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3/47�A Brief Concept for Massive Gravity�

A theory for massive spin-2 particle�
Naively, we expect …�

The Compton length�

GR like behaviors

(Effectively massless)�

MG behaviors

↓


・Weaken gravitational force

・Graviton condensation


etc.…

Radial 

coordinate�

V ⇠ 1

r

V ⇠ 1

r
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4/47�Astrophysical Phenomena�
Gravity theory 

in astrophysics


(inside the Compton length )�
General Relativity�

[I. Debono, G. F. Smoot (2016)]�

⇡



5/47�The Neutron Starʼs Inner Structures�

[F. Weber, Prog. Part. Nucl. Phys. 54 (2005) 193]�



6/47�Neutron Starsʼ Maximum Mass�

[Demorest et al., Nature 467 (2010) 1081]


A observation

result by

a binary pulsar�



7/47�Neutron Stars in F(R) Gravity�
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Nucleons model�

⦿� The maximum mass is 
drastically changed.
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8/47�The Purpose of This Research�

This research




In massive gravity,

neutron stars’ maximum mass  
should be the same with GR


for restoring GR behaviors.


Previous researches




By using modified gravity (f(R) gravity),

heavier neutron stars are made  

for passing observational constraints.�
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10/47�The degrees of freedom (DOF)�

Up to 6 modes

[Chamberlin et. al. (2012)]�

Gravitational Wave (GW) 

polarizations in MG


The mode is a ghost DOF.

↓


In ghost-free theory, 
it’s absent. �

The vector modes 
don’t couple  
with matters�

The extra DOF  
makes a fifth force


↓

It should be hidden

in short distances.�



11/47�The Screening Mechanisms�

Making the scalar DOF (the breathing mode)  
not effective in short distance. �

There are several ideas to achieve it.�

In short distance, the environment ...�

n  makes the graviton heavier.�

n  suppress the graviton-matter coupling.�

n  changes the scalar fieldʼs effective metric drastically.�

The massive gravity’s case�



12/47�The Vainshtein Mechanism�

Gravity�

Pressure�
The tensor modes as in GR�

The scalar mode

(The fifth force)


Non-linear derivative couplings

become relevant in short-range.

The effects “screen” the scalar DOF.�



13/47�

The lowest energy that

a new interaction with

additional DOF in MG�

Decoupling Limit and Scalar-Tensor Theories�

The Planck Energy�

Energy�

Energies that  
new interactions emerge�

[The decoupling limit (DL)]

Focusing the lowest interaction only.

The theory is a scalar-tensor theory.




14/47�k-mouflage (EB, Deffayet, Zior ʻ09)�

Kinetic screening in scalar-tensor theories�

Equation of Motion (EOM)

in abstract� @2(h+ �) =

T

M2
P

, @2h+m2 �KNL

��| {z }
⌘E�

= 0

S

k-mouflage

= M

2

P

Z
d4x

p�g

⇥
R+ �R+m

2

KNL(�, @�, @
2

�, . . . )
⇤
+ Sm[g]

⇠ M

2

P

Z
(h@2

h+ �@

2

h+m

2

KKL +O�
h

3

�
) + hT

Brans-Dicke term�

Non-linear derivative couplings�

@2�+m2E� =
T

M2
P

Kinetic  
Camouflage�



15/47�The Effect of Non-linear Kinetic Terms�

•   


•   


@2�+m2E� =
T

M2
P

, @2(h+ �) =
T

M2
P

m2E� ⌧ @2� ⇠ T

M2
P

) @2h ⇠ 0

m2E� � @2� ⇠ 0 ) @2h ⇠ T

M2
P

GR Restoring�

The scalar DOF couples

with matters strongly�

Non-linear derivative couplings dominate

↓ 

Non-linear derivative couplings screen the scalar DOF
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17/47�The Massless Spin-2 Field Theory in Flat Sp.�

n  It is written by a symmetric Lorentz tensor field.�

n  Ghosts by higher derivative�
(the Ostrogradsky ghosts) are absent.�

n  In Minkowski spacetime�

The linearized Einstein-Hilbert action�

L = �M2
P

4
hµ⌫ Ê↵�

µ⌫ h↵�

Ê↵�
µ⌫ h↵� = �1

2

⇣
⇤hµ⌫ � 2@(µ@↵h

↵
⌫) + @µ@⌫h� ⌘µ⌫

�
⇤h� @↵@�h

↵�
�⌘

(The normalization is chosen as usual.)�



18/47�Nonlinear Completion for The Kinetic Term�

L = �M2
P

4
hµ⌫ Ê↵�

µ⌫ h↵�

L =
M2

P

2

p
�gR[g]

The nonlinear completion 

that the massless spin-2 field couples matters

is the Einstein-Hilbert action.�






n  Self-interaction consistency POV�
[Deser 1970]�

n  The diffeomorphismʼs�
nonlinear completion POV�
[Wald 1986]�

gµ⌫ = ⌘µ⌫ + hµ⌫



19/47�Nonlinear Completion for Mass Terms�

Lmass = �1

8
m2M2

P

�
h2
µ⌫ � h2

�

Nonlinear completion by        is ...

(non-derivative way) �

gµ⌫

gµ⌫g
µ⌫ = D, det(g) ?�

The trivial quantity or the cosmological constant term �

Another rank-2 symmetric tensor is needed!�

From the condition that ghosts by higher derivatives are absent,�



20/47�The Theory Space [Arkani-Hamed et al., 2003]�
GC → General Coordinate Invariance Symmetry�

x

µ

XA

X

A(xµ)

(M4, gµ⌫)

GC� GC’�

(M0
4, fAB)

These are called as the “link fields” or the Stuckelberg fields.

These are needed for the pullback.�

fµ⌫(x) = @µX
A(x)@⌫X

B(x)fAB(X(x))



21/47�Non-Linear Fierz-Pauli Terms (NLFP)�

There are some candidates for NLFP.�

Sint = �1

8
m2M2

P

Z
d4x

p
�fHµ⌫H�⌧ (f

µ�f⌫⌧ � fµ⌫f�⌧ )

Sint = �1

8
m2M2

P

Z
d4x

p
�gHµ⌫H�⌧ (g

µ�g⌫⌧ � gµ⌫g�⌧ )

Hµ⌫ = gµ⌫ � fµ⌫ These are just inverse matrixes of these metric.�

Taking decoupling limit�

The Gallileon Theories�

[Boulware D G and Deser S, 1972]�

[Arkani-Hamed et al., 2003]�



22/47�The Goldstone Expansion�

x

µ

XA

X

A(xµ)

(M4, gµ⌫) (M0
4, fAB)

X

A(x) = X

A
0 (x) + ⇡

A(x)

X

A
0 (x) ⌘ �

A
µ x

µ
⇡

A(x) = �

A
µ (A

µ(x) + ⌘

µ⌫
@⌫�)

The scalar-vector decomposition�The identity map�

Hµ⌫ =gµ⌫ � fµ⌫

=hµ⌫ � (@µA⌫ + @⌫Aµ)� 2@µ@⌫�� @µA�@⌫A
�

� @µ@��@⌫@
��� (@⌫A

�@µ@��+ @µA
�@⌫@��)



23/47�Interaction Scales in The Spin-2 Theory�
The canonical normalizations for fields�

ĥµ⌫ = MPhµ⌫ , Ãµ = MPmAµ, �̃ = MPm
2�

In the limit of� MP ! 1, m ! 0 (m ⌧ MP)

The strongest interaction

or


The lowest energy scale interaction�

The scalar’s 

cubic self-interaction�

Lint �m2M2
P

 
@µ@⌫
m2

�̃

MP

! 
@µ@�
m2

�̃

MP

@⌫@�

m2

�̃

MP

!

⇠ 1

(m4MP)
1/5⇥5

⇣
@2�̃

⌘3

This should be constant for DL to remain this coupling.�

It leads the Ostrogradsky ghost.

