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Through a phase-space analysis based both on a spherical Vlasov solver, a shell code and a N-body
code, we revisit the evolution of collisionless self-gravitating spherical systems with initial power-
law density profiles and Gaussian velocity dispersion. We are able, for the first time, to show the
clear separation between two or three well known dynamical phases: (i) the establishment of a
spherical quasi-steady state through a violent relaxation phase during which the phase-space
density displays a smooth spiral structure presenting a morphology consistent with predictions
from self-similar dynamics, (ii) a quasi-steady state phase during which radial instabilities can take
place at small scales and destroy the spiral structure but do not change quantitatively the
properties of the phase-space distribution at the coarse grained level and (iii) relaxation to non
spherical state due to radial orbit instabilities for cold cases with steep initial density profiles.
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Fine phase-space structure and coarse-grained properties
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during which the phase-
space density in a slice in
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smooth spiral.
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simulations then all
=0 display some level of
— ww| instability, particularly in the
"cool" cases, where some
resonant modes destroy the
spiral structure without
affecting the coarse-grained
density.
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Self-similarity properties of the spiral Comparison with N-body codes

Analytic prediction (Alard 2013) for interfold distance as a For n=-1 and n=-1.5, we find the "cool"
function of fold position, using self-similar solutions of the  gystems develop a radial orbit instability in

V|350V'|?;'350n system: \ simulations with Gadget-2 (Springel et al 2005),

dr o ro* forapowerlaw force F = (‘7—3 — %) x r’ which makes the central parts of the density
" " profiles deviate from the spherical codes

At fixed angular momentum,_the repulsive force dominates at ) :
low radii: v = -3 = dr « 7“8 , wWhile the gravitational force (VIaso.Ive, or a N, body spherical shells code
dominates at large radii. following the algorithm of
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