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Figure 1: Before and After



Two Counter-Rotating Rings

• Start with two softened counter-rotating Keplerian rings, with angular momenta,

Lp = mp

q

GM•ap(1 − e2
p) and Lr = −mr

p

GM•ar(1 − e2
r);

• Of course both secular energy, and total angular momentum, LT = Lp + Lr are
conserved;

• A positive torque exerted by p on r would increase r’s angular momentum, making
Lr tend to zero, hence increasing r’s eccentricity;

• An equal and opposite (hence negative) torque exerted by r on p would decrease
p’s angular momentum, making Lp tend to zero, hence increasing r’s eccentricity;

• The CR instability requires that such a configuration is maintained for sufficiently
long to bring about significant growth in eccentricities; maintaining such a
configuration would require that rings precess with neighboring frequency, in the
same direction, with increasing eccentricity: Such a tuning is provided by
softening(heat)!
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Numerical Clusters

• Black Hole, 108M�, dominating cluster, 107M�, perturbed by various
counter-rotating perturbers, 105 −−5106M�;

• Cluster: thin Kuzmin disk (ring) radial scale of 1pc, with vertical sech2 profile with
0.1pc, typical σv ' 200km/s;

• Perturbers: Counter-rotating: ring (both overlapping and not, coplanar, inclined),
IMBH (various configurations).

• 104 −−106 particles, softening length of 10−3pc for particle-particle interactions,
and 10−5pc for particle-SMBH interactions;

• Parallel runs on cluster of 8-36 procs, with tree code (Gadget’s parallel version),
pushed to its limits, errors of 10−4 and 10−5 in energy and angular momentum
respectively, over 1 Myr calculations (10Tprec).
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Axisymmetric to Eccentric
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Puffing up a Thin Disk
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Figure 1: Eccentricity-Inclination Evolution



Mode Relaxation as Function of SMBH Softening
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Averaged (secular), self-consistent, collisionless dynamics

Evolution governed by CBE-Poisson system of equations:

∂f

∂t
+ v · ∂f

∂r
−∇φ · ∂f

∂v
= 0

where: φ(r, t) = φself (r, t) + φext(r, t),

φself (r, t) = −G

Z

d
3
r
′
d
3
v
′ f(r

′,v′t)

|r− r′|

and φext(r, t) = −GM•

r
+ φc(r, t)

• Black-Hole dominated dynamics, hence essentially Keplerian motion perturbed by
cluster potential. Replace orbits by rings, with mass distributed inversely
proportional to time spent on orbit (Averaging, Gauss)

• Consequence of Averaging: L ∼
√

GM•a conserved, leaving precession
(periapsis, node) and eccentricity/inclination dynamics of Gaussian ring, in
averaged cluster potential: fave(L, G, H, g, h, t)
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Secular (Orbit Averaged), CBE-Poisson Dynamics

The three actions are:
• Ia =

√
GMa;

• La = |r×v|, the magnitude of the orbital angular momentum;
• Laz = (ẑ · r×v), the z–component of the orbital angular momentum.

The angles conjugate to them:
• wa, the orbital phase;
• ga, the angle to periapse from the ascending node;
• ha, the longitude of the ascending node.

In these Variabes:
Hkepler(Ia) = −1/2(GM/Ia)2

Trivial Dynamics:
• All variables constant except, wa;
• wa advancing at constant keplerian rate: Ωk = (∂Hk/∂Ia) = (GM)2/I3

a
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Secular Collisionless Boltzmann

Consequences on Forces:

• Potential:Φ(I, L, Lz, g, h, t) = −G
H

dw
2π

R

d3r′ d3v′
F (I′, L′, L′

z , g′, h′, t)

|r−r′|

• Non Inertial Forces:

a(t) = G

Z

d3r d3v F
r̂

r2
= G

Z

dI dL dLz dg dhF (I, L, Lz, g, h, t)

I

dw
r̂

r2

which averages to zero over a Keplerian orbit!

Slow Dynamics, Equations:

dL

dt
= − ∂Φ

∂g
,

dg

dt
=

∂Φ

∂L
;

dLz

dt
= − ∂Φ

∂h
,

dh

dt
=

∂Φ

∂Lz

Slow Dynamics, CBE:

dF

dt
≡ ∂F

∂t
− ∂Φ

∂g

∂F

∂L
+

∂Φ

∂L

∂F

∂g
− ∂Φ

∂h

∂F

∂Lz

+
∂Φ

∂Lz

∂F

∂h
=

∂F

∂t
+ [ F , Φ ] = 0
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Figure 1: Instability in 2D: Density in Time



Single Particle Phase-Space

Restricting to Planar configurations:

• Cluster Mean Field: Φ(r, θ, t) = Φ0(r, t) + Φ1(r, t) cos[θ + φ(r, t)]

• Single Particle Hamiltonian:: H = v2

2
− GM

r
+ Φ(r, θ, t)

• Softened Black Hole :: H = v2

2
− GM

r
+[ GM

r
− GM√

r2+b2
]+Φ(r, θ, t)

• Averaging over Keplerian ring: x = a[cos(g)(cos(E) −
√

1 − e2) − l sin(g) sin(E)],

y = a[sin(g)(cos(E) −
√

1 − e2) + l cos(g) sin(E)];

• Averaged Hamiltonian: Have = Φ0(a, l, t) + Φ1(a, l, t) cos(g) − Ω(t)l

• Φ̄0 ∝ e2 undergoes slight variations; Φ̄1(a, l, t) ∝ e increases significantly; Ω(t)

increases to a maximum of 60kms−1pc−1, before saturating at half that value;
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Figure 3: Instability in 2D: Prograde in xy-plane, a = 0.9pc



