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The “Double” Nucleus of M31: Observations, Hypotheses,

Models and Implications
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Fig. T—HST WFPC2 color image of M31 constructed from J-band, ¥-band and 3000 A band PSF-deconvolved images obtained by Lauer et al, {1998).
The left brightness peak (with embedded blue star cluster) is P2; the cight peak is F1. The i- and V-band imapges were substepped by half of a PC pixel, so the
scale 1s 070228 pixel ™. The 3000 Aim age was not substepped; we matched it to the /- and V-band images by interpolation.



The “Double” Nucleus of M31: Observations, Hypotheses,

Models and Implications
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FiG. 2. (a} Contour map of the surface brightness of the best-fit model. The
contour interval is 071, and the vertical axis points 70° counterclockwise
from north. The origin, which coincides with the black hole at P2, is
marked by a cross, and the projected locations of the three ringlets in Eq. (2)
are shown as dotted lines. (b) Deconvolved V-band surface-brightness con-
tours of the nucleus of M31 (Fig. 2 of L93). The orientation and origin are
the same as in (a) but the contour interval of 0725 is larger and a larger area
is shown.
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Two Counter-Rotating Rings

Start with two softened counter-rotating Keplerian rings, with angular momenta,

Of course both secular energy, and total angular momentum, L = L, + L, are
conserved;

A positive torque exerted by p on » would increase r’s angular momentum, making
L, tend to zero, hence increasing r’s eccentricity;

An equal and opposite (hence negative) torque exerted by » on p would decrease
p’s angular momentum, making L, tend to zero, hence increasing r’'s eccentricity;

The CR instability requires that such a configuration is maintained for sufficiently
long to bring about significant growth in eccentricities; maintaining such a
configuration would require that rings precess with neighboring frequency, in the
same direction, with increasing eccentricity: Such a tuning is provided by
softening(heat)!



Numerical Clusters

Black Hole, 108 M, dominating cluster, 107 M, perturbed by various
counter-rotating perturbers, 10° — —510° M;

Cluster: thin Kuzmin disk (ring) radial scale of 1pc, with vertical sech? profile with
0.1pc, typical o, ~ 200km/s;

Perturbers: Counter-rotating: ring (both overlapping and not, coplanar, inclined),
IMBH (various configurations).

10% — —10° particles, softening length of 10~3pc for particle-particle interactions,
and 10~ °pc for particle-SMBH interactions;

Parallel runs on cluster of 8-36 procs, with tree code (Gadget’s parallel version),
pushed to its limits, errors of 10~4 and 10~° in energy and angular momentum
respectively, over 1 Myr calculations (107 prec).



Axisymmetric to Eccentric
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Putfing up a Thin Disk
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Figure 1: Eccentricity-Inclination Evolution



Mode Relaxation as Function of SMBH Softening
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Averaged (secular), self-consistent, collisionless dynamics

Evolution governed by CBE-Poisson system of equations:

where: qb(r, t) — ¢self(r> t) + ¢ext(r> t)a

f(r',v't)

r —r’|

Pserf(r,t) = —G/d3r’d3v’

and geqt(r,t) = =SMe 4 4 (1, t)

r

Black-Hole dominated dynamics, hence essentially Keplerian motion perturbed by
cluster potential. Replace orbits by rings, with mass distributed inversely
proportional to time spent on orbit (Averaging, Gauss)

Consequence of Averaging: L ~ /G Mea conserved, leaving precession
(periapsis, node) and eccentricity/inclination dynamics of Gaussian ring, in
averaged cluster potential: fqve(L,G, H, g, h,t)



Secular (Orbit Averaged), CBE-Poisson Dynamics

The three actions are:
I, = vGMa;
L, = |rXwv|, the magnitude of the orbital angular momentum;
Lq. = (2-rXwv), the z—component of the orbital angular momentum.
The angles conjugate to them:
wq, the orbital phase;
Jga, the angle to periapse from the ascending node;
he, the longitude of the ascending node.
In these Variabes:
Hpepier(Ia) = —1/2(GM/14)?
Trivial Dynamics:
All variables constant except, wq;
w, advancing at constant keplerian rate: Q;, = (0H/01,) = (GM)? /I3



Secular Collisionless Boltzmann

Consequences on Forces:
Potential:®(I, L, Lz, g, h, t) = —G ¢ 22 [ d3r' d3v

Non Inertial Forces:
a(t) = G/ d>r d®

which averages to zero over a Keplerian orbit!
Slow Dynamics, Equations:
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Figure 1: Instability in 2D: Density in Time



Single Particle Phase-Space

Restricting to Planar configurations:
Cluster Mean Field: ®(r,0,t) = ®o(r,t) + P1(r,t) cos[d + ¢(r, )]

