Non-linear collisional Penrose process

-How large energy can a black hole release?-

Ken-ichi Nakao (Osaka City University, Japan)
In collaboration with
Hirotada Okawa and Kei-ichi Maeda (Waseda University, Japan)

To appear in arXiv in next week(?)

§ 1 Kerr spacetime

Kerr spacetime: vacuum, stationary, axi-symmetric, asymptotically flat In Boyer-Lindquist coordinates

$$ds^{2} = -\frac{\Sigma \Delta}{A} dt^{2} + \frac{A}{\Sigma} \sin^{2} \theta \left(d\varphi - \frac{2aMr}{A} dt \right)^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2}$$

where

$$\Delta(r) = r^2 - 2Mr + a^2$$

$$\Sigma(r,\theta) = r^2 + a^2 \cos^2 \theta \qquad A(r,\theta) = (r^2 + a^2)^2 - \Delta(r)a^2 \sin^2 \theta$$

$$-\infty < t < +\infty$$
, $-\infty < r < +\infty$, $0 \le \theta \le \pi$, $0 \le \omega < 2\pi$

M: ADM mass

a: Kerr parameter (angular momentum L=aM)

 $a^2 \le M^2$: larger root of $\Delta(r) = 0$ $(r = M + \sqrt{M^2 - a^2} \ge M)$ is the event horizon

 $a^2 > M^2$: always $\Delta(r) > 0$ holds. No event horizon.

Ring singularity at r = 0, $\theta = \pi/2$ is naked.

In Boyer-Lindquist coordinates

$$ds^{2} = -\frac{\Sigma \Delta}{A} dt^{2} + \frac{A}{\Sigma} \sin^{2} \theta \left(d\varphi - \frac{2aMr}{A} dt \right)^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2}$$

where

$$\Delta(r) = r^2 - 2Mr + a^2$$

$$\Sigma(r,\theta) = r^2 + a^2 \cos^2 \theta \qquad A(r,\theta) = (r^2 + a^2)^2 - \Delta(r)a^2 \sin^2 \theta$$

 $\frac{\partial}{\partial t}$: time coordinate basis=Killing vector field

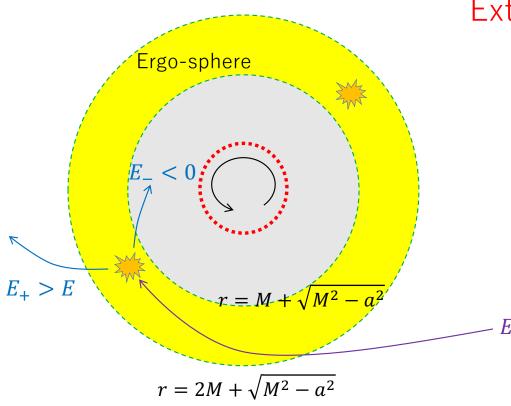
Ergo-region (ergo-sphere): $\frac{\partial}{\partial t}$ is spacelike

$$g\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = -\frac{r^2 + a^2 \cos^2 \theta - 2Mr}{\Sigma} > 0 \quad \text{for} \quad M - \sqrt{M^2 - a^2 \cos^2 \theta} < r < M + \sqrt{M^2 - a^2 \cos^2 \theta}$$

Killing "energy" of a particle: $E = u \cdot \frac{\partial}{\partial t}$ can be negative in the ergo-region.

