Higher dimensional massive (bi-)gravity: Constructions and solutions

Tuan Q. Do

Vietnam National University, Hanoi

Based on PRD93(2016)104003 [arXiv:1602.05672]; PRD94(2016)044022 [arXiv:1604.07568].

Hot Topics in General Relativity and Gravitation 3 (HTGRG-3) XIIIth Rencontres du Vietnam

ICISE, Quy Nhon, July 30th - August 5th, 2017

OHOGHN

Contents

(1) Motivations
(2) Cayley-Hamilton theorem and ghost-free graviton terms
(3) Simple solutions for a five-dimensional massive gravity
(4) Simple solutions for a five-dimensional massive bi-gravity
(5) Conclusions

I. Motivations

- The massive gravity [gravitons have tiny but non-zero mass] has had a long and rich history since the seminal paper by Fierz \& Pauli [PRSA173(1939)211].
- van Dam \& Veltman [NPB22(1970)397] and Zakharov [PZETF12(1970)447] showed that in the massless limit, it cannot recover GR.
- Vainshtein pointed out that the nonlinear extensions of FP theory can solve the vDVZ discontinuity problem [PLB39(1972)393].
- Boulware \& Deser claimed that there exists a ghost associated with the sixth mode in graviton coming from nonlinear levels [PRD6(1972)3368].
- Building a ghost-free nonlinear massive gravity, in which a massive graviton carries only five "physical" degrees of freedom, has been a great challenge for physicists.
- de Rham, Gabadadze \& Tolley (dRGT) have successfully constructed a ghost-free nonlinear massive gravity [1011.1232, 1007.0443].
- The dRGT theory has been proved to be ghost-free for general fiducial metric by some different approaches, e.g., Hassan \& Rosen [1106.3344, 1109.3230].
- The dRGT theory might be a solution to the cosmological constant problem.

I. Motivations

- An interesting extension of dRGT theory is the massive bi-metric gravity (bi-gravity) proposed by Hassan \& Rosen, in which the reference metric is introduced to be full dynamical as the physical metric [1109.3515].
- For interesting review papers, see de Rham [1401.4173]; K. Hinterbichler [1105.3735]; Schmidt-May \& von Strauss [1512.00021].
- It is noted that most of previous papers have focused only on four-dimensional frameworks, which involve only the first three massive graviton terms, $\mathcal{L}_{2}, \mathcal{L}_{3}$, and \mathcal{L}_{4}.
- There have been a few papers discussing higher dimensional scenarios of massive (bi)gravity theories, e.g., Hinterbichler \& Rosen [1203.5783]; Hassan, Schmidt-May \& von Strauss [1212.4525]; Huang, Zhang \& Zhou [1306.4740]. However, these papers have not studied the well-known metrics in higher dimensions, e.g., the Friedmann-Lemaitre-Robertson-Walker (FLRW), Bianchi type I, and Schwarzschild-Tangherlini metrics.
- We would like to investigate whether the five-dimensional (bi)gravity theories admit the above metrics as their solutions.
II. Cayley-Hamilton theorem and ghost-free graviton terms
- Recall the four-dimensional action of the dRGT massive gravity [1011.1232, 1007.0443]:

$$
S_{4 \mathrm{~d}}=\frac{M_{p}^{2}}{2} \int d^{4} x \sqrt{-g}\left\{R+m_{g}^{2}\left(\mathcal{L}_{2}+\alpha_{3} \mathcal{L}_{3}+\alpha_{4} \mathcal{L}_{4}\right)\right\}
$$

where M_{p} the Planck mass, m_{g} the graviton mass, $\alpha_{3,4}$ free parameters, and the massive graviton terms \mathcal{L}_{i} defined as

$$
\begin{aligned}
\mathcal{L}_{2} & =[\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right] ; \mathcal{L}_{3}=\frac{1}{3}[\mathcal{K}]^{3}-[\mathcal{K}]\left[\mathcal{K}^{2}\right]+\frac{2}{3}\left[\mathcal{K}^{3}\right] \\
\mathcal{L}_{4} & =\frac{1}{12}[\mathcal{K}]^{4}-\frac{1}{2}[\mathcal{K}]^{2}\left[\mathcal{K}^{2}\right]+\frac{1}{4}\left[\mathcal{K}^{2}\right]^{2}+\frac{2}{3}[\mathcal{K}]\left[\mathcal{K}^{3}\right]-\frac{1}{2}\left[\mathcal{K}^{4}\right]
\end{aligned}
$$

- Square brackets:

$$
[\mathcal{K}] \equiv \operatorname{tr} \mathcal{K}^{\mu}{ }_{\nu} ;[\mathcal{K}]^{2} \equiv\left(\operatorname{tr} \mathcal{K}^{\mu}{ }_{\nu}\right)^{2} ;\left[\mathcal{K}^{2}\right] \equiv \operatorname{tr} \mathcal{K}^{\mu}{ }_{\alpha} \mathcal{K}^{\alpha}{ }_{\nu} ; \text { and so on. }
$$

- The square matrix $\mathcal{K}^{\mu}{ }_{\nu}$ is defined as

$$
\begin{aligned}
& \mathcal{K}^{\mu}{ }_{\nu} \equiv \delta^{\mu}{ }_{\nu}-\sqrt{f_{a b} \partial_{\mu} \phi^{a} \partial_{\alpha} \phi^{b} g^{\alpha \nu}}, \\
& \phi^{a} \sim \text { Stückelberg fields; } g_{\mu \nu} \sim \text { (dynamical) physical metric, } \\
& f_{a b} \sim \text { non-dynamical reference (fiducial) metric of massive gravity }
\end{aligned}
$$

