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§1	Introduction

Kerr	spacetime:	vacuum,	stationary,	axi-symmetric,	asymptotically	flat

ds2 = − ΣΔ
A
dt2 + A
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dr2 +Σdθ 2

Σ r,θ( ) = r2 + a2 cos2θ

Δ r( ) = r2 − 2Mr + a2

A r,θ( ) = r2 + a2( )
2
−Δ r( )a2 sin2θ

a2 > M2 : always D(r) > 0 holds. No event horizon.

where

M : ADM mass a : Kerr parameter (angular momentum L=aM)

In	Boyer-Lindquist	coordinates

Ring singularity at r = 0, q = p/2 is naked.

a2 ≤ M2 : larger root of D(r) = 0 𝑟 = 𝑀 + 𝑀% − 𝑎%� ≥ 𝑀 is the event horizon

−∞ < t < +∞,   −∞ < r < +∞,   0 ≤θ ≤ π,  0 ≤ϕ < 2π



Maxwell	field,	static,	spherically	symmetric,	asymptotically	flat

Q2 > M2 : always f(r) > 0 holds. No event horizon.

where

M :	ADM	mass Q :	Charge	parameter

Singularity at r = 0 is naked.

Q2 ≤ M2 : larger root of f(r) = 0 𝑟 = 𝑀 + 𝑀% − 𝑄%� ≥ 𝑀 is the event horizon

𝑑𝑠% = −𝑓 𝑟 𝑑𝑡% +
𝑑𝑟%

𝑓 𝑟 + 𝑟%𝑑𝜃% + 𝑟%sin%𝜃𝑑𝜑%

𝑓 𝑟 = 1 −
2𝑀
𝑟 +

𝑄%

𝑟%

Metric

Gauge	one-form

𝐴9 = −
𝑄
𝑟 , 0,0,0

..Reissner-Nordstrom	spacetime



The	over-spinning	Kerr	geometry	around	the	naked	singularity	
is	very	interesting.

From	a	point	of	view	of	SUSY,		

𝑄% ≤ 𝑀%if	the	system	is	supersymmetric,	BPS	bound																				holds.

𝑎% ≤ 𝑀%

In	the	framework	of	superstring	theory,	

Kerr	bound																		does	not	have	a	special	meaning.	

over-spinning	very	compact	entity	named	the	superspinar may	exist.		

Gimon and	Horava (2007)
Stringy	effects	will	make	any	singularities	harmless.



𝑔
𝜕
𝜕𝑡 ,

𝜕
𝜕𝑡 = − 1 −

2𝑀𝑟
Σ > 0

𝑀 − 𝑀% − 𝑎%cos%𝜃� < 𝑟 < 𝑀 + 𝑀% − 𝑎%cos%𝜃�

𝜕
𝜕𝑡

:	time	coordinate	basis=Killing	vector	field

Ergo-region	(ergo-sphere):								is	spacelike

Killing	“energy”	of	a	particle:	 𝐸 = −𝒖 F
𝜕
𝜕𝑡

can	be	negative	in	the	ergo-region,

𝜕
𝜕𝑡

ds2 = − ΣΔ
A
dt2 + A
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dr2 +Σdθ 2

Σ r,θ( ) = r2 + a2 cos2θ

Δ r( ) = r2 − 2Mr + a2

A r,θ( ) = r2 + a2( )
2
−Δ r( )a2 sin2θ

where

In	Boyer-Lindquist	coordinates

even	if	𝒖 is	future	directed	timelike vector.	



Singularity

𝑎 = 1 + 𝜀 𝑀

𝑟 = 𝑀

Collisional	Penrose	process

when	

𝑟 = 0

0 < 𝜀 ≪ 1𝐸I =
𝑚 2𝑀 − 𝐿L 2𝑀 − 𝐿%

�

2� 𝑀𝜀

𝐸L = 𝑚, 𝐿L

𝐸% = 𝑚, 𝐿%
	𝐸N = 2𝑚 − 𝐸I

𝜂 =
𝐸I
2𝑚 → ∞ for 𝜀 → 0

No	upper	bound	on	efficiency!