Penrose process: Kerr BH case

R. Penrose (1969)



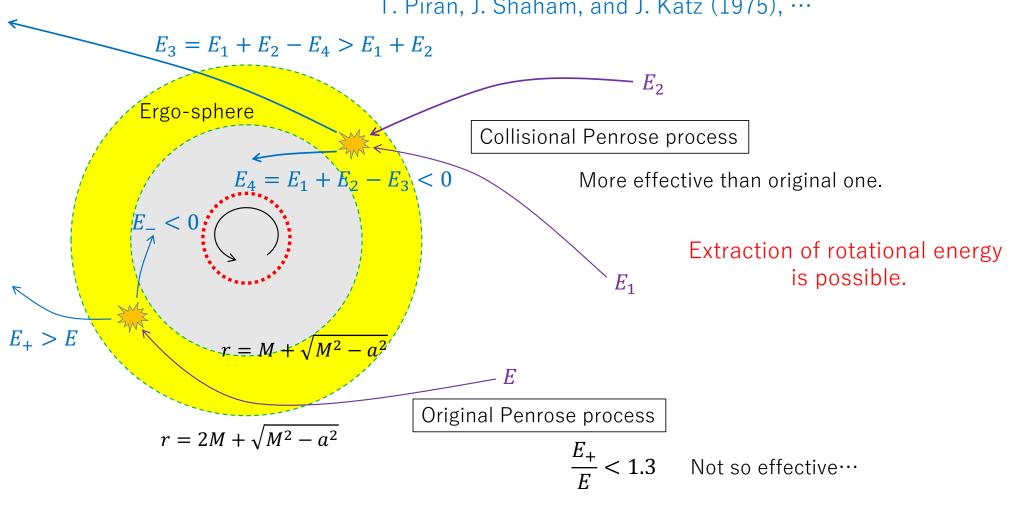
Extraction of rotational energy is possible.

$$\frac{E_{+}}{E}$$
 < 1.3

Not so effective…

Collisional Penrose process: Kerr BH case

T. Piran, J. Shaham, and J. Katz (1975), ...

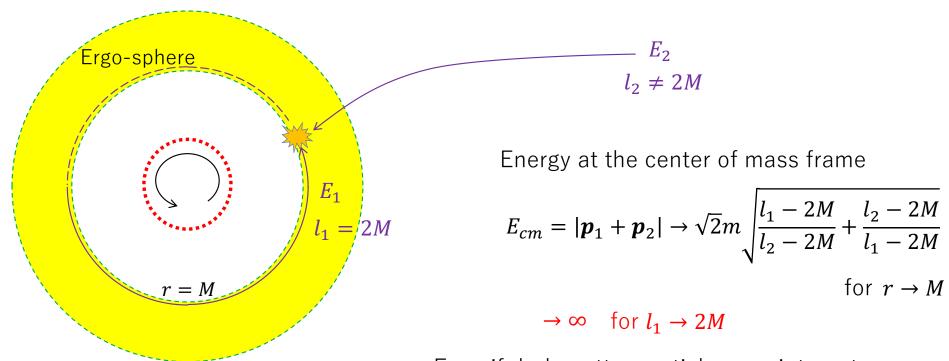


Banados-Silk-West (BSW) collision

T. Piran, J. Shaham, and J. Katz (1975), Banados, Silk, West (2009)

Extreme Kerr black hole M = a

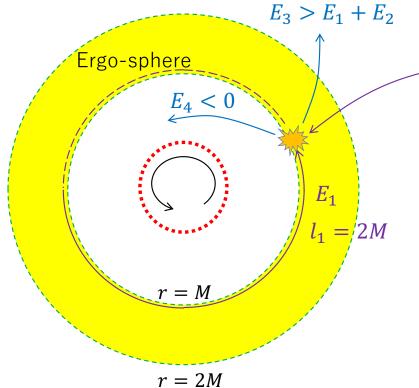
r = 2M



Even if dark matter particles can interact through only gravity, they can interact with any other particles!

What will we observe?

Collisional Penrose process through Banados-Silk-West (BSW) collision



How large efficiency do we have?

By a collision between two particles from infinity,

$$\eta = \frac{E_3}{E_1 + E_2} < \left(2 + \sqrt{3}\right)^2 \approx 14$$

Harada, Ogasawara and Miyamoto (2016)

Through multiple collisions, there is no upper bound.

Berti, Brito, Cardoso (2014)

BSW collision: Charged BH case

BSW collision may occur.