II. Cayley-Hamilton theorem and ghost-free graviton terms

- Recall the four-dimensional action of the massive bi-gravity [1109.3515]:

$$
\begin{aligned}
S_{4 \mathrm{~d}}= & M_{g}^{2} \int d^{4} x \sqrt{g} R(g)+M_{f}^{2} \int d^{4} x \sqrt{f} R(f) \\
& +2 m^{2} M_{\text {eff }}^{2} \int d^{4} \times \sqrt{g}\left(\mathcal{U}_{2}+\alpha_{3} \mathcal{U}_{3}+\alpha_{4} \mathcal{U}_{4}\right),
\end{aligned}
$$

where

$$
\mathcal{U}_{i}=\frac{1}{2} \mathcal{L}_{i} ; M_{\mathrm{eff}}^{2} \equiv\left(\frac{1}{M_{g}^{2}}+\frac{1}{M_{f}^{2}}\right)^{-1} .
$$

- The square matrix $\mathcal{K}^{\mu}{ }_{\nu}$ is defined as

$$
\begin{aligned}
& \mathcal{K}^{\mu}{ }_{\nu} \equiv \delta^{\mu}{ }_{\nu}-\sqrt{f_{\mu \alpha} g^{\alpha \nu}}, \\
& g_{\mu \nu} \sim \text { (dynamical) physical metric, } \\
& f_{\mu \nu} \sim \text { full dynamical reference (fiducial) metric. }
\end{aligned}
$$

II. Cayley-Hamilton theorem and ghost-free graviton terms

- We will construct higher dimensional terms $\mathcal{L}_{n>4}$ by applying the well-known Cayley-Hamilton theorem for the square matrix $\mathcal{K}^{\mu}{ }_{\nu}$.
- In algebra, there exists the well-known Cayley-Hamilton theorem: any square matrix must obey its characteristic equation. In particular, given a $n \times n$ matrix K with its characteristic equation, $\mathcal{P}(\lambda) \equiv \operatorname{det}\left(\lambda I_{n}-K\right)=0$, then

$$
\begin{aligned}
\mathcal{P}(K) & \equiv K^{n}-\mathcal{D}_{n-1} K^{n-1}+\mathcal{D}_{n-2} K^{n-2}-\ldots \\
& +(-1)^{n-1} \mathcal{D}_{1} K+(-1)^{n} \operatorname{det}(K) I_{n}=0,
\end{aligned}
$$

where $\mathcal{D}_{n-1}=\operatorname{tr} K \equiv[K]$ and $\mathcal{D}_{n-j}(2 \leq j \leq n-1)$ are coefficients of the characteristic polynomial.

- For $n=2$, the following characteristic equation:

$$
K^{2}-[K] K+\operatorname{det} K_{2 \times 2} I_{2}=0,
$$

which implies after taking the trace

$$
\operatorname{det} K_{2 \times 2}=\frac{1}{2}\left\{[K]^{2}-\left[K^{2}\right]\right\} \sim \frac{\mathcal{L}_{2}}{2} .
$$

II. Cayley-Hamilton theorem and ghost-free graviton terms

- For $n=3$, the corresponding characteristic equation:

$$
K^{3}-[K] K^{2}+\frac{1}{2}\left\{[K]^{2}-\left[K^{2}\right]\right\} K-\operatorname{det} K_{3 \times 3} I_{3}=0
$$

which leads to

$$
\operatorname{det} K_{3 \times 3}=\frac{1}{6}\left\{[K]^{3}-3\left[K^{2}\right][K]+2\left[K^{3}\right]\right\} \sim \frac{\mathcal{L}_{3}}{2}
$$

- For $n=4$, the corresponding characteristic equation:

$$
\begin{aligned}
& K^{4}-[K] K^{3}+\frac{1}{2}\left\{[K]^{2}-\left[K^{2}\right]\right\} K^{2} \\
& -\frac{1}{6}\left\{[K]^{3}-3\left[K^{2}\right][K]+2\left[K^{3}\right]\right\} K+\operatorname{det} K_{4 \times 4} I_{4}=0
\end{aligned}
$$

which gives
$\operatorname{det} K_{4 \times 4}=\frac{1}{24}\left\{[K]^{4}-6[K]^{2}\left[K^{2}\right]+3\left[K^{2}\right]^{2}+8[K]\left[K^{3}\right]-6\left[K^{4}\right]\right\} \sim \frac{\mathcal{L}_{4}}{2}$.

- The higher dimensional graviton terms $\mathcal{L}_{n>4}$ must vanish in all four-dimensional spacetimes.
II. Cayley-Hamilton theorem and ghost-free graviton terms
- The higher dimensional terms $\mathcal{L}_{n>4}=\operatorname{det} \mathcal{K}_{n \times n} / 2$ can be constructed from the Cayley-Hamilton theorem to be

$$
\begin{aligned}
\frac{\mathcal{L}_{5}}{2}= & \frac{1}{120}\left\{[\mathcal{K}]^{5}-10[\mathcal{K}]^{3}\left[\mathcal{K}^{2}\right]+20[\mathcal{K}]^{2}\left[\mathcal{K}^{3}\right]\right. \\
& \left.-20\left[\mathcal{K}^{2}\right]\left[\mathcal{K}^{3}\right]+15[\mathcal{K}]\left[\mathcal{K}^{2}\right]^{2}-30[\mathcal{K}]\left[\mathcal{K}^{4}\right]+24\left[\mathcal{K}^{5}\right]\right\}, \\
\frac{\mathcal{L}_{6}}{2}= & \frac{1}{720}\left\{[\mathcal{K}]^{6}-15[\mathcal{K}]^{4}\left[\mathcal{K}^{2}\right]+40[\mathcal{K}]^{3}\left[\mathcal{K}^{3}\right]-90[\mathcal{K}]^{2}\left[\mathcal{K}^{4}\right]\right. \\
& +45[\mathcal{K}]^{2}\left[\mathcal{K}^{2}\right]^{2}-15\left[\mathcal{K}^{2}\right]^{3}+40\left[\mathcal{K}^{3}\right]^{2}-120\left[\mathcal{K}^{3}\right]\left[\mathcal{K}^{2}\right][\mathcal{K}] \\
& \left.+90\left[\mathcal{K}^{4}\right]\left[\mathcal{K}^{2}\right]+144\left[\mathcal{K}^{5}\right][\mathcal{K}]-120\left[\mathcal{K}^{6}\right]\right\}, \\
\frac{\mathcal{L}_{7}}{2}= & \frac{1}{5040}\left\{[\mathcal{K}]^{7}-21[\mathcal{K}]^{5}\left[\mathcal{K}^{2}\right]+70[\mathcal{K}]^{4}\left[\mathcal{K}^{3}\right]-210[\mathcal{K}]^{3}\left[\mathcal{K}^{4}\right]\right. \\
& +105[\mathcal{K}]^{3}\left[\mathcal{K}^{2}\right]^{2}-420[\mathcal{K}]^{2}\left[\mathcal{K}^{2}\right]\left[\mathcal{K}^{3}\right]+504[\mathcal{K}]^{2}\left[\mathcal{K}^{5}\right]-105\left[\mathcal{K}^{2}\right]^{3}[\mathcal{K}] \\
& +210\left[\mathcal{K}^{2}\right]^{2}\left[\mathcal{K}^{3}\right]-504\left[\mathcal{K}^{2}\right]\left[\mathcal{K}^{5}\right]+280\left[\mathcal{K}^{3}\right]^{2}[\mathcal{K}]-420\left[\mathcal{K}^{3}\right]\left[\mathcal{K}^{4}\right] \\
& \left.+630\left[\mathcal{K}^{4}\right]\left[\mathcal{K}^{2}\right][\mathcal{K}]-840\left[\mathcal{K}^{6}\right][\mathcal{K}]+720\left[\mathcal{K}^{7}\right]\right\} .
\end{aligned}
$$

II. Cayley-Hamilton theorem and ghost-free graviton terms

- A five-dimensional scenario of massive gravity [1602.05672]:

$$
S=\frac{M_{p}^{2}}{2} \int d^{5} x \sqrt{-g}\left\{R+m_{g}^{2}\left(\mathcal{L}_{2}+\alpha_{3} \mathcal{L}_{3}+\alpha_{4} \mathcal{L}_{4}+\alpha_{5} \mathcal{L}_{5}\right)\right\}
$$

- The corresponding five-dimensional Einstein field equations:

$$
\begin{aligned}
& \left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)+m_{g}^{2}\left(X_{\mu \nu}+\sigma Y_{\mu \nu}+\alpha_{5} W_{\mu \nu}\right)=0, \\
X_{\mu \nu}= & -\frac{1}{2}\left(\alpha \mathcal{L}_{2}+\beta \mathcal{L}_{3}\right) g_{\mu \nu}+\tilde{X}_{\mu \nu}, \\
\tilde{X}_{\mu \nu}= & \mathcal{K}_{\mu \nu}-[\mathcal{K}] g_{\mu \nu}-\alpha\left\{\mathcal{K}_{\mu \nu}^{2}-[\mathcal{K}] \mathcal{K}_{\mu \nu}\right\} \\
& +\beta\left\{\mathcal{K}_{\mu \nu}^{3}-[\mathcal{K}] \mathcal{K}_{\mu \nu}^{2}+\frac{\mathcal{L}_{2}}{2} \mathcal{K}_{\mu \nu}\right\}, \\
Y_{\mu \nu}= & -\frac{\mathcal{L}_{4}}{2} g_{\mu \nu}+\tilde{Y}_{\mu \nu} ; \tilde{Y}_{\mu \nu}=\frac{\mathcal{L}_{3}}{2} \mathcal{K}_{\mu \nu}-\frac{\mathcal{L}_{2}}{2} \mathcal{K}_{\mu \nu}^{2}+[\mathcal{K}] \mathcal{K}_{\mu \nu}^{3}-\mathcal{K}_{\mu \nu}^{4}, \\
W_{\mu \nu}= & -\frac{\mathcal{L}_{5}}{2} g_{\mu \nu}+\tilde{W}_{\mu \nu}, \\
\tilde{W}_{\mu \nu}= & \frac{\mathcal{L}_{4}}{2} \mathcal{K}_{\mu \nu}-\frac{\mathcal{L}_{3}}{2} \mathcal{K}_{\mu \nu}^{2}+\frac{\mathcal{L}_{2}}{2} \mathcal{K}_{\mu \nu}^{3}-[\mathcal{K}] \mathcal{K}_{\mu \nu}^{4}+\mathcal{K}_{\mu \nu}^{5},
\end{aligned}
$$