Single Particle Hamiltonian:: H é — &M 4 $(r,0,t)

r

2
Softened Black Hole :: H = &~ — GM 4 [&M %H@(r,@,t)

Averaging over Keplerian ring: x = a[cos(g)(cos(E) — V1 — e2) — I sin(g) sin(F)],
y = a[sin(g)(cos(E) — V1 — e?) + L cos(g) sin(E)];

Averaged Hamiltonian: H,,e = ®o(a,l,t) + P1(a,l,t)cos(g) — (L)l

P o< e? undergoes slight variations; ®1 (a, [, t) e increases significantly; ()
increases to a maximum of 60kms~pc—!, before saturating at half that value;
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Figure 3: Instability in 2D: Prograde
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Figure 2: Instability in 2D: Retrograde
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Figure 6: Instability in 2D: Retrograde in lg-plane, a = 0.9pc
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Figure 4: Instability in 2D: Retrograde in xy-plane, a = 0.9pc
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Figure 5: Instability in 2D: Retrograde in xy-plane, a = 0.9pc
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Model Hamiltonian

Averaged Hamiltonian: Hgve = ®o(a,l,t) + P1(a,l, t)cos(g) — Q)]
For moderate eccentricity: @ oc e?, and ®1(a,l,t) o< e(v/1 — [2)
Model Hamiltonian: H = — % fo(¢)1% + f1(t)vV/1 — 12 cos(g) — Q(t)!

Adiabatic Limit: tprec > tgrowtn » hence work with time-frozen Hamiltonian:
Hireeze = —% 0l? 4+ fiv1—12cosg — QU

Rescale by fo: % = —112+ aV1—12 cosg — Bl with o = f1/fo and 8 = Q/ fo;

One degree of freedom, with slowly varying parameters:

H, = —%[l—l—ﬁ]2—|—a\/1—l2 Cos g



Equations of Motion

Precession:

Torque (change in e):

dt dg
or

dg l

o ]l —83—a-

= B —a— cos(g)
dl :
— = aesin
dt I

with o, 8 > 0



Qualitative Features

Increasing «: pattern is more lopsided, with stronger torques;

Increasing 3. faster pattern speed; prograde needs to decrease eccentricity
(increase |) to keep up, if at all; and the reverse is true;

Prograde (I > 0), aligned equilibrium: For increasing « (mode strength), e needs
to increase to maintain equilibrium at fixed 3; similarly if 3 were to decrease higher
eccentricity would be required to maintain the equilibrium; indication of likelihood
of capture;

Increasing «:: stronger mode, larger torques; positive torque increases eccentricity
of retrograde (I < 0, Al > 0), and decreases eccentricity of prograde orbit;
negative torque works in reverse;



Qualitative Features

Prograde (I > 0): retro-precession from axisymmetric mean field, modulated by
contributions from lopsided field; for g around 7 (aligned orbits), pro-precession
from m = 1 lump, and the possibility of reversing effect of axisymmetric &, to get
a star to precess with prograde pattern;

Retrograde (I < 0): pro-precession from axisymmetric mean field, modulated by
contributions from lopsided field; for g around 7 (aligned orbits), retro-precession
from m = 1 lump, and the possibility of reversing the effect ¢, to pull a star into
retrograde precession;



Capture into and Escape From Resonance

Time variation of model parameters, «(t) and 3(t):

Adiabatic Regime: variations slow when compared to orbital periods (precession
due to ®g(t);

A Sequence of time frozen Hamiltonians: Critical behavior around separatrices;

Capture and Escape: Likelihood of excitation of [ > 0 populations, likelihood of
capture and excitation of [ < 0;

The Picture is modified by the self-consistent requirement in which «(t) and 3(t)
are functions of the evolving distributions;
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Summary

Violent instabilities in Hot, Counter-Rotating, Stellar systems, which promote
growth of eccentricities and inclinations on rather short timescales

Unstable configurations saturate into puffy m = 1 equilibria: At least the m=1 part

comes out naturally as a negative temperature thermodynamic equilibrium of
counter-rotating clusters.

Saturation is associated with the dispersal the (lighter), counter-rotating perturber:
in 3D, via eccentricity/inclination instability; in 2D via filling of the full (prograde and
retrograde) phase space.



Plan of Action

In 2D: Construct a self-consistent model for the time-varying parameters that enter
into our averaged, adiabatic dynamics;

In 3D: Identify the source of eccentricity-inclination instability, and generalize
current, 2D treatment, to the full 4D phase-space;

For both limits: Study the workings of relaxation (mainly resonant) on the saturated
mode;

Secure the link between micro-canonical equilibria, and our global modes.
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