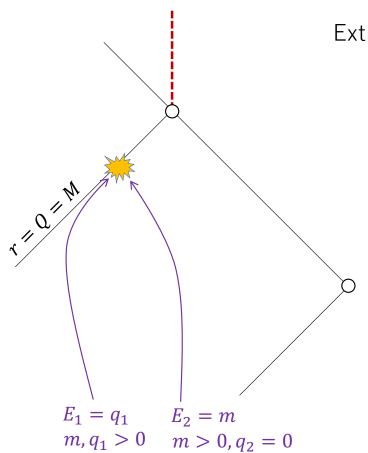
Extreme Reissner-Nordstrom black hole M = Q

Particle 1 asymptotically approach r = M.

Particle 2: neutral and marginally bound $E_2 = m > 0$, $q_2 = 0$

$$E_{cm} = \frac{2m^2r}{r-M} \left[1 - \frac{M}{r} + \frac{E_1^2}{m^2} - \sqrt{\frac{E_1^2}{m^2} - 1} \sqrt{\frac{E_1^2}{m^2} - \left(1 - \frac{M}{r}\right)^2} \right] \to \infty$$
 for $r \to M$

Center of mass energy can be indefinitely large!



Collisional Penrose process: Charged BH case

Through BSW collision between radially moving two particles

Extreme Reissner-Nordstrom black hole M = Q

Critical charged particle: $E_1 = q_1$

Non-critical particle: $E_2 \neq q_2$

$$E_{cm} \to \infty$$
 for $r \to M$

There is no upper bound on the efficiency $\eta = \frac{E_3}{E_1 + E_2}$

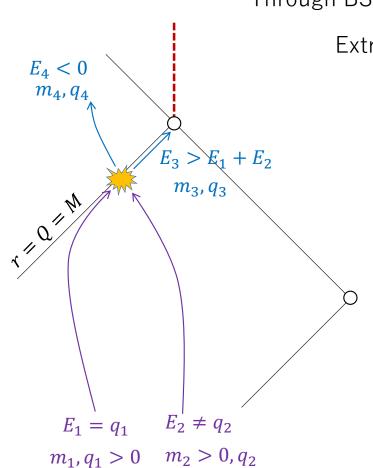
with $m_1 = m_2 = m_3 = m_4$.

Zaslavskii (2010)

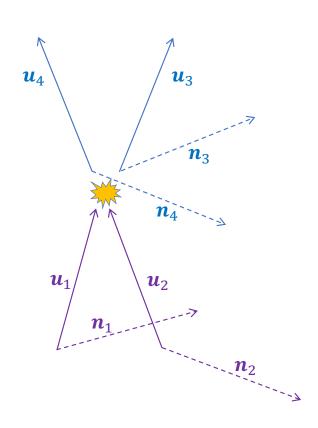
There is no upper bound on the mass m_3 .

$$m_3 \propto E_{cm} \rightarrow \infty \text{ for } r \rightarrow M$$

Nemoto, Miyamoto, Harada, Kokubu (2012)



Reconsideration on collisional Penrose process: Charged BH case



4-momentum conservation: $m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2 = m_3 \mathbf{u}_3 + m_4 \mathbf{u}_4$

Center of mass dyad frame: $\mathbf{u} := \frac{m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2}{E_{cm}}$, $\mathbf{n} := \frac{m_1 \mathbf{n}_1 + m_2 \mathbf{n}_2}{E_{cm}}$

where
$$E_{cm} := |m_1 u_1 + m_2 u_2|$$

$$u_3 = u \cosh \alpha + n \sinh \alpha$$

$$\mathbf{u}_3 = \mathbf{u} \cosh \alpha + \mathbf{n} \sinh \alpha$$
 $\mathbf{u}_4 = \mathbf{u} \cosh \beta + \mathbf{n} \sinh \beta$

$$\cosh \alpha = \frac{E_{cm}^2 + m_3^2 - m_4^2}{2E_{cm}m_3} \qquad \cosh \beta = \frac{E_{cm}^2 + m_4^2 - m_3^2}{2E_{cm}m_4}$$

$$\cosh \beta = \frac{E_{cm}^2 + m_4^2 - m_3^2}{2E_{cm}m_4}$$

$$\cosh \alpha \ge 1$$
 and $\cosh \beta \ge 1$ \longrightarrow $E_{cm} \ge m_3 + m_4$

Large E_{cm} is necessary for large m_3 .

Production of a super-heavy particle needs a BSW collision.

EOM of charged particle: $mu^{\nu}\nabla_{\nu}u_{\mu}=qF_{\mu\nu}u^{\nu}$

If there is a Killing vector
$$\xi^{\mu}$$
, $u^{\nu}\nabla_{\nu}[\xi^{\mu}(mu_{\mu}+qA_{\mu})]=0$ \Longrightarrow $\xi^{\mu}(mu_{\mu}+qA_{\mu})=$ constant

The conserved energy of a particle in Reissner-Nordstrom spacetime: $E = -m\mathbf{u} \cdot \frac{\partial}{\partial t} + \frac{qQ}{r}$

4-momentum conservation:
$$m_1 {m u}_1 + m_2 {m u}_2 = m_3 {m u}_3 + m_4 {m u}_4$$
 at a collision event Charge conservation: $q_1+q_2=q_3+q_4$

$$E_1 + E_2 = E_3 + E_4$$

$$E_3 = -m_3 \mathbf{u}_3 \cdot \frac{\partial}{\partial t} + \frac{q_3 Q}{r}$$
 for particle-3. $E_4 = -m_4 \mathbf{u}_4 \cdot \frac{\partial}{\partial t} + \frac{q_4 Q}{r}$ for particle-4.

There is no upper bound on the efficiency of the energy extraction.

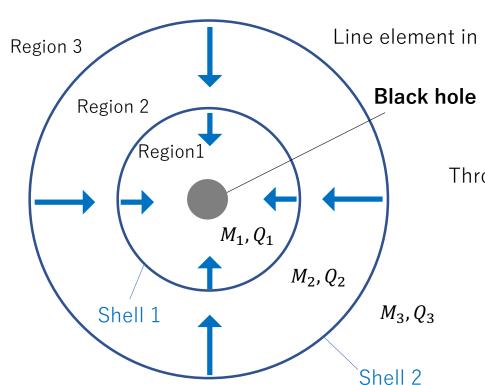
$$\eta = \frac{E_3}{E_1 + E_2} \to \infty \quad \text{for} \quad q_3 Q \to \infty$$

But BSW collision is not a necessary condition for large E_3 .

If the self-gravity is taken into account, what happens?

Let's consider two spherical dust shells with electric charge.

$$S = \sigma u \otimes u$$



Line element in Region I: $ds^2 = -f_I(r)dt_I^2 + \frac{dr^2}{f_I(r)} + r^2d\Omega^2$

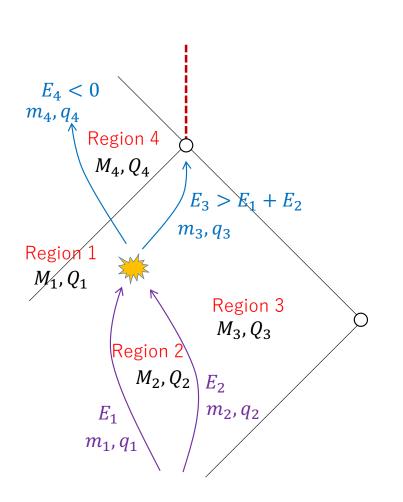
where
$$f_I(r) = 1 - \frac{2M_I}{r} + \frac{Q_I^2}{r^2}$$

Through Israel's formalism, the self-gravity of the shells can be completely taken into account.

$$K_{+} - K_{-} = 8\pi(S - htrS)$$

EOM of a dust shell
$$\dot{r}_I^2 + V_I(r_I) = 0$$

If the self-gravity is taken into account, what happens?