(especially BD ghost)�

⌘ ⇤5



24/47�The dRGT Massive Gravity�

eliminates the Ostrogradsky ghost that emerge in nonlinear.


Although, it remains not ghost-like scalar DOF (the fifth force). �

S = M

2
P

Z
d4x

p
�g

 
R�m

2
k=4X

k=0

�kek

⇣p
g

�1
f

⌘!

ek(X) =
1

k!
XI1

[I1 · · ·X
Ik

Ik]

cf. e0(X) = 1, e1(X) = Tr(X), e2(X) =
1

2

⇣
Tr(X)2 � Tr

�
X2

�⌘
, · · ·

[C. de Rham, G. Gabadadze, and A. J. Tolley (2010)]�



25/47�The Condition for Flat Sol. In Vacuum�

gµ⌫ = fµ⌫ = ⌘µ⌫ )
p

g�1f = 1

) Iµ⌫
⇣p

g�1f
⌘
= (�0 + 3�1 + 3�2 + �3)⌘µ⌫ .

Gµ⌫ = Tµ⌫ = 0 ) �0 + 3�1 + 3�2 + �3 = 0.

Gµ⌫ +m2
0Iµ⌫(

p
g�1f,�n) = 2Tµ⌫

There is a relationship between free parameters.�



26/47�The Strong Coupling Scale in dRGT MG�

The special choices of interaction terms rise the lowest strong coupling scale. �

m2M2
P

ĥ

MP

 
@2

m2

�̃

MP

!2

=
1

(m2MP)1/3⇥3
ĥ
⇣
@2�̃

⌘2

This is fixed for DL. �

The multiplication of the power of 
 
 
 
 

for the above term is also remained in the DL.�

@2

m2

�̃

MP
=

1

(m2MP)1/3⇥3
@2�̃

⌘ ⇤3



27/47�DL in The dRGT MG�

S =

Z
d4x

 
�1

2
ĥ

µ⌫E↵�
µ⌫ ĥ↵� + ĥ

µ⌫
X

(1)
µ⌫ +

↵̃

⇤3
3

ĥ

µ⌫
X

(2)
µ⌫ +

�̃

⇤6
3

X

(3)
µ⌫ + Tµ⌫ ĥ

µ⌫

!

�µ⌫ = @µ@⌫ �̃,

X(1)
µ⌫ =

1

2
✏µ

↵⇢�✏⌫
�
⇢��↵� ,

X(2)
µ⌫ = �1

2
✏µ

↵⇢�✏⌫
��

��↵��⇢�,

X(3)
µ⌫ =

1

6
✏µ

↵⇢�✏⌫
����↵��⇢����.

↵̃ ⌘ �1

2
(�2 + �3),

�̃ ⌘ 1

2
�3

If we choose 
the model becomes trivial theory in DL.

This is called as the minimal model. �

↵̃ = �̃ = 0 ) �2 = �3 = 0 ) �0 + 3�1 = 0

These can be diagonalized.�



28/47�The minimal model�
n  The scalar and tensor interactions in minimal model 

and static and spherical symmetric (SSS) 
configurations are absent not only in DL �
but also until the Planck energy.�
[S. Renaux-Petel (2014)]�

n  There is possibility that the system does not have 
the Vainshtein mechanism because of the absence 
of higher derivative couplings.�

n  The minimal model in non SSS configurations�
can have the scalar and tensor interactions.�
[S. Renaux-Petel (2014)]�

The Vainshtein mechanism in the minimal model 
should be checked by making solutions�
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30/47�The quantum (loop) corrections�

n  The Gallileon non-renormalization thm.�
protects the graviton mass at 1-loop order.�
(Technically natural graviton mass)�

n  The destabilization of the potential is suppressed�
at 1-loop order.�

n  Matter loop structures are the same with GR�
for 1-loop order.�

n  Graviton loops leads new ops., but itʼs suppressed.�

The effective field theory (EFT) description in DL

can also be accepted in beyond DL.�

The MG models in short distances  
may be influenced by quantum corrections. �

[C. de Rham, L. Heisenberga, and R. H. Ribeiroa (2013)] 




31/47�The Gallileon Non-Renormalization Thm.�

L(�) =
5X

i=1

ciLi,

L1 = �, L2 = (@�)2, L3 = @2�(@�)2,

L4 = (@�)2
⇥
(@2�)2 � (@µ@⌫�)

2
⇤
,

L5 = (@�)2
⇥
(@2�)3 + 2(@µ@⌫�)

3 � @2�(@µ@⌫�)
2
⇤

The coefficients for linear combination  
are protected w.r.t. quantum corrections.


↓

The Gallileon theories can be treated by tree-level only.


The Gallileon Lagrangian�



32/47�The Logic for technically natural graviton mass�

The interactions       in full theory 
are suppressed by the Planck mass for DL interactions.�

MG’s quantum corrections vanish in DL.�

The Gallileon non-renormalization thm.�

�m2 . m2

✓
m

MPl

◆2

h2(@2⇡)n
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34/47�Metric Ansatz�

The reference metric is fixed as flat.�

(
gµ⌫dxµdx⌫ = �A(�)dt2 +B(�)d�2 +D(�)2d⌦2

fµ⌫dxµdx⌫ = �dt2 + d�2 + �

2d⌦2

D(�)2 ⌘ r2 ) � ⌘ �(r)
8
<

:
A(�) ⌘ e2⌫(r)

B(�)�0(r)2 ⌘ e2�(r) =
⇣
1� 2GM(r)

r

⌘�1

8
<

:
gµ⌫dxµdx⌫ = �e

2⌫(r)dt2 +
⇣
1� 2GM(r)

r

⌘�1
dr2 + r

2d⌦2

fµ⌫dxµdx⌫ = �dt2 + (�0(r))2dr2 + �(r)2d⌦2

This function is a gauge function.�

The Static and Spherical Symmetric (SSS) configuration�



35/47�The Gauge Function �

rµG
µ⌫ = rµT

⌫µ = 0

The additional terms come from mass and interaction terms�

rµI
µ⌫ = 0 (m0 6= 0)

Gµ⌫ +m2
0Iµ⌫(

p
g�1f,�n) = 2Tµ⌫

The equations in SSS becomes a constraint equation

that determine the gauge function�



36/47�The EOM�
Assuming perfect fluid as matter�

�

�

Tµ
⌫ = (�⇢(r), p(r), p(r), p(r)),

rµT
µ
⌫ = 0 ) ⌫0(r) = � p0(r)

p(r) + ⇢(r)
.

GM 0 =4⇡G⇢r2 +
m2

0

2
r2Itt

p0 =�
�
4⇡Gpr3 +GM �m2

0r
3Irr

�
(p+ ⇢)

r(r � 2GM)

Modified mass conservation�

Substitute this to EOM�

Modified hydrostatic equation�



37/47�The Nontrivial Constraint�

� p0

p+ ⇢
= ⌫0 =

G

r2
4⇡pr3 +M � m̃2

0r
3Ĩrr

1� 2GM

r
2nd order for χ�

4th order for χ�

Substitute�

rµI
µ
r

=
�0

r2
e���⌫

�
(�0 + 3(�1 + �2))�

�
2� 2e� + �⌫0e⌫

�

� �1

✓
2

r
+ ⌫0

◆
e�� � 2

r

�
r2e�+⌫

�2�2

⇥
r(1� e�) + �(1� e� + r⌫0)e⌫

⇤ 

=0

These are set to 0 in the minimal model�

Especially, this determines the mass parameter  
algebraically in the minimal model.�



38/47�The Equations and DOF in General Case�

(M,�; ⇢, p)

p = p(⇢(r))

EOS�

(M,�; p)

(⌫,M,�; ⇢, p)

2 independent eqs. 

→ Determine M and p�

1 nontrivial eq. → Determine


(
Gµ⌫ +m2

0Iµ⌫ = 2Tµ⌫

rµTµ
⌫ = 0 = rµIµ⌫

(
Gµ⌫ +m2

0Iµ⌫ = 2Tµ⌫

rµIµ⌫ = 0

(
Gµ⌫ +m2

0Iµ⌫ = 2Tµ⌫

rµIµ⌫ = 0

�



39/47�The EOM in minimal model�

q(r) � p�(r)

p(r) + �̃(r)
, m(r) =

1

2
r � 1

2
r

�
1 � 1

2
q(r)r

��2

,

8�pq + 8�p� � 16�
p��

q
+ 16�

p�q�

q2

=
q

r2
+

2

r3
+ 3�2 (rgM�)2 q

� 1

r3

�
6qq�r3 � 2q3r3 � 2q��r3 + 4q2r2 � 4q�r2 + 5qr + 2

��
1 � 1

2
qr

��2

+
1

r2

�
3q�r2 � 3q2r2 + 3qr

�
(q�r + q)

�
1 � 1

2
qr

��3

+
1

r
(q��r + 2q�) (1 + qr)

�
1 � 1

2
qr

��3

+
3

2r
(q�r + q)

2
(1 + qr)

�
1 � 1

2
qr

��4

The mass parameter m(r) can be eliminated from EOM by the new constraint.�

Solving 3rd-order ODE for ρ(r)

(EOS is used.)�

Dimensionless graviton mass�

↵ ⌘ m

M�
=

p
⇤

M�
⇠ 10�99



40/47�The Boundary Condition�

The GR case�
The minimal model 
in dRGT MG

(not asymptotic flat)�

The same radius�

for the same central density�

Considering differences for

the gravitational effects inside the stars�



41/47�Numerical Method�

Solving from the 
center to outer�

Obtaining the radius

(The pressure in 

there is equal to 0.)


Is the radius

the same with GR?�

Improving             �

NO!�

YES!�

The center of the star 
（Initial conditions）�(
⇢(r = 0) = ⇢c
P 0(r = 0) = 0

The solution is

consistent with BC.


Solving 3rd-order ODE for ρ(r)�

⇢00(r = 0)



42/47�Results 1: A Quark Star Case�

M
ass［

×M
⦿ ］

�

Radius［× GM⦿］�

GR�

The minimal model of dRGT MG�

Decreasing the maximum mass


by using MIT bag model�

[PRD 93 (2016) 124013]�



43/47�Results 2: A Traditional Star Case�

by using SLy model�

Radius［× GM⦿］�

M
ass［

×M
⦿ ］

�

GR�

The minimal model 

of dRGT MG�

[PRD 93 (2016) 124013]�

Decreasing the maximum mass




44/47�The Summary of These Results�

n  The minimal model in the dRGT MG�
has smaller neutron starsʼ maximum mass�
than these in GR.�

n  It is caused by the algebraic equation�
for mass parameter m(r) �
that is proper to minimal model.�

n  The minimal model in the dRGT MG�
does not have screening mechanisms in these case.�

n  In the point of view of observation,�
the GR solutions is preferred �
to the minimal modelʼs solutions.�
Because the large neutron starʼs mass is observed.�
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46/47�Future Directions�

n  Considering models around the minimal model�

n How is the parameter choices crucial?�

n  Adding perturbations �
for the breaking SSS configuration�

n  Is the Vainshtein mechanism restored by this?�

n How strong are perturbations needed?�

n It might be uncommon strength �
in the solar-system�

n  ���(Considering non-minimal models)�



47/47�Summery�
n  Relativistic starsʼ maximum mass is good indicator�

for verifying the Vainshtein mechanism.�
n  The Vainshtein mechanism is caused by�

non-linear kinetic terms. (cf. k-mouflage)�
n  The decoupling limit of dRGT MG has�

the Gallileon-type interactions (non-linear kinetic terms).�
n  The minimal model is the special model�

that has not the non-linear derivative coupling�
below the Planck scale. �

n  The dRGT MG isnʼt influenced by 1-loop quantum corrections.�
It can be treated as classical theory effectively.�

n  Modified TOV eqs. contains the new constrains�
for fixing the gauge function.�

n  The minimal modelʼs maximum mass is smallar than�
GRʼs maximum mass.�


