
This Talk’s Three Key “Takeaways”

• Relativistic time dilation is incompatible with Newton’s Second Law . However fixing to unity the g00 metric
component for a dust ball extinguishes relativistic time dilation and produces Friedmann’s Newtonian solution.

• Extended Oppenheimer-Snyder transformation of the g00 = 1 Friedmann dust-ball solution to “standard” metric
form, which has unconstrained g00, enables relativistic time dilation, producing non-Newtonian dust motion.

• Gravitational time dilation causes all expanding dust balls to undergo early-epoch “accelerative inflation”. For
favorable initial conditions that acceleration of expansion can persist throughout “standard” time (although it decays
toward zero), which apparently renders the “dark-energy” cosmological-constant hypothesis unnecessary .
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A. Acceleration versus force in the presence of relativistic time dilation
A1. Assuming purely radial motion, conservation of Newtonian kinetic plus gravitational potential energy, namely,

1
2
mṙ2 −GmM/r = T0 + V0,

implies the Newtonian Second Law proportionality of acceleration to the gravitational force, namely r̈ = −GM/r2.
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A2. However, conservation of special relativistic kinetic plus gravitational potential energy, namely,

mc2[(1− ṙ2/c2)−
1
2 − 1]−GmM/r = T0 + V0,

disrupts Newtonian Second Law proportionality of acceleration to gravitational force −GmM/r2, implying instead ,

r̈ =
−GM/r2

[1 + (T0 + V0)/(mc2) + (GM)/(c2r)]3
.

We note in particular that as r → 0 and the gravitational force becomes infinite, the acceleration r̈ → 0! That occurs
because special relativistic time dilation stops |ṙ| from reaching c by driving r̈ toward zero.

A3. In GR, as the surface radius r̄a of a simple FLRW dust ball contracts toward its Schwarzschild value rS, the
gravitational time-dilation factor at r̄a increases toward infinity , which drives the contracting dust ball’s negative
surface radial velocity dr̄a/dt̄a toward zero! Thus in GR a contracting dust ball’s surface radius r̄a will ultimately
undergo positive (i.e., outward) acceleration when its value gets close enough to the dust ball’s Schwarzschild radius
value rS—in spite of the strong negative (i.e., inward) gravitational force on the dust at that radius!
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A4. Unfortunately this fascinating consequence of gravitational time dilation cannot be reflected by the only known
analytic solution of the Einstein equation for the simple FLRW dust ball : that solution’s metric-tensor component
g00 is fixed to unity , which extinguishes gravitational time dilation because (g00)−

1
2 is the gravitational time-dilation

factor ! Fixing g00 to unity , however, is well-known to require the clock readings of an infinite number of different
observers [Steven Weinberg, Gravitation and Cosmology , Section 11.8, page 338], a requirement which neither can
be physically fulfilled nor is compatible with Einstein’s observer-to-coordinate-system paradigm!

A5. That g00 = 1 GR-unphysical Einstein-equation solution for the FLRW dust ball was, for a particular initial
condition, transcended in 1939 by Oppenheimer and Snyder, who, in an analytical tour-de-force, worked out the
transformation of the (r, t) “comoving coordinates” of that solution’s GR-unphysical spherically-symmetric metric,

ds2 = (cdt)2 − U(r, t)(dr)2 − V (r, t)
(
(dθ)2 + (sin θdφ)2

)
,

to the (r̄, t̄) “standard coordinates” of the GR-physical spherically-symmetric metric,

ds2 = B(r̄, t̄)(cdt̄)2 − A(r̄, t̄)(dr̄)2 − r̄2
(
(dθ)2 + (sin θdφ)2

)
,

which doesn’t extinguish of gravitational time dilation since its g00 metric component B(r̄, t̄) isn’t constrained !
4



A6. The g00 = 1 GR-unphysical Einstein-equation solution’s metric functions U(r, t) and V (r, t) are given by,

U(r, t) = (R(t))2/(1 + γ(ωr/c)2) and V (r, t) = r2(R(t))2,

where the dimensionless function R(t) is given in terms of the always-uniform energy density ρ(t) of the dust by,

R(t) = (ρ(t0)/ρ(t))
1
3 ,

defined so that R(t0) = 1. In the g00 = 1 GR-unphysical “comoving coordinates” (r, t), the dust, as well as having
always-uniform time-dependent energy density ρ(t), also has zero particle velocity , so the dust ball’s radius a doesn’t
change in “comoving coordinates”. The Einstein equation within the dust ball in those “comoving coordinates” (r, t),
i.e., within the “comoving region” 0 ≤ r ≤ a, implies that R(t) satisfies the Friedmann equation, which is,

(Ṙ(t))2 = ω2((1/R(t)) + γ),

where, of course, R(t0) = 1, and the constants ω and γ are related to ρ(t0) and ρ̇(t0) as follows,

ω2 = (8π/3)Gρ(t0)/c2 and γ = (Ṙ(t0)/ω)2 − 1 = (ρ̇(t0)/(3ωρ(t0)))2 − 1 ≥ −1.
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A7. The entirely Newtonian character of the Friedmann equation is explicitly revealed upon making the definitions,

r(t)
def
= aR(t) and M

def
= (4π/3)a3ρ(t0)/c2,

which imply that ω2 = 2GM/a3, γ = [a(ṙ(t0))2/(2GM)] − 1 and a = r(t0) when they are combined with the
relations given in A6. These three formulas plus R(t) = (r(t)/a) change the Friedmann equation of A6 to a simple
Newtonian gravitational equation of motion of the type displayed in A1, specifically to,

1
2
(ṙ(t))2 −GM/r(t) = 1

2
(ṙ(t0))2 −GM/r(t0).

A8. Oppenheimer and Snyder solved for the transformation (r̄(r, t), t̄(r, t)) from the g00 = 1 GR-unphysical metric’s
(r, t) “comoving coordinates” to the GR-physical metric’s (r̄, t̄) “standard coordinates” only when the particular
initial condition ρ̇(t0) = 0 holds, i.e., only when Ṙ(t0) = 0 and γ = −1. But the arduously intricate techniques they
developed to obtain their limited transformation are adequate to extend it to all values of γ ≥ −1.

A key subtlety resolved by Oppenheimer and Snyder is that the A5- and A6-described g00 = 1 metric specified only
for 0 ≤ r ≤ a transforms into an A5 “standard” metric form which is only determined up to an arbitrary function of
one variable. The Birkhoff theorem, however, states that outside of and on the dust ball’s surface an A5 “standard”
metric form is equal to the Schwarzschild metric, which fact uniquely pins down that arbitrary function of one variable.
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B. The extended Oppenheimer-Snyder transformation

B1. The presentation of the extended Oppenheimer-Snyder transformation is more compact when all occurrences of
the two constants ω and γ are systematically replaced by occurrences of the Schwarzschild radius rS in “standard”
coordinates and the dimensionless constant α: the constants rS and α are defined as follows (M is discussed in A7),

rS
def
= ω2a3/c2 = 2GM/c2 & α

def
= γ(rS/a).

With rS and α superseding ω and γ, the extended Oppenheimer-Snyder transformation is presented as,

r̄(r, t) = rR(t) & t̄(r, t) = t̄(a, t0)± (a/c)(1 + α)
1
2

∫ S(r,t)

1

ds

((rS/(as)) + α)
1
2 (1− (rS/(as)))

,

where the ± is the sign of Ṙ(t) if Ṙ(t) 6= 0, but ± = −1 if Ṙ(t) = 0, and S(r, t) is the following expression,

S(r, t) = R(t)

(
1 + (r/a)2α

1 + α

) 1
2

−
(
rS
aα

)1−
(

1 + (r/a)2α

1 + α

) 1
2

 ,
where 0 ≤ r ≤ a. Because R(t) obeys the Friedmann equation, dt̄(r, t)/dt→ 1 as c→∞.
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B2. Note that the integral in the expression for t̄(r, t) diverges to infinity unless a > rS (and therefore α > −1, since
α = γ(rS/a) and γ ≥ −1) and S(r, t) > (rS/a). Thus a subset of “comoving space-time” is transformed to infinite
“standard” time, which makes that subset inaccessible in GR-physical “standard” space-time. (This space-time subset
inaccessibility arises from the singular character of the transformation from GR-unphysical “comoving coordinates” to
GR-physical “standard” coordinates—it patently wouldn’t occur for the nonsingular transformation that necessarily
obtains between two GR-physical metrics.)

B3. The inaccessibility of a subset of GR-unphysical “comoving space-time” in GR-physical “standard” space-time
furthermore renders inaccessible in GR-physical “standard” coordinates those dust-ball configurations which occur in
that inaccessible subset of GR-unphysical “comoving space-time”. In the next section we shall see that gravitational
time dilation effects which drive dust-particle speeds toward zero in GR-physical “standard” coordinates enforce this
inaccessibility in GR-physical “standard” coordinates of such disallowed dust-ball configurations—just as particle-
speed time dilation effects which drive particle acceleration toward zero in special relativity enforce the inaccessibility
in special relativity of disallowed particle speeds of c or greater .
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C. Equations of motion of the dust-ball interior-shell radii in “standard” coordinates

C1. In GR-unphysical “comoving coordinates” (r, t), the dust ball’s interior-shell radii εa, 0 < ε ≤ 1, have zero
velocity , so their world lines are just (εa, t). The B1 extended Oppenheimer-Snyder transformation maps these

“comoving” world lines (εa, t) to “standard” world lines (r̄εa(t), t̄εa(t))
def
= (r̄(εa, t), t̄(εa, t)). Therefore B1 yields,

r̄εa(t) = εaR(t) & t̄εa(t) = t̄(a, t0)± (a/c)(1 + α)
1
2

∫ S(εa,t)

1

ds

((rS/(as)) + α)
1
2 (1− (rS/(as)))

= t̄(a, t0)± (cε)−1(1 + α)
1
2

∫ ρεa(r̄εa(t))

εa

dρ

((εrS/ρ) + α)
1
2 (1− (εrS/ρ))

= t̄εa(ρεa(r̄εa(t))),

where the initial integration variable s is changed to ρ = (εa)s, and consequently,

ρεa(r̄εa(t)) = (εa)S(εa, t) = r̄εa(t)

(
1 + ε2α

1 + α

) 1
2

−
(
εrS
α

)1−
(

1 + ε2α

1 + α

) 1
2

 .
The above integral expression for t̄εa(ρεa(r̄εa)) diverges to infinity unless ρεa(r̄εa) > εrS. Taking care to respect that
caveat, the dρ integration can be carried out in closed form to produce an intricate analytic result for t̄εa(ρεa(r̄εa)).
That analytic result is useful for creating numerical plots of r̄εa(t̄εa), but its intricacy resists direct interpretation.
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C2. However the C1 integral result for t̄εa(ρεa(r̄εa)) also readily yields a first-order differential equation for r̄εa(t̄εa),

dr̄εa/dt̄εa = (dt̄εa(ρεa(r̄εa))/dr̄εa)
−1 = ±cε

(
(εrS/ρεa(r̄εa)) + α

1 + ε2α

) 1
2

(1− (εrS/ρεa(r̄εa))),

which of course comes with the C1 caveat that ρεa(r̄εa) > εrS. The details of the form of ρεa(r̄εa) are given in C1.

C3. The C2 equation and its caveat ρεa(r̄εa) > εrS imply an upper bound for the shell-radius speed |dr̄εa/dt̄εa|,

|dr̄εa/dt̄εa| < c

(
ε2 + ε2α

1 + ε2α

) 1
2

(1− (εrS/ρεa(r̄εa))).

Since the relationship of ρεa(r̄εa) to r̄εa is a linear one (see C1), this upper bound drives |dr̄εa/dt̄εa| linearly toward
zero as ρεa(r̄εa)→ εrS+, so it isn’t possible for ρεa(r̄εa) to become equal to or smaller than εrS in any finite interval
of “standard” local shell time ∆t̄εa. This linear zeroing of the approach speed to the GR-unphysical configuration
forbidden by the caveat reinforces that caveat, which illustrates the crucial role of gravitational time dilation. (For
the dust ball’s surface shell , i.e., for ε = 1, the caveat simplifies to r̄a > rS [see C1], so a dust ball’s radius always
exceeds its Schwarzschild radius, which implies that a dust ball can’t produce an event horizon.)
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C4. Since rS = 2GM/c2 and α = γ(rS/a), in the c→∞ nonrelativistic limit, ρεa(r̄εa)→ r̄εa, and the C2 dust-ball
shell-radii equations of motion reduce to,

dr̄εa/dt̄εa = ±ε 3
2 (2GM)

1
2 ((1/r̄εa) + (γ/(εa)))

1
2 .

These nonrelativistic-limit shell-radii equations of motion are completely devoid of both the speed and the config-
uration constraints which featured so prominently in C3. Squaring both sides of each above nonrelativistic-limit
shell-radius equation of motion reveals that it corresponds to the Newtonian Friedmann equation (Ṙ(t̄εa))

2 =
ω2((1/R(t̄εa)) + γ), where ω2 = (2GM/a3), via the simple scaling relationship r̄εa(t̄εa) = εaR(t̄εa), 0 < ε ≤ 1.
The second-order form of each above nonrelativistic-limit shell-radius equation of motion is readily worked out to be,

d2r̄εa/dt̄
2
εa = −ε3GM/r̄2

εa,

which reflects the nonrelativistic-limit fact that the shell radius’ acceleration arises from the spherical effective mass
ε3M , 0 < ε ≤ 1, which is the source of net Newtonian gravitational force on that shell .
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C5. The full C2 shell-radius first-order equation of motion in “standard” coordinates also has a second-order form,
which illuminates the modification of shell-radius acceleration caused by gravitational time dilation. One differentiates
both sides of the C2 equation with respect to t̄εa, and then replaces the overall factor of dr̄εa/dt̄εa on that result’s
right-hand side by the right-hand side of the C2 equation to obtain,

d2r̄εa/dt̄
2
εa = (ε/2)(c2/rS)

[
(−1 + 2α)(εrS/ρεa(r̄εa))

2 + 3(εrS/ρεa(r̄εa))
3
] [ 1− (εrS/ρεa(r̄εa))

(1 + ε2α)
1
2 (1 + α)

1
2

]
,

which has the same caveat ρεa(r̄εa) > εrS as the C2 equation. Since 3 > (1 − 2α) (because α > −1), there
always exists a range of ρεa(r̄εa) values which both satisfy the caveat ρεa(r̄εa) > εrS and produce positive (i.e.,
outward) shell-radius acceleration d2r̄εa/dt̄

2
εa—that is so despite the fact that the c→∞ nonrelativistic limit of the

second-order equation is,
d2r̄εa/dt̄

2
εa = −ε3GM/r̄2

εa,

which implies always negative (i.e., always inward) acceleration. Furthermore, for all initial conditions such that
α ≥ 1

2
, every shell-radius acceleration d2r̄εa/dt̄

2
εa is positive (i.e., outward) at all finite “standard” local times t̄εa (at

any finite “standard” local time t̄εa(ρεa(r̄εa)), C1 implies that the caveat ρεa(r̄εa) > εrS is automatically satisfied).
That it is possible for every shell-radius acceleration to be positive (i.e., outward) at all finite “standard” local times
apparently eliminates any need to postulate a nonzero “dark energy” cosmological constant.
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