II. Cayley-Hamilton theorem and ghost-free graviton terms

- Here $\alpha=\alpha_{3}+1, \beta=\alpha_{3}+\alpha_{4}$, and $\sigma=\alpha_{4}+\alpha_{5}$.
- Note that $Y_{\mu \nu}=0$ in four dimensional spacetimes [Do \& Kao, PRD88(2013)063006] but $\neq 0$ in higher-than-four dimensional ones.
- Similarly, $W_{\mu \nu}=0$ in five dimensional spacetimes but $\neq 0$ in higher-than-five dimensional ones.
- The constraint equations associated with the existence of fiducial metric:

$$
t_{\mu \nu} \equiv \tilde{X}_{\mu \nu}+\sigma \tilde{Y}_{\mu \nu}+\alpha_{5} \tilde{W}_{\mu \nu}-\frac{1}{2}\left(\alpha_{3} \mathcal{L}_{2}+\alpha_{4} \mathcal{L}_{3}+\alpha_{5} \mathcal{L}_{4}\right) g_{\mu \nu}=0
$$

- Due to these constraint equations the Einstein field equations for $g_{\mu \nu}$ become

$$
\begin{aligned}
& \left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)-\frac{m_{g}^{2}}{2} \mathcal{L}_{M} g_{\mu \nu}=0 ; \mathcal{L}_{M} \equiv \mathcal{L}_{2}+\alpha_{3} \mathcal{L}_{3}+\alpha_{4} \mathcal{L}_{4}+\alpha_{5} \mathcal{L}_{5}, \\
& \Rightarrow\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)+\Lambda_{M} g_{\mu \nu}=0\left(\text { Bianchi constraint, } \partial^{\nu} \mathcal{L}_{M}=0\right)
\end{aligned}
$$

with $\Lambda_{M} \equiv-m_{g}^{2} \mathcal{L}_{M} / 2$ as an effective cosmological constant.

II. Cayley-Hamilton theorem and ghost-free graviton terms

Ghost free issue

- Follow the analysis of dRGT papers [1011.1232, 1007.0443] by considering the tensor $X_{\mu \nu}^{(n)}$ and its the recursive relation:

$$
\begin{aligned}
X_{\mu \nu}^{(n)}\left(g_{\mu \nu}, \mathcal{K}\right) & =\sum_{m=0}^{n}(-1)^{m} \frac{n!}{2(n-m)!} \mathcal{K}_{\mu \nu}^{m} \mathcal{L}_{\text {der }}^{(n-m)}(\mathcal{K}) \\
X_{\mu \nu}^{(n)} & =-n \mathcal{K}_{\mu}^{\alpha} X_{\alpha \nu}^{(n-1)}+\mathcal{K}^{\alpha \beta} X_{\alpha \beta}^{(n-1)} g_{\mu \nu}
\end{aligned}
$$

- For the 4D case $X_{\mu \nu}^{(4)}\left(g_{\mu \nu}, \mathcal{K}\right) \sim Y_{\mu \nu}=0 \rightarrow X_{\mu \nu}^{(n>4)}\left(g_{\mu \nu}, \mathcal{K}\right)=0 \rightarrow$ no ghostlike pathology arises at the quartic or higher order levels with arbitrary physical and fiducial metrics.
- Similarly, for the 5D case $X_{\mu \nu}^{(5)}\left(g_{\mu \nu}, \mathcal{K}\right) \sim W_{\mu \nu}=0 \rightarrow X_{\mu \nu}^{(n>5)}\left(g_{\mu \nu}, \mathcal{K}\right)=0 \rightarrow$ any ghostlike pathology arising at the quintic or higher order levels must disappear, no matter the form of physical and fiducial metrics.
- The similar conclusion is also valid for higher-than-five massive gravity theories.

III. Simple solutions for a five-dimensional massive gravity

- Solve the constraint Euler-Lagrange equations of fiducial metric's scale factors, which are indeed equivalent with $t_{\mu \nu}=0$, in order to obtain the value of Λ_{M}.
- These constraint equations are not differential but algebraic.
- Solve the corresponding Einstein field equations to obtain the value of physical metric's scale factors.
- The fiducial metrics will be chosen to be compatible with the physical ones, i.e., they have the similar forms.
- FLRW (isotropic):

$$
\begin{aligned}
d s_{5 d}^{2}\left(g_{\mu \nu}\right) & =-N_{1}^{2}(t) d t^{2}+a_{1}^{2}(t)\left(d \vec{x}^{2}+d u^{2}\right), \\
d s_{5 d}^{2}\left(f_{a b}\right) & =-N_{2}^{2}(t) d t^{2}+a_{2}^{2}(t)\left(d \vec{x}^{2}+d u^{2}\right) .
\end{aligned}
$$

