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§ 1 Introduction

Kerr spacetime: vacuum, stationary, axi-symmetric, asymptotically flat

In Boyer-Lindquist coordinates

2
ds* = - 22 4 4 Asin? H(d(p _2aMr dt) + 24 +340°
A > A A
where A(r)=r2 —2Mr+a’
Z(rﬁ) =r’+a’cos’0 A(r,@) = (r2 + a2)2 - A(r)a2 sin” 6

—o<t<+w, —o<r<+o, O<sfO=sx, Os@p<2n

M : ADM mass a : Kerr parameter (angular momentum L=aM)

a® < M? : larger root of A(r) = 0 (r = M + VM2 — a? > M) is the event horizon
a> > M? : always A(r) > 0 holds. No event horizon.

Ring singularity at » =0, 8= 7/2 is naked.



Reissner-Nordstrom spacetime

Maxwell field, static, spherically symmetric, asymptotically flat

Metri dr?
e ds? = —f(r)dt? + —— +r2d6? + r?sin?0dg?
f(r)
where
2M (2
fr)y=1- - + 2
M : ADM mass Q : Charge parameter

Gauge one-form

Q
A, = (—7,0,0,0)

Q? < M? : larger root of f(r) =0 (r =M+ M2-Q2 > M) is the event horizon

O? > M? : always f(r) > 0 holds. No event horizon.
Singularity at » = 0 is naked.



From a point of view of SUSY,
if the system is supersymmetric, BPS bound Q% < M* holds.

Kerr bound a? < M?4does not have a special meaning.
P g

In the framework of superstring theory,

over-spinning very compact entity named the superspinar may exist.

Stringy effects will make any singularities harmless.
Gimon and Horava (2007)

The over-spinning Kerr geometry around the naked singularity
IS very interesting.



In Boyer-Lindquist coordinates

2
ds* = - 22 4 4 Asin? H(d(p _2aMr dt) + 2 a4 +340°
A > A
where A(r)=r2 —2Mr+a’
2(r,0)= r>+a’cos’ 0 A(r,0) = (r2 + a2)2 ~A(r)a’sin” 0

0
5 : time coordinate basis=Killing vector field

E | here): — | lik (a a)_ (1 2M’”)>o
rgo-region (ergo-sphere): 5; Isspacelike g 390 = —~

M — M2 — q2c0s20 <1 < M + M2 — a2cos20

- : 0 L .
Killing “energy” of a particle: E = —u- 3 can be negative in the ergo-region,

even if u is future directed timelike vector.



Collisional Penrose process
M. Patil, T. Harada, KN, P.S. Joshi and M. Kimura (2015)

when a= 1+ )M

_ m\/(ZM —L)(ZM — Ly)

JZMe 0<ek1

4\

---------
-----
------

EZ =m, Lz

ay .
---------------

n=——-o for e >0
2m

-
-

~ -

-~ -
-~ -
-
S~ P
_~—— ————

No upper bound on efficiency!

Ultra-high-energy cosmic ray!
Ei=m,Lq



Efficiency of energy extraction from accreting matter=42%,

when a? = M?

ISCO: r=M+0
in Boyer-Lindquist

Accretion Disk



Efficiency of energy extraction from accreting matter=100%,

when a? = — M?

1 & Horava (2007)

Singularity




Is a superspinar stable?

How does a superspinar form?



Is a superspinar stable?

How does a superspinar form?



§ 2 Stability of Superspinar

Teukolsky equations determine perturbations in Kerr spacetime

Master variable of the perturbations: 1 = e !@t+MmP R (r)S(6)

d (A5+1 d_R) N (KZ — 2is(r — M)K

A5 —
dr A

+4isa)r—/1>R =0
dr

m + s cos 6@

1 d/ dS
—(51n0—)+

2
sin 0 do do ) —sts—D+4

(aw cos O + s)? — (

sin @

where
K:=(@*+a*)w—am

A=A+ a’w? - 2amw

A = A, ms : Eigen value of the equation for S [ > max[|m],|s]]

|s| = 0: scalar |s| =1:EM Is| =2 :GW

S=0



§ 2 Stability of Superspinar

Teukolsky equations determine perturbations in Kerr spacetime

Master variable of the perturbations: 1 = e !@t+MmP R (r)S(6)