Ultra-high-energy	cosmic	ray!

M.	Patil,	T.	Harada,	KN,	P.S.	Joshi	and	M.	Kimura	(2015)



Accretion	Disk

Singularity

𝑎% = 𝑀%

ISCO: 𝑟 = 𝑀 + 0
in	Boyer-Lindquist

Efficiency	of	energy	extraction	from	accreting	matter≈42%,

when	



Accretion	Disk

Singularity

𝑎% =
32
27𝑀

%

𝑟 =
2
3𝑀

Efficiency	of	energy	extraction	from	accreting	matter=100%,

when	

ISCO:
in	Boyer-Lindquist

𝑟 = 0

Gimon &	Horava (2007)



Is	a	superspinar stable?

How	does	a	superspinar form?



Is	a	superspinar stable?

How	does	a	superspinar form?



§2	Stability	of	Superspinar

𝜓 = 𝑒WXYZ[X\]𝑅 𝑟 𝑆 𝜃Master	variable	of	the	perturbations:

Teukolsky equations	determine	perturbations	in	Kerr	spacetime

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

where
𝐾 ≔ 𝑟% + 𝑎% 𝜔 − 𝑎𝑚

𝜆 ≔ 𝐴 + 𝑎%𝜔% − 2𝑎𝑚𝜔

𝐴 = 𝐴Yh\a 𝑙 ≥ 𝑚𝑎𝑥 𝑚 , |𝑠|:	Eigen	value	of	the	equation	for	S	

𝑠 = 0 𝑠 = 1 𝑠 = 2:	scalar :	EM :	GW



§2	Stability	of	Superspinar

𝜓 = 𝑒WXYZ[X\]𝑅 𝑟 𝑆 𝜃Master	variable	of	the	perturbations:

Teukolsky equations	determine	perturbations	in	Kerr	spacetime

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

Outgoing	GW ΨN = 𝑟 − 𝑖𝑎 cos 𝜃 WN𝜓 with 𝑠 = −2



𝜓 = 𝑒WXYZ[X\]𝑅 𝑟 𝑆 𝜃Master	variable	of	the	perturbations:

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

Outgoing	GW ΨN = 𝑟 − 𝑖𝑎 cos 𝜃 WN𝜓 with 𝑠 = −2

𝑅 →

0 for 𝑟 → 𝑟[

𝐶
𝑟 𝑒

XYn for 𝑟 → ∞ for	Quasi-normal	mode	(QNM)

∆ 𝑟 = 0 :	singular	point	of	the	radial	Teukolsky equationHorizon

Regularity	at	horizon Unique	boundary	condition	

𝑅 →

In	black	hole	case



𝜓 = 𝑒WXYZ[X\]𝑅 𝑟 𝑆 𝜃Master	variable	of	the	perturbations:

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

Outgoing	GW ΨN = 𝑟 − 𝑖𝑎 cos 𝜃 WN𝜓 with 𝑠 = −2

𝑅 →
𝐶
𝑟 𝑒

XYn for 𝑟 → ∞ for	Quasi-normal	mode	(QNM)

∆ 𝑟 > 0 :	no	singular	point	of	the	radial	Teukolsky equation	on	the	real	axis	of	𝑟.No	horizon

No	unique	boundary	condition	unless	we	know	what	is	a	superspinar.	

In	superspinar (over-spinning	Kerr)	case



Singularity

Cardoso,	Pani,	Cadoni,	Cavaglia (2008);	Pani,	Barausse,	Berti and	Cardoso	(2010)

• Reflecting	BC:	𝑅 = 0

Reflecting	BC Absorbing	BC

Imaginary	part	of	𝜔 is	positive	→unstable

𝜓 = 𝑒WXYZ[X\]𝑅 𝑟 𝑆 𝜃

Quasi-normal	modes	of	perturbations	(no	incoming	wave	at	infinity)

𝑟 = 0

§3	Stability	of	Superspinar (1)	

Boundary	condition	
at	𝑟 = 𝑟p =constant	

𝑌r = −𝑖𝑘𝑌

𝑟 = 𝑟p

𝑌 = ∆a %⁄ 𝑟% + 𝑎% L %⁄ 𝑅where

𝑌” + 𝑉 𝑟 𝑌 = 0
𝑘 = 𝑉 𝑟p

�

• Absorbing	BC:



𝜔w > 0: 	unstable

Reflection	Boundary	Condition

(angular	momentum) (angular	momentum)

(Radius	of	Boundary)(Radius	of	Boundary)
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𝜔w > 0: 	unstable

Absorbing	Boundary	Condition



Reflecting	Boundary	Condition



However,	there	are	boundary	conditions	
under	which	the	superspinar is	stable.

Is	their	conclusion	right?

Pani et	al	state	that	the	superspinar is,	in	general,	unstable,	
since	perturbations	grow	exponentially	

under	both	reflecting	and	absorbing	boundary	conditions.	



Pani et	al	state	that	the	superspinar is,	in	general,	unstable,	
since	perturbations	grow	exponentially	

under	both	reflecting	and	absorbing	boundary	conditions.	

However,	there	are	boundary	conditions	
under	which	the	superspinar is	stable.

Let’s	consider!

Is	their	conclusion	right?



In	superspinar case,	replace	the	the	stability	problem	with	

“Does	there	exist	the	boundary	condition	under	which	the	superspinar is	stable?”



“Does	there	exist	the	boundary	condition	under	which	the	superspinar is	stable?”

Answer:	Yes!

In	superspinar case,	replace	the	the	stability	problem	with	

We	assume	stable	angular	frequency,	i.e.,	𝜔 = 𝜔� + 𝑖𝜔w 𝜔wwith	negative

Input	Parameter



Solve	the	angular	Teukolsky equation	by	imposing	regularities	at		

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

𝜆 ≔ 𝐴 + 𝑎%𝜔% − 2𝑎𝑚𝜔

𝜃 = 0, 𝜋

𝐴 is	determined.



Solve	the	angular	Teukolsky equation	by	imposing	regularities	at		

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

Solve	the	radial	Teukolsky equation	with	QNM	boundary	condition

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

𝜆 ≔ 𝐴 + 𝑎%𝜔% − 2𝑎𝑚𝜔

𝜃 = 0, 𝜋

𝐴 is	determined.

No	singular	point	on	real	axis	of	𝑟 obtained	𝑅 𝑟 is	regular	everywhere.



The	boundary	condition	at,	for	example,	𝑟 = 0 is	found.

Solve	the	angular	Teukolsky equation	by	imposing	regularities	at		

1
sin 𝜃

𝑑
𝑑𝜃 sin 𝜃

𝑑𝑆
𝑑𝜃 + 𝑎𝜔 cos 𝜃 + 𝑠 % −

𝑚 + 𝑠 cos 𝜃
sin 𝜃

%
− 𝑠 𝑠 − 1 + 𝐴 𝑆 = 0

Solve	the	radial	Teukolsky equation	with	QNM	boundary	condition

∆Wa
𝑑
𝑑𝑟 ∆a[L

𝑑𝑅
𝑑𝑟 +

𝐾% − 2𝑖𝑠 𝑟 − 𝑀 𝐾
∆ + 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

𝜆 ≔ 𝐴 + 𝑎%𝜔% − 2𝑎𝑚𝜔

𝜃 = 0, 𝜋

𝐴 is	determined.

No	singular	point	on	real	axis	of	𝑟 obtained	𝑅 𝑟 is	regular	everywhere.

Infinite	number	of	boundary	conditions	under	which	the	superspinar is	stable.	



§4	Summary	and	conclusion

The	boundary	condition	:=	Physical	nature	of	the	superspinar

Unless	we	know	the	nature	of	the	superspinar,	
we	cannot	say	anything	on	its	stablity.

no	one	knows	the	stability	of	the	superspinar at	present.	

We	should	conclude	



Reflecting	Boundary	Condition

The	reflecting	boundary	condition	at	r=2M	
is	equivalent	to	some	other	boundary	condition	at	r=M,	
since	there	is	no	singular	point	in	the	superspinar case.