III. Simple solutions for a five-dimensional massive gravity

- Bianchi type I (anisotropic):

$$
\begin{aligned}
d s_{5 d}^{2}\left(g_{\mu \nu}\right)= & -N_{1}^{2}(t) d t^{2}+\exp \left[2 \alpha_{1}(t)-4 \sigma_{1}(t)\right] d x^{2} \\
& +\exp \left[2 \alpha_{1}(t)+2 \sigma_{1}(t)\right]\left(d y^{2}+d z^{2}\right)+\exp \left[2 \beta_{1}(t)\right] d u^{2}, \\
d s_{5 d}^{2}\left(f_{a b}\right)= & -N_{2}^{2}(t) d t^{2}+\exp \left[2 \alpha_{2}(t)-4 \sigma_{2}(t)\right] d x^{2} \\
& +\exp \left[2 \alpha_{2}(t)+2 \sigma_{2}(t)\right]\left(d y^{2}+d z^{2}\right)+\exp \left[2 \beta_{2}(t)\right] d u^{2},
\end{aligned}
$$

- Schwarzschild-Tangherlini black holes:

$$
\begin{aligned}
d s_{5 d}^{2}\left(g_{\mu \nu}\right) & =-N_{1}^{2}(t, r) d t^{2}+\frac{d r^{2}}{F_{1}^{2}(t, r)}+2 D_{1}(t, r) d t d r+\frac{r^{2} d \Omega_{3}^{2}}{H_{1}^{2}(t, r)}, \\
d s_{5 d}^{2}\left(f_{a b}\right) & =-N_{2}^{2}(t, r) d t^{2}+\frac{d r^{2}}{F_{2}^{2}(t, r)}+2 D_{2}(t, r) d t d r+\frac{r^{2} d \Omega_{3}^{2}}{H_{2}^{2}(t, r)},
\end{aligned}
$$

with $d \Omega_{3}^{2}=d \theta^{2}+\sin ^{2} \theta d \varphi^{2}+\sin ^{2} \theta \sin ^{2} \varphi d \psi^{2}$.

III. Simple solutions for a five-dimensional massive gravity

- FLRW: $\frac{\partial \mathcal{L}_{M}}{\partial N_{2}}=\frac{\partial \mathcal{L}_{M}}{\partial a_{2}}=0$.
- Bianchi type I: $\frac{\partial \mathcal{L}_{M}}{\partial N_{2}}=\frac{\partial \mathcal{L}_{M}}{\partial \alpha_{2}}=\frac{\partial \mathcal{L}_{M}}{\partial \sigma_{2}}=0$.
- Schwarzschild-Tangherlini: $\frac{\partial \mathcal{L}_{M}}{\partial N_{2}}=\frac{\partial \mathcal{L}_{M}}{\partial F_{2}}=\frac{\partial \mathcal{L}_{M}}{\partial H_{2}}=0$.
- Note again that the Euler-Lagrange equations $\Leftrightarrow t_{\mu \nu}=0$.
- The constraint equations are non-linear algebraic equations \rightarrow we obtain several values of Λ_{M} [see the paper 1602.05672 for more details].
- Recall the Einstein field equations for physical metric:

$$
\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)+\Lambda_{M} g_{\mu \nu}=0 .
$$

- The corresponding solution for FLRW physical metric:

$$
a_{1}(t)=\exp \left[\sqrt{\frac{\Lambda_{M}}{6}} t\right] .
$$

III. Simple solutions for a five-dimensional massive gravity

- The corresponding solutions for the Bianchi type I physical metric:

$$
\begin{aligned}
& V_{1} \equiv \exp \left[3 \alpha_{1}\right]=\exp \left[3 \alpha_{0}\right]\left[\cosh \left(3 \tilde{H}_{1} t\right)+\frac{\dot{\alpha}_{0}}{\tilde{H}_{1}} \sinh \left(3 \tilde{H}_{1} t\right)\right] \\
& \\
& V_{2} \equiv \exp \left[\beta_{1}\right]=\exp \left[\beta_{0}\right]\left[\cosh \left(3 \bar{H}_{1} t\right)+\frac{\dot{\beta}_{0}}{3 \bar{H}_{1}} \sinh \left(3 \bar{H}_{1} t\right)\right] \\
& \sigma_{1}=\sigma_{0}+\sqrt{\dot{\alpha}_{0}^{2}+\dot{\alpha}_{0} \dot{\beta}_{0}-H_{1}^{2}} \times \int\left\{\cosh \left(3 \tilde{H}_{1} t\right)+\frac{\dot{\alpha}_{0}}{\tilde{H}_{1}} \sinh \left(3 \tilde{H}_{1} t\right)\right] \\
& \left.\quad \times\left[\cosh \left(3 \bar{H}_{1} t\right)+\frac{\dot{\beta}_{0}}{3 \bar{H}_{1}} \sinh \left(3 \bar{H}_{1} t\right)\right]\right\}^{-1} d t,
\end{aligned}
$$

with with $\tilde{H}_{1}^{2}=4 H_{1}^{2} / 9\left(1-V_{0}\right), \bar{H}_{1}^{2}=V_{0} \tilde{H}_{1}^{2}$, and $H_{1}^{2} \equiv \frac{\Lambda_{m}}{3}$. Additionally, $\alpha_{0}, \dot{\alpha}_{0}, \beta_{0}, \dot{\beta}_{0}, \sigma_{0} \sim$ initial values.

