [2α (t)− 4σ (t)] dx2

+ exp [2α (t) + 2σ (t)]
(
dy2 + dz2

)
.

Here, σ(t) stands for a deviation from the isotropy determined by α(t).
Hence, it is expected that σ(t)� α(t).

A solution of the vector field equation:

Ȧx (t) = f −2 (φ) exp [−α− 4σ] pA,

with pA a constant of integration.
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Kanno-Soda-Watanabe model: few main points
As a result, we can obtain the following set of field equations:

α̇2 = σ̇2 +
1

3M2
p

[
1

2
φ̇2 + V (φ) +

1

2
f −2 (φ) exp [−4α− 4σ] p2

A

]
,

α̈ = −3α̇2 +
1

M2
p

V (φ) +
1

6M2
p

f −2 (φ) exp [−4α− 4σ] p2
A,

σ̈ = −3α̇σ̇ +
1

3M2
p

f −2 (φ) exp [−4α− 4σ] p2
A,

φ̈ = −3α̇φ̇− ∂V (φ)

∂φ
+ f −3 (φ)

∂f (φ)

∂φ
exp [−4α− 4σ] p2

A.

Choose the potentials of the forms

V (φ) = V0 exp

[
λ

Mp
φ

]
; f (φ) = f0 exp

[
ρ

Mp
φ

]
.

along with the following forms of scale factors and scalar field:

α = ζ log (t) ;σ = η log (t) ;
φ

Mp
= ξ log (t) + φ0.
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Kanno-Soda-Watanabe model: few main points
The following solution is

ζ =
λ2 + 8ρλ+ 12ρ2 + 8

6λ(λ+ 2ρ)
; η =

λ2 + 2ρλ− 4

3λ(λ+ 2ρ)
.

For an inflationary universe, α� σ → ζ � η. If ρ� λ then
ζ ' ρ/λ� η ' 1/3.
This solution can be shown to be stable and attractive by converting the field
equations into the autonomous equations of dynamical variables:

X =
σ̇

α̇
; Y =

φ̇

Mpα̇
; Z =

1

f0Mpα̇
exp

[
− ρ

Mp
φ− 2α− 2σ

]
pA.

Autonomous equations:

dX

dα
=

1

3
Z 2(X + 1) + X

{
3(X 2 − 1) +

1

2
Y 2

}
,

dY

dα
= (Y + λ)

{
3(X 2 − 1) +

1

2
Y 2

}
+

1

3
YZ 2 +

(
ρ+

λ

2

)
Z 2,

dZ

dα
= Z

[
3(X 2 − 1) +

1

2
Y 2 − ρY + 1− 2X +

1

3
Z 2

]
.

14 / 30



Kanno-Soda-Watanabe model: few main points
Anisotropic fixed point as solutions of dX/dα = dY /dα = dZ/dα = 0:

X =
2
(
λ2 + 2ρλ− 4

)
λ2 + 8ρλ+ 12ρ2 + 8

; Y = − 12 (λ+ 2ρ)

λ2 + 8ρλ+ 12ρ2 + 8
,

Z 2 =
18
(
λ2 + 2ρλ− 4

) (
−λ2 + 4ρλ+ 12ρ2 + 8

)
(λ2 + 8ρλ+ 12ρ2 + 8)2 .

This fixed point is equivalent to the anisotropic power-law solution.
Taking exponential perturbations: δX , δY , δZ ∼ exp[ωα]. Can show that
all ω < 0, e.g., the fixed point is stable. It can also shown to be attractive.

Figure: Attractor behavior of the anisotropic fixed point with ρ = 50, λ = 0.1
[taken from JCAP12(2010)024].
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Kanno-Soda-Watanabe model: possible non-canonical
extensions

Recall the action of KSW model:

SKSW =

∫
d4x
√
−g

[
M2

p

2
R − 1

2
∂µφ∂

µφ− V (φ)− 1

4
f 2 (φ)FµνF

µν

]
.

Does the validity of the cosmic no-hair conjecture require the existence of
extra (unusual) fields, e.g., the phantom field [Caldwell, astro-ph/9908168],
which has been considered as an alternative solution to the dark energy
problem due to its negative kinetic energy ?

Will the cosmic no-hair conjecture still be violated if the canonical terms
(kinetic, potential energy) of the scalar field are replaced by the non-canonical
terms, e.g, the Dirac-Born-Infeld [Silverstein & Tong, PRD70(2004)103505;
Alishahiha, Silverstein & Tong, PRD70(2004)123505]; Supersymmetric
Dirac-Born-Infeld [Sasaki, Yamaguchi & Yokoyama, PLB718(2012)1]; or
covariant Galileon [Deffayet, Esposito-Farese & Vikman, PRD79(2009)084003;
Kobayashi, Yamaguchi & Yokoyama, PRL105(2010)231302] terms ?
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Non-canonical extensions of KSW model:
Dirac-Born-Infeld model

The action [PRD84(2011)123009]:

SDBI =

∫
d4x
√
−g
[
M2

p

2
R +

1

f (φ)

γ − 1

γ
− V (φ)−

1

4
h2 (φ)FµνF

µν

]

with the Lorentz factor γ = 1/
√

1 + f (φ) ∂µφ∂µφ ≥ 1.