d (A5+1 d_R) N (Kz — 2is(r — M)K

A5 —
dr A

+4iswr—/1>R =0
dr

m + s cos 6@
S=0

1 d/ dS
—(51n0—)+

2
sin 0 do do ) —sts—D+4

(aw cos O + s)? — (

sin @

Outgoing GW Y, =@ —iacos8) ") with s=-2



Master variable of the perturbations: 1) = e '@+ MO R (1) S(0)

d (AS“ d_R) N (KZ — 2is(r — M)K

A5 —
dr A

+4iswr—/1>R =0
dr

1 d(, 9d5)+ ( 6+ 5)2 (m+sc059)2 - D+Als=0
sin 6 d6 St do 4w oS > sin @ 8 B
Outgoing GW Y, =@ —iacos8) "t with s=-2

C .
R - ?e“‘”” for r > o  for Quasi-normal mode (QNM)

In black hole case

Horizon A(r) = 0: singular point of the radial Teukolsky equation

Regularity at horizon === Unique boundary condition

R- 0 for r-r,



Master variable of the perturbations: 1) = e '@+ MO R (1) S(0)

d (AS“ d_R) N (KZ — 2is(r — M)K

A5 —
dr A

+4iswr—/1>R =0
dr

1 d(, 9d5)+ ( 6+ 5)2 (m+sc056)2 - D+Als=0
sin 6 d6 St do 4w oS > sin @ 8 B
Outgoing GW Y, =@ —iacos8) "t with s=-2

C .
R - ?e“‘”” for r > o  for Quasi-normal mode (QNM)

In superspinar (over-spinning Kerr) case

No horizon A(r) > 0: no singular point of the radial Teukolsky equation on the real axis of r.

No unique boundary condition unless we know what is a superspinar.



§ 3 Stability of Superspinar (1)
Cardoso, Pani, Cadoni, Cavaglia (2008); Pani, Barausse, Berti and Cardoso (2010)

Quasi-normal modes of perturbations (no incoming wave at infinity)

Y = e~ lOtHMO R ()5 (9) * Absorbing BC: Y' = —ikY

- -

Boundary condition where Y = AS/2(r2 + a?)1/2R
|" gt at r = r, =constant Y + V()Y =0
O e ..® | ¢ ReflectingBC:R =0 =V
. , ] ! = T
\_  Singularity / (o)
- . r— . Imaginary part of w is positive =unstable
=T

TABLE I. Unstable gravitational (s = 2) frequencies with / = m = 2 for a superspinar with a perfect reflecting surface (R = 1) and
with a “stringy event horizon™” (R = 0) at r = r,. All modes in this table have been computed using numerical values of A,
obtained via the continued fraction method [23].

Reflecting BC (wgM, o;M), R =1 Absorbing BC (@xM, o;M), R = 0
ro/M a=1.1M a= 1.0IM a= 100IM a=1LIM a= 1L0IM a=100IM
0.01 (0.5690, 0.1085) (0.9744, 0.0431) (09810, 0.0097) (0.5002, 0.0173) (0.9498, 0.0062) (1.0286, 0.0033)
0.1 (0.5548, 0.1237) (0.9673, 0.0475) (09794, 0.0110) (0.4878, 0.0260) (0.9435, 0.0093) (1.0252, 0.0048)

0.5 (0.4571, 0.1941)  (0.9256, 0.0631) (09688, 0.0155) (0.3959, 0.0719) (0.9016, 0.0237)  (1.0052, 0.0091)
0.8 (0.3081, 02617)  (0.8598, 0.0878)  (0.9507, 0.0202) (0.2537, 0.1053) (0.8298, 0.0376)  (0.9793, 0.0095)
1 (0.1364, 0.3095)  (0.6910, 0.1742)  (0.9003, 0.0640) (0.0916, 0.1219) (0.6530, 0.0821)  (0.8853, 0.0313)
1.1 (0.0286, 0.3248)  (0.4831, 0.2655) (0.6071,0.2207) ( —0.0078, 0.1233)  (0.4377,0.1230) (05696, 0.1064)




Reflection Boundary Condition

PANI, BARAUSSE, BERTI, AND CARDOSO
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§ PHYSICAL REVIEW D 82, (44009 (2010)
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Top: Real (left) and imaginary part (right) of unstable gravitational modes of a superspinar as a function of the

spin paramecter, a/M, for | = m = 2 and scveral fixed values of rp. Bottom: Real (left) and imaginary part (right) of unstable
gravitational modes of a superspinar as a function of the mirror location, ro/M, for { = m = 2 and different fixed values of the spin
parameter. Large dots indicate purcly imaginary modes.



Absorbing Boundary Condition
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FIG. 5 (color online). Top: Real (left) and imaginary part (right) of unstable gravitational modes of a superspinar as a function of the
spin parameter, a/M, for | = m = 2 and several fixed values of the horizon location 7, /M. Bottom: Real (left) and imaginary part
(right) of unstable gravitational modes of a superspinar as a function of the horizon location, for { = m = 2 and fixed values of the spin
parameter. Large dots indicate purcly imaginary modes.



Reflecting Boundary Condition
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FIG. 3 (color online). Left: Imaginary part of unstable gravitational modes of a superspinar as a function of the mimror location,
/M, forg=LIM [ =2andm =0, 1 2 Right: Imaginary part of unstable gravitational modes of a superspinar as a function of the

mirror location, 7, /M, forl =2, m = 0 and several values of the spin parameter, a.




Pani et al state that the superspinar is, in general, unstable,
since perturbations grow exponentially
under both reflecting and absorbing boundary conditions.

However, there are boundary conditions
under which the superspinar is stable.

Is their conclusion right?



Pani et al state that the superspinar is, in general, unstable,
since perturbations grow exponentially
under both reflecting and absorbing boundary conditions.

However, there are boundary conditions
under which the superspinar is stable.

Is their conclusion right?

Let’s consider!



In superspinar case, replace the the stability problem with

“Does there exist the boundary condition under which the superspinar is stable?”



In superspinar case, replace the the stability problem with

“Does there exist the boundary condition under which the superspinar is stable?”

Answer: Yes!

We assume stable angular frequency, i.e., w = wp + iw; with negative w;

Input Parameter



:D‘ Solve the angular Teukolsky equation by imposing regularitiesat @ = 0,

1 d ds m + scos @

— | i — 2 _
Sin9d9(51n9d6>+!(awcos@+s) (

2
_ ) —s(s—l)+A]S=O
sin @

A is determined.

A=A+ a*w? - 2amw



:D‘ Solve the angular Teukolsky equation by imposing regularitiesat @ = 0,

m + scos @

sin 8 d@

1 d ds
(sin@—) + [(aa) cos @ + s5)? — (

do

2
_ ) —s(s—l)+A]S=O
sin @

A is determined.

A=A+ a*w? - 2amw

:D Solve the radial Teukolsky equation with QNM boundary condition

A—S

d (A5+1 dR) N (K2 — 2is(r = MK

I I A +4lsa)r—/1>R=0

No singular point on real axis of r === obtained R(r) is regular everywhere.



ZD Solve the angular Teukolsky equation by imposing regularitiesat @ = 0,

1 d ds m + scos @

— | <j _ 2 _
Sin9d0<sm9d6>+!(awcos@+s) (

2
_ ) —S(S—l)-l—A]S:O
sin @

A is determined.

A=A+ a*w? - 2amw

:> Solve the radial Teukolsky equation with QNM boundary condition

A—S

i(AsH d_R) N K? —2is(r - M)K
dr dr A

+4isa)r—/1>R =0
No singular point on real axis of r === obtained R(r) is regular everywhere.

:> The boundary condition at, for example, r = 0 is found.

Infinite number of boundary conditions under which the superspinar is stable.



§ 4 Summary and conclusion

The boundary condition := Physical nature of the superspinar

Unless we know the nature of the superspinar,
we cannot say anything on its stablity.

We should conclude

no one knows the stability of the superspinar at present.



Reflecting Boundary Condition
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FIG. 3 (color online). Left: Imaginary part of unstable gravitational modes of a superspinar as a function of the mimror location,
/M, forg=LIM [ =2andm =0, 1 2 Right: Imaginary part of unstable gravitational modes of a superspinar as a function of the

mirror location, 7, /M, forl =2, m = 0 and several values of the spin parameter, a.

The reflecting boundary condition at r=2M
is equivalent to some other boundary condition at r=M,
since there is no singular point in the superspinar case.