III. Simple solutions for a five-dimensional massive gravity

- The Schwarzschild-Tangherlini solution [Tangherlini, Nuovo Cimento 27(1963)636] to the 5D massive gravity:

$$
\begin{aligned}
d s^{2} & =-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{3}^{2}, \\
N_{1}^{2}(t, r) & =F_{1}^{2}(t, r)=f(r)=1-\frac{\mu}{r^{2}}-\frac{\Lambda_{M}}{6} r^{2}, \\
H_{1}^{2}(t, r) & =1, D_{1}^{2}(t, r)=0 .
\end{aligned}
$$

where $\mu=\frac{8 G_{5} M}{3 \pi} \sim$ mass parameter, $M \sim$ the mass of source, and $G_{5} \sim 5 \mathrm{D}$ Newton constant.

- $\Lambda_{M}>0(<0) \sim$ Schwarzschild-Tangherlini-(Anti-) de Sitter metric.
IV. Simple solutions for a five-dimensional massive bi-gravity
- The action of five-dimensional massive bi-gravity [1604.07568]:

$$
\begin{aligned}
S_{5 \mathrm{~d}}= & M_{g}^{2} \int d^{5} x \sqrt{g} R(g)+M_{f}^{2} \int d^{5} x \sqrt{f} R(f) \\
& +2 m^{2} M_{\mathrm{eff}}^{2} \int d^{5} x \sqrt{g}\left(\mathcal{U}_{2}+\alpha_{3} \mathcal{U}_{3}+\alpha_{4} \mathcal{U}_{4}+\alpha_{5} \mathcal{U}_{5}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{U}_{2}= & \frac{1}{2}\left\{[\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right\}, \mathcal{U}_{3}=\frac{1}{6}\left\{[\mathcal{K}]^{3}-3[\mathcal{K}]\left[\mathcal{K}^{2}\right]+2\left[\mathcal{K}^{3}\right]\right\}, \\
\mathcal{U}_{4}= & \frac{1}{24}\left\{[\mathcal{K}]^{4}-6[\mathcal{K}]^{2}\left[\mathcal{K}^{2}\right]+3\left[\mathcal{K}^{2}\right]^{2}+8[\mathcal{K}]\left[\mathcal{K}^{3}\right]-6\left[\mathcal{K}^{4}\right]\right\}, \\
\mathcal{U}_{5}= & \frac{\mathcal{L}_{5}}{2}=\frac{1}{120}\left\{[\mathcal{K}]^{5}-10[\mathcal{K}]^{3}\left[\mathcal{K}^{2}\right]+20[\mathcal{K}]^{2}\left[\mathcal{K}^{3}\right]-20\left[\mathcal{K}^{2}\right]\left[\mathcal{K}^{3}\right]\right. \\
& \left.+15[\mathcal{K}]\left[\mathcal{K}^{2}\right]^{2}-30[\mathcal{K}]\left[\mathcal{K}^{4}\right]+24\left[\mathcal{K}^{5}\right]\right\} .
\end{aligned}
$$

IV. Simple solutions for a five-dimensional massive bi-gravity

- The Einstein field equations for physical metric (identical to ones for massive gravity):

$$
\begin{aligned}
& M_{g}^{2}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right)+m^{2} M_{\text {eff }}^{2} \mathcal{H}_{\mu \nu}^{(5)}(g)=0, \\
& \mathcal{H}_{\mu \nu}^{(5)}(g)=X_{\mu \nu}^{(5)}+\sigma Y_{\mu \nu}^{(5)}+\alpha_{5} W_{\mu \nu}, \\
& X_{\mu \nu}^{(5)}=-\left(\alpha \mathcal{U}_{2}+\beta \mathcal{U}_{3}\right) g_{\mu \nu}+\tilde{X}_{\mu \nu}^{(5)}, \\
& \tilde{X}_{\mu \nu}^{(5)}=\mathcal{K}_{\mu \nu}-[\mathcal{K}] g_{\mu \nu}-\alpha\left\{\mathcal{K}_{\mu \nu}^{2}-[\mathcal{K}] \mathcal{K}_{\mu \nu}\right\}+\beta\left\{\mathcal{K}_{\mu \nu}^{3}-[\mathcal{K}] \mathcal{K}_{\mu \nu}^{2}+\mathcal{U}_{2} \mathcal{K}_{\mu \nu}\right\}, \\
& Y_{\mu \nu}^{(5)}=-\mathcal{U}_{4} g_{\mu \nu}+\tilde{Y}_{\mu \nu}^{(5)}, \\
& \tilde{Y}_{\mu \nu}^{(5)}=\mathcal{U}_{3} \mathcal{K}_{\mu \nu}-\mathcal{U}_{2} \mathcal{K}_{\mu \nu}^{2}+[\mathcal{K}] \mathcal{K}_{\mu \nu}^{3}-\mathcal{K}_{\mu \nu}^{4}, \\
& W_{\mu \nu}=-\mathcal{U}_{5} g_{\mu \nu}+\tilde{W}_{\mu \nu}, \\
& \tilde{W}_{\mu \nu}=\mathcal{U}_{4} \mathcal{K}_{\mu \nu}-\mathcal{U}_{3} \mathcal{K}_{\mu \nu}^{2}+\mathcal{U}_{2} \mathcal{K}_{\mu \nu}^{3}-[\mathcal{K}] \mathcal{K}_{\mu \nu}^{4}+\mathcal{K}_{\mu \nu}^{5} .
\end{aligned}
$$

IV. Simple solutions for a five-dimensional massive

 bi-gravity- The Einstein-like field equations for reference metric:

$$
\begin{aligned}
& \sqrt{f} M_{f}^{2}\left(R_{\mu \nu}(f)-\frac{1}{2} f_{\mu \nu} R(f)\right)+\sqrt{g} m^{2} M_{\text {eff }}^{2}{ }_{\mu \nu}^{(5)}(f)=0, \\
& s_{\mu \nu}^{(5)}(f) \equiv-\hat{\mathcal{K}}_{\mu \nu}+\left\{[\mathcal{K}]+\alpha_{3} \mathcal{U}_{2}+\alpha_{4} \mathcal{U}_{3}+\alpha_{5} \mathcal{U}_{4}\right\} f_{\mu \nu}+\alpha\left\{\hat{\mathcal{K}}_{\mu \nu}^{2}-[\mathcal{K}] \hat{\mathcal{K}}_{\mu \nu}\right\} \\
& -\beta\left\{\hat{\mathcal{K}}_{\mu \nu}^{3}-[\mathcal{K}] \hat{\mathcal{K}}_{\mu \nu}^{2}+\mathcal{U}_{2} \hat{\mathcal{K}}_{\mu \nu}\right\}-\sigma\left\{\mathcal{U}_{3} \hat{\mathcal{K}}_{\mu \nu}-\mathcal{U}_{2} \hat{\mathcal{K}}_{\mu \nu}^{2}+[\mathcal{K}] \hat{\mathcal{K}}_{\mu \nu}^{3}-\hat{\mathcal{K}}_{\mu \nu}^{4}\right\} \\
& -\alpha_{5}\left\{\mathcal{U}_{4} \hat{\mathcal{K}}_{\mu \nu}-\mathcal{U}_{3} \hat{\mathcal{K}}_{\mu \nu}^{2}+\mathcal{U}_{2} \hat{\mathcal{K}}_{\mu \nu}^{3}-[\mathcal{K}] \hat{\mathcal{K}}_{\mu \nu}^{4}+\hat{\mathcal{K}}_{\mu \nu}^{5}\right\} .
\end{aligned}
$$

- $\hat{\mathcal{K}}$'s are defined as $\hat{\mathcal{K}}_{\mu \nu}=\mathcal{K}_{\mu}^{\sigma} f_{\sigma \nu}, \hat{\mathcal{K}}_{\mu \nu}^{2}=\mathcal{K}_{\mu}^{\rho} \mathcal{K}_{\rho}^{\sigma} f_{\sigma \nu}$, and so on.
- These equations are differential, not algebraic as ones for the reference metric in the massive gravity \rightarrow the massive graviton terms \mathcal{U}_{i} 's will not easily turn out to be effective constants \rightarrow need the help of the Bianchi identities for both physical and reference metrics:

$$
\begin{aligned}
& D_{g}^{\mu} G_{\mu \nu}(g)=0 \rightarrow D_{g}^{\mu} \mathcal{H}_{\mu \nu}^{(5)}(g)=0 \text { (physical metric) } \\
& D_{f}^{\mu} G_{\mu \nu}(f)=0 \rightarrow D_{f}^{\mu}\left[\frac{\sqrt{g}}{\sqrt{f}} s_{\mu \nu}^{(5)}(f)\right]=0 \text { (reference metric). }
\end{aligned}
$$

IV. Simple solutions for a five-dimensional massive

 bi-gravity- Solving these Bianchi constraint equations for the FLRW, Bianchi type I, and Schwarzschild-Tangherlini metrics will yield a solution:

$$
f_{\mu \nu}=(1-\mathcal{C})^{2} g_{\mu \nu} \text { (proportional to } g_{\mu \nu} \text {). }
$$

- \mathcal{C} is a constant obeying the following algebraic equation:

$$
\begin{aligned}
& \sigma \mathcal{C}^{5}-2(\sigma-2 \beta) \mathcal{C}^{4}+\left(\sigma-8 \beta+6 \alpha+\alpha_{5} \tilde{M}^{2}\right) \mathcal{C}^{3} \\
& +4\left(\beta-3 \alpha+\alpha_{4} \tilde{M}^{2}+1\right) \mathcal{C}^{2}+2\left(3 \alpha+3 \alpha_{3} \tilde{M}^{2}-4\right) \mathcal{C}+4\left(\tilde{M}^{2}+1\right)=0 \\
& \tilde{M}^{2}=\tilde{M}_{g}^{2} / \tilde{M}_{f}^{2} ; \tilde{M}_{g}^{2}=M_{g}^{2} /\left(m^{2} M_{\text {eff }}^{2}\right) ; \tilde{M}_{f}^{2}=M_{f}^{2} /\left(m^{2} M_{\text {eff }}^{2}\right)
\end{aligned}
$$

- Once \mathcal{C} is solved, the corresponding value of effective cosmological constant $\Lambda_{M} \equiv-m^{2} M_{\text {eff }}^{2} \mathcal{U}_{M}$ will be defined as:

$$
\begin{aligned}
\Lambda_{M}= & -m^{2} M_{\mathrm{eff}}^{2} \mathcal{C}\left[\left(\sigma \mathcal{C}^{3}+4 \beta \mathcal{C}^{2}+6 \alpha \mathcal{C}+4\right)\right. \\
& \left.+(\mathcal{C}-1)\left(\alpha_{5} \mathcal{C}^{3}+4 \alpha_{4} \mathcal{C}^{2}+6 \alpha_{3} \mathcal{C}+4\right)\right] . \\
= & \Lambda_{0}^{g}\left[M_{g}^{2}+M_{f}^{2}(1-\mathcal{C})^{3}\right] \neq \Lambda_{0}^{g} M_{g}^{2} .
\end{aligned}
$$

