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Lorentz symmetry is a basic ingredient of the Standard Model of particles physics.

However, several authors have argued that at high energies Lorentz symmetry
and possibly CPT could be broken.

The Lorentz violating parameters of the Standard Model (Colladay-Kostelecky)
extended in the power-counting renormalizable sector have been measured with
great precision.

It turns out that Lorentz symmetry is a very precise symmetry of Nature, at least in
low-energy domain.

Several (dimensionless) parameters have bounds
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