SDBI → SKSW as limit f (φ)→ 0 (or equivalently γ → 1).

The power-law solution (choosing f (φ) = f0 exp [−λφ]):

ζ =
λ2 + 8ρλ+ 12ρ2 + 8γ0

6λ (λ+ 2ρ)
; η =

λ2 + 2ρλ− 4γ0

3λ (λ+ 2ρ)
.

The corresponding fixed point:

X =
2 [γ̂0λ (λ+ 2ρ)− 4]

γ̂0 (λ2 + 8λρ+ 12ρ2) + 8
; Y = − 12γ̂0 (λ+ 2ρ)

γ̂0 (λ2 + 8λρ+ 12ρ2) + 8
;

Z 2 =
18 [γ̂0λ (λ+ 2ρ)− 4]

[
γ̂0

(
−λ2 + 4λρ+ 12ρ2

)
+ 8
]

[γ̂0 (λ2 + 8λρ+ 12ρ2) + 8]2 ; γ̂0 = γ−1
0 .
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Non-canonical extensions of KSW model:
Dirac-Born-Infeld model

Attractor behavior of the anisotropic fixed point in DBI model with
ρ = 50, λ = 0.1:
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Non-canonical extensions of KSW model: Supersymmetric
Dirac-Born-Infeld model

The action [CQG33(2016)085009]:

SSDBI =

∫
d4x
√
g

[
M2

p

2
R +

1

f (φ)

γ − 1

γ
− Σ2

0 U (φ)− 1

4
h2 (φ)FµνF

µν

]
,

Σ0(γ) =

(
γ + 1

2γ

)1/3

≤ 1; U(φ) =

(
27

2f (φ)

) 1
3
(
dW (φ)

dφ

) 4
3

,

W (φ): the super-potential.

The power-law solution:

ζ =
N −

√
N2 − 4MP

2M
; η = −ζ +

ρ

λ
+

1

2
,

M = 18λ2
(
γ2

0 − 1
)
≥ 0,

N = 3λ (γ0 + 1) [λ (5γ0 + 1) + 6ρ (γ0 + 1)] ≥ 0,

P = (γ0 + 1)
[
λ2 (2γ0 + 1) + 2λρ (5γ0 + 7) + 12ρ2 (γ0 + 2)

]
+ 8γ0 (5γ0 + 1) ≥ 0.
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Non-canonical extensions of KSW model: Supersymmetric
Dirac-Born-Infeld model

During the inflationary phase with ρ� λ:

ζ ' (1 + δ)
ρ

λ
; η ' 1

2
− ρ

λ
δ; γ0 = 1 + 3δ.

The constraint for δ (or for γ0) (related to the positivity of potential) :

δ <
λ

3ρ
→ γ0 − 1 = 3δ <

λ

ρ
� 1.

Note that γ0 can arbitrarily be larger than 1 in DBI model. This is a main
difference between DBI and SDBI models.
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Non-canonical extensions of KSW model: Supersymmetric
Dirac-Born-Infeld model
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Figure: Attractor behavior of the anisotropic fixed point in SDBI model (ρ = 50,
λ = 0.1, γ = 1.0001).
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Non-canonical extensions of KSW model: Galileon model

The action [PRD96(2017)023529]:

SG =

∫
d4x
√
g

{
M2

p

2
R + K (φ,X )− G (φ,X )�φ− f 2(φ)

4
FµνF

µν

}

=

∫
d4x
√
g

{
M2

p

2
R + k0 exp

[
τφ

Mp

]
X − g0 exp

[
λφ

Mp

]
X�φ

− f 2
0

4
exp

[
−2ρφ

Mp

]
FµνF

µν

}
.

The power-law solution:

ζ =
ρ

2λ
+

5

12
+

√
∆

12
; η = −ζ +

ρ

λ
+

1

2
; τ = 0,

∆ = −60
(ρ
λ

)2

− 20
ρ

λ
− 64k0

λ2
+ 9; k0 ≤ −

λ2

64

[
60
(ρ
λ

)2

+ 20
ρ

λ
− 9

]
.
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Non-canonical extensions of KSW model: Galileon model
During the inflationary phase, in which ρ� λ, the approximated solution is

ζ ' ρ

λ
� 1; k0 ' −

3ρ2

2
< 0.

0.000.050.100.150.20 X

0.1

0.2

0.3

0.4

0.5

Y

0.51.01.5 Z

Figure: Attractor behavior of the anisotropic fixed point (purple) in Galileon model
(ρ = 50, λ = 0.1, k0 = −3ρ2/2).
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The role of phantom field: two-scalar-field model
The action with an additional phantom scalar field ψ [PRD83(2011)123002]:

S =

∫
d4x
√
−g

[
M2

p

2
R−1

2
(∂µφ) (∂µφ) +

1

2
(∂µψ) (∂µψ)

−V1(φ)− V2(ψ)− 1

4
f 2
1 (φ)f 2

2 (ψ)FµνF
µν

]
.

The following field equations:

φ̈ = −3α̇φ̇− ∂V1

∂φ
+ f −3

1 f −2
2

∂f1
∂φ

exp [−4α− 4σ] p2
A,

ψ̈ = −3α̇ψ̇ +
∂V2

∂ψ
− f −2

1 f −3
2

∂f2
∂ψ

exp [−4α− 4σ] p2
A,

α̇2 = σ̇2 +
1

3M2
p

[
1

2
φ̇2 − 1

2
ψ̇2 + V1 + V2 +

f −2
1 f −2

2

2
exp [−4α− 4σ] p2

A

]
,

α̈ = −3α̇2 +
1

M2
p

(V1 + V2) +
f −2
1 f −2

2

6M2
p

exp [−4α− 4σ] p2
A,

σ̈ = −3α̇σ̇ +
f −2
1 f −2

2

3M2
p

exp [−4α− 4σ] p2
A,
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The role of phantom field: two-scalar-field model
We will choose the exponential potentials of the form:

V1(φ) = V01 exp [λ1φ/Mp] ; V2(ψ) = V02 exp [λ2ψ/Mp] ;

f1(φ)f2(ψ) = f0 exp [ρ1φ/Mp + ρ2ψ/Mp] .

Consistently, we will try to find power-law solutions of the following form:

α = ζ log (t) ; σ = η log (t) ;
φ

Mp
= ξ1 log (t) + φ0;

ψ

Mp
= ξ2 log (t) + ψ0.

The obtained solution:

ζ =
4 (λ1ρ2 + λ2ρ1) (2λ1λ2 + 3λ1ρ2 + 3λ2ρ1) + λ2

1λ
2
2 + 8

(
λ2

2 − λ2
1

)
6λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)

,

η =
λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)− 4

(
λ2

2 − λ2
1

)
3λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)

.

Inflationary solution with ρi � λi :

ζ ' ρ1

λ1
+
ρ2

λ2
� 1; η ' 1

3
.
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The role of phantom field: two-scalar-field model
Stability analysis using power-law perturbations compatible with power-law
solutions:

δα, δσ, δφ, δψ ∼ tn

n > 0 ∼ unstable; n ≤ 0 ∼ stable.

The corresponding equation of n:

f (n) ≡ n7 + b7n
6 + b6n

5 + b5n
4 + b4n

3 + b3n
2 + b2n + b1 = 0,

with

b1 =− 2vl

λ1

{[
λ2

1λ
2
2 (5ζ − η − 1) + 2λ1λ2 (λ1ρ2 + λ2ρ1) (3ζ − 3η − 1)

+4
(
λ2

1 − λ2
2

)]
λ1u +8λ2ρ1ρ2 (3λ1ρ1ζ − 3λ1ρ1η − λ1ρ1 − 2) l}< 0.

f (n� 1) ∼ n7 > 0 and f (0) = b1 < 0 → f (n) = 0 will admit at least one
positive root n > 0, meaning that the corresponding anisotropic power-law
solution is not stable, will decay to an isotropic state at late times as the
cosmic no-hair states, due to the existence of the phantom field.
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The role of phantom field: two-scalar-field model + mixed
kinetic term

The action with an additional mixed kinetic term [IJMPD26(2017)1750072]:

S =

∫
d4x
√
−g

[
M2

p

2
R−1

2
(∂µφ) (∂µφ) +

1

2
(∂µψ) (∂µψ)− ω0

2
∂µφ∂

µψ

−V1(φ)− V2(ψ)− 1

4
f 2
1 (φ)f 2

2 (ψ)FµνF
µν

]
.

Solutions:

ζ =
4 (λ1ρ2 + λ2ρ1) (2λ1λ2 + 3λ1ρ2 + 3λ2ρ1) + λ2

1λ
2
2 + 8

(
λ2

2 + ω0λ1λ2 − λ2
1

)
6λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)

,

η =
λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)− 4

(
λ2

2 + ω0λ1λ2 − λ2
1

)
3λ1λ2 (λ1λ2 + 2λ1ρ2 + 2λ2ρ1)

.

The mixed kinetic term does not change the stability of Bianchi type I
inflationary solutions.
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The role of phantom field: non-canonical extensions

The phantom field does make the corresponding Bianchi type I power law
solutions unstable during the inflationary phase in all studied non-canonical
extensions of KSW model → No attractor solutions.
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Conclusions

There has not existed any complete proof for the cosmic no-hair conjecture
until now.

The cosmic no-hair seems to be violated generally in the KSW model, even
when the scalar field φ is non-canonical, due to the existence of the unusual
coupling f 2(φ)FµνFµν .

The validity of the cosmic no-hair conjecture in some unusual scenarios may
need the existence of some exotic fields.

The phantom field does play an important role in order to protect the cosmic
no-hair conjecture in the context of KSW model due to its negative kinetic
energy.

Does the phantom field make any counterexamples of the cosmic no-hair
conjecture unstable ? Need a general proof ?
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Thank you for your attention !
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