Energies of shells

$$E_1 = M_2 - M_1 - \frac{Q_2^2 - Q_1^2}{2r}, \qquad E_2 = M_3 - M_2 - \frac{Q_3^2 - Q_2^2}{2r}$$

$$E_3 = M_3 - M_4 - \frac{Q_3^2 - Q_4^2}{2r}, \qquad E_4 = M_4 - M_1 - \frac{Q_4^2 - Q_1^2}{2r}$$

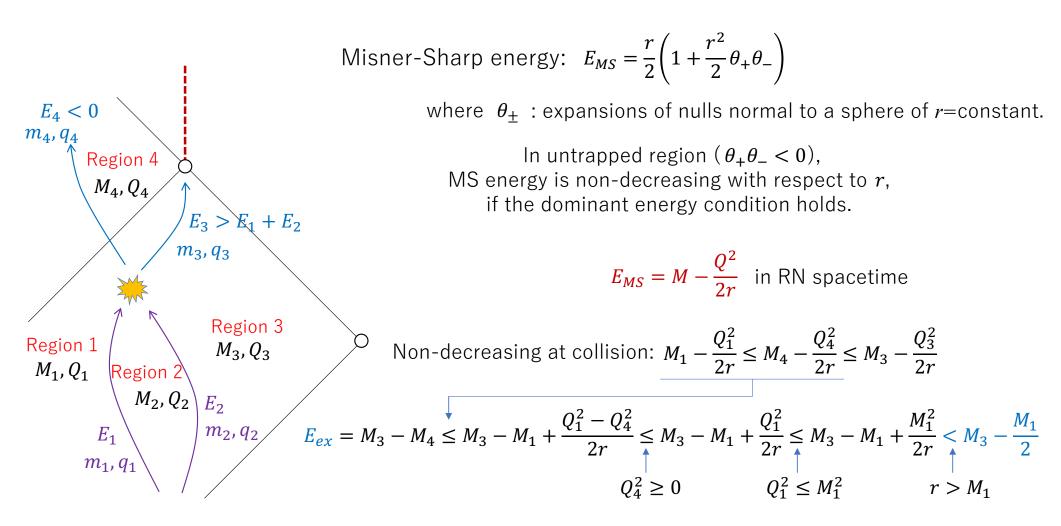
 $E_1 + E_2 = E_3 + E_4$ holds trivially at the collision event.

Energy extracted from BH

$$E_{ex} = \lim_{r \to \infty} E_3 = M_3 - M_4$$

Is there an upper bound on E_{ex} ?

From non-decreasing nature of Misner-Sharp energy



$$E_{ex} = M_3 - M_4 \le M_3 - M_1 + \frac{Q_1^2 - Q_4^2}{2r} \le M_3 - M_1 + \frac{Q_1^2}{2r} \le M_3 - M_1 + \frac{M_1^2}{2r} < M_3 - \frac{M_1}{2}$$

$$Q_4^2 \ge 0 \qquad Q_1^2 \le M_1^2 \qquad r > M_1$$

$$Q_4=0$$
, $Q_1^2=M_1^2$, $rpprox M_1$ are necessary conditions for $E_{ex}pprox M_3-\frac{M_1}{2}$

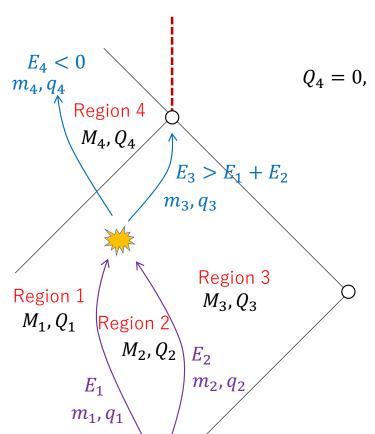
$$E_{ex} \approx M_3 - \frac{M_1}{2}$$
 \longrightarrow $M_4 = M_3 - E_{ex} \approx \frac{M_1}{2}$ with $Q_4 = 0$

After the maximal energy extraction, BH should be a Schwarzschild one with $M_1/2$.

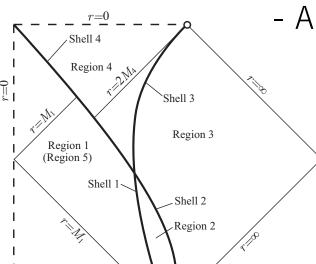
The area of the event horizon is unchanged.

$$A_{initial} = 4\pi M_1^2$$

$$A_{final} = 4\pi \left(2 \cdot \frac{M_1}{2}\right)^2 = 4\pi M_1^2$$



Collisional Penrose process around a charged BH



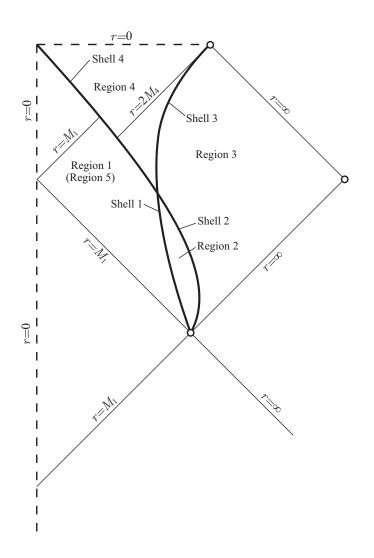
Extreme Reissner-Nordstrom black hole $Q_1 = M_1$

Shell 1: neutral
$$q_1 = 0$$
 Shell 2: neutral $q_2 = 0$

Shell 3: charged
$$q_3=Q_1$$
 Shell 4: charged $q_4=-Q_1$ $m_1=m_3$ $m_2=m_4$

We require

4-momentum conservation: $m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2 = m_3 \mathbf{u}_3 + m_4 \mathbf{u}_4$



From the conservation of 4-momentum

$$E_{ex} = M_2 - M_1 + \frac{Q_1^2}{2r} - \frac{m_1 m_2}{r} \Gamma$$
 Effect of self-gravity

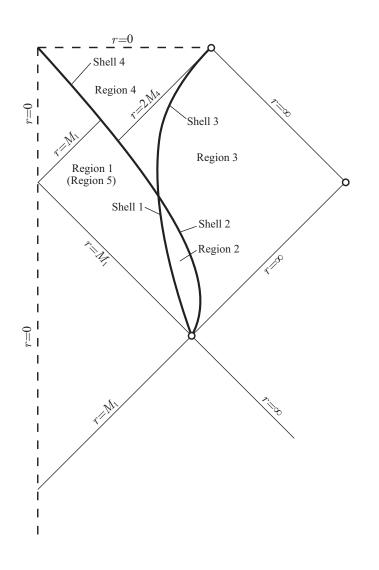
 $\Gamma \coloneqq -\boldsymbol{u}_1 \cdot \boldsymbol{u}_2 > 0$: Gamma factor of relative velocity

$$E_{cm}^2 = -(m_1 \mathbf{u}_1 + m_2 \mathbf{u}_2)^2 = m_1^2 + m_2^2 + 2m_1 m_2 \Gamma$$

 $\Gamma \to \infty$ for BSW collision \longrightarrow E_{ex} decreases!

BSW collision is not so good for energy extraction.

In present case, BSW collision does not occur ($: q_1 = 0$).



Collision event at
$$r = \frac{M_1}{1 - \varepsilon}$$
 $0 < \varepsilon \ll 1$

$$\varepsilon^2 - \frac{2(3E_1 + E_2)}{M_1} > 0$$
 so that the collision is outside the BH, and Shell 3 goes away to infinity.

$$E_1, E_2 = M_1 \times O(\varepsilon^2)$$

Almost maximal!

$$E_{ex} = \frac{M_1}{2} [1 - \varepsilon + O(\varepsilon^2)]$$

$$M_4 = \frac{M_1}{2} [1 + \varepsilon + O(\varepsilon^2)]$$

Efficiency of energy extraction
$$\eta = \frac{E_{ex}}{E_1 + E_2} \propto \varepsilon^{-2} \to \infty$$

Summary of collisional Penrose process around a charged BH

- In the case of test particles, there is no upper bound on the efficiency of the energy extraction, but BSW collision is not a necessary condition for it.
- If the self-gravity of colliding objects is taken into account, there is an upper bound on the extracted energy consistent with the area law of BH.
- We could construct an example of the nearly maximal energy extraction and furthermore no upper bound on the efficiency exists.