- Note that in massive gravity, $\Lambda_{M}=M_{g}^{2} \Lambda_{0}^{g}$ due to $M_{f}=0$.
IV. Simple solutions for a five-dimensional massive bi-gravity
- For the FLRW metric:

$$
a_{1}(t)=\exp \left[\sqrt{\Lambda_{0}^{g} / \sigma} t\right] ; \quad a_{2}(t)=(1-\mathcal{C}) a_{1}(t)
$$

- For the Bianchi type I metric:

$$
\begin{aligned}
\exp \left[3 \alpha_{1}\right]= & \exp \left[3 \alpha_{01}\right]\left[\cosh \left(3 \tilde{H}_{1} t\right)+\frac{\dot{\alpha}_{01}}{\tilde{H}_{1}} \sinh \left(3 \tilde{H}_{1} t\right)\right] \\
\exp \left[\beta_{1}\right]= & \exp \left[\beta_{01}\right]\left[\cosh \left(3 \bar{H}_{1} t\right)+\frac{\dot{\beta}_{01}}{3 \bar{H}_{1}} \sinh \left(3 \bar{H}_{1} t\right)\right] \\
\sigma_{1}= & \sigma_{01}+\sqrt{\dot{\alpha}_{01}^{2}+\dot{\alpha}_{01} \dot{\beta}_{01}-\frac{\Lambda_{0}^{g}}{3}} \int\left\{\left[\cosh \left(3 \tilde{H}_{1} t\right)+\frac{\dot{\alpha}_{01}}{\tilde{H}_{1}} \sinh \left(3 \tilde{H}_{1} t\right)\right]\right. \\
& \left.\times\left[\cosh \left(3 \bar{H}_{1} t\right)+\frac{\dot{\beta}_{01}}{3 \bar{H}_{1}} \sinh \left(3 \bar{H}_{1} t\right)\right]\right\}^{-1} d t .
\end{aligned}
$$

$$
\exp \left[\alpha_{2}\right]=(1-\mathcal{C}) \exp \left[\alpha_{1}\right] ; \exp \left[\beta_{2}\right]=(1-\mathcal{C}) \exp \left[\beta_{1}\right] ; \sigma_{2}=\sigma_{1}
$$

$$
\tilde{H}_{1}^{2}=4 \Lambda_{0}^{g} / 27\left(1-V_{0}^{g}\right) ; \bar{H}_{1}^{2}=V_{0}^{g} \tilde{H}_{1}^{2} .
$$

IV. Simple solutions for a five-dimensional massive bi-gravity

- For the Schwarzschild-Tangherlini black hole:

$$
\begin{aligned}
N_{1}^{2}(r) & =F_{1}^{2}(r)=f(r)=1-\frac{\mu}{r^{2}}-\frac{\Lambda_{0}^{g}}{6} r^{2}, H_{1}^{2}(r)=1, \\
g_{\mu \nu}^{5 \mathrm{~d}} d x^{\mu} d x^{\nu} & =-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{3}^{2}, \\
f_{\mu \nu}^{5 \mathrm{~d}} d x^{\mu} d x^{\nu} & =(1-\mathcal{C})^{2}\left[-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{3}^{2}\right] .
\end{aligned}
$$

V. Conclusions

- An effective method based on the Cayley-Hamilton theorem to construct arbitrary dimensional graviton potential terms has been proposed.
- We have shown that the five-dimensional massive (bi)gravity theories with additional massive graviton term \mathcal{L}_{5} are indeed physically non-trivial.
- The nature of cosmological constant Λ_{M} can be realized in the context of massive (bi)gravity. In particular, all complicated massive terms in \mathcal{L}_{M} are behind in a simple constant Λ_{M}.
- We have found that some well-known metrics such as the FLRW, Bianchi type I, and Schwarzschild-Tangherlini spacetimes are indeed solutions of the five-dimensional massive (bi)gravity under assumptions that the physical metrics are compatible/proportional with/to the fiducial ones.

(Possible) further investigations

- A full ghost-free proof for higher dimensional massive (bi-)gravity [this task might be straightforward as claimed in Hassan, Schmidt-May \& von Strauss, 1212.4525] ?
- The stability of Schwarzschild-Tangherlini-(A)dS black holes in the context of 5D massive (bi-)gravity ?
- The fate of cosmic no-hair conjecture in massive (bi-)gravity ?
- Higher-than-five dimensional scenarios of massive (bi-)gravity ?
- Gravitational waves in higher dimensional massive (bi-)gravity ?
- Bound of graviton mass in the massive (bi-)gravity [de Rham, Deskins, Tolley \& Zhou, 1606.08462] ?

Note that LIGO has announced a bound: $m_{g}<1.2 \times 10^{-22} \mathrm{eV} / \mathrm{c}^{2}$ from data of GW150914 [1602.03837].
For a comparison: Mass of electron is given by $m_{e} \simeq 0.51 \times 10^{6} \mathrm{eV} / \mathrm{c}^{2}$, Mass of neutrino is determined as $m_{\nu}=0.320 \pm 0.081 \mathrm{eV} / \mathrm{c}^{2}$.

Thank you for your attention!