T = 0.00 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 0.20 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 0.40 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 0.60 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 0.80 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 1.00 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 1.20 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 1.40 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

T = 1.60 Myr

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

Figure 2: Instability in 2D: Retrograde in xy-plane, a = 0.9pc
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Figure 6: Instability in 2D: Retrograde in lg-plane, a = 0.9pc
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Figure 4: Instability in 2D: Retrograde in xy-plane, a = 0.9pc
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Figure 5: Instability in 2D: Retrograde in xy-plane, a = 0.9pc
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Figure 7: Instability in 2D: Sphere and Phase Plane a = 0.9pc



0 1 2 3 4
T(Myr)

0

0.125

0.25

0.375

0.50

e

a=0.8pc

a=0.9pc

a=1.0pc

a=1.1pc

Figure 1: Particle Centroid vs Model Equilibrium: Prograde Population at

various semi-major axis



 a=0.9pc

0.0 0.5 1.0 1.5
T(Myr)

0.0

0.2

0.4

0.6

0.8

1.0

e

Figure 2: Particle Centroid vs Model Equilibrium: Retrograde Populations at

a = 0.9 pc



-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

-1.0 -0.5 0.0 0.5 1.0
e.cos(g)

-1.0

-0.5

0.0

0.5

1.0

e
.s

in
(g

)

Figure 4: Instability in 2D: Equilibria and Separatrix
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Figure 3: Φ0 and Φ1 before and after Averaging



Model Hamiltonian

• Averaged Hamiltonian: Have = Φ0(a, l, t) + Φ1(a, l, t) cos(g) − Ω(t)l

• For moderate eccentricity: Φ̄0 ∝ e2, and Φ̄1(a, l, t) ∝ e(
√

1 − l2)

• Model Hamiltonian: H = − 1
2
f0(t)l2 + f1(t)

√
1 − l2 cos(g) − Ω(t)l

• Adiabatic Limit: tprec ≫ tgrowth , hence work with time-frozen Hamiltonian:

Hfreeze = − 1
2
f0l2 + f1

√
1 − l2 cos g − Ωl

• Rescale by f0: H
f0

= − 1
2
l2 + α

√
1 − l2 cos g − βl with α = f1/f0 and β = Ω/f0;

• One degree of freedom, with slowly varying parameters:

Hs = − 1
2
[l + β]2 + α

√
1 − l2 cos g
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Equations of Motion

Precession:
dg

dt
=

∂Hs

∂l
= −l − β − α

l√
1 − l2

cos(g)

Torque (change in e):

dl

dt
= −∂Hs

∂g
= α

p

1 − l2 sin g

or
dg

dt
= −l − β − α

l

e
cos(g)

dl

dt
= αe sin g

with α, β > 0
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Qualitative Features

• Increasing α: pattern is more lopsided, with stronger torques;

• Increasing β: faster pattern speed; prograde needs to decrease eccentricity
(increase l) to keep up, if at all; and the reverse is true;

• Prograde (l ≥ 0), aligned equilibrium: For increasing α (mode strength), e needs
to increase to maintain equilibrium at fixed β; similarly if β were to decrease higher
eccentricity would be required to maintain the equilibrium; indication of likelihood
of capture;

• Increasing α: stronger mode, larger torques; positive torque increases eccentricity
of retrograde (l < 0, ∆l > 0), and decreases eccentricity of prograde orbit;
negative torque works in reverse;
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Qualitative Features

• Prograde (l ≥ 0): retro-precession from axisymmetric mean field, modulated by
contributions from lopsided field; for g around π (aligned orbits), pro-precession
from m = 1 lump, and the possibility of reversing effect of axisymmetric Φ0 to get
a star to precess with prograde pattern;

• Retrograde (l ≤ 0): pro-precession from axisymmetric mean field, modulated by
contributions from lopsided field; for g around π (aligned orbits), retro-precession
from m = 1 lump, and the possibility of reversing the effect Φ0, to pull a star into
retrograde precession;
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Capture into and Escape From Resonance

Time variation of model parameters, α(t) and β(t):

• Adiabatic Regime: variations slow when compared to orbital periods (precession
due to Φ0(t);

• A Sequence of time frozen Hamiltonians: Critical behavior around separatrices;

• Capture and Escape: Likelihood of excitation of l > 0 populations, likelihood of
capture and excitation of l < 0;

• The Picture is modified by the self-consistent requirement in which α(t) and β(t)

are functions of the evolving distributions;
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Figure 1: Model Hamiltonian: β = 0.6, and α varying between 0.01 and 0.4.
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Figure 2: Model Hamiltonian: Prograde Dynamics for β = 0.6, and α varying

between 0.01 and 0.4.
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Figure 3: Model Hamiltonian: Prograde Dynamics for β = 0.6, and α varying

between 0.01 and 0.4.
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Summary

• Violent instabilities in Hot, Counter-Rotating, Stellar systems, which promote
growth of eccentricities and inclinations on rather short timescales

• Unstable configurations saturate into puffy m = 1 equilibria: At least the m=1 part
comes out naturally as a negative temperature thermodynamic equilibrium of
counter-rotating clusters.

• Saturation is associated with the dispersal the (lighter), counter-rotating perturber:
in 3D, via eccentricity/inclination instability; in 2D via filling of the full (prograde and
retrograde) phase space.
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Plan of Action

• In 2D: Construct a self-consistent model for the time-varying parameters that enter
into our averaged, adiabatic dynamics;

• In 3D: Identify the source of eccentricity-inclination instability, and generalize
current, 2D treatment, to the full 4D phase-space;

• For both limits: Study the workings of relaxation (mainly resonant) on the saturated
mode;

• Secure the link between micro-canonical equilibria, and our global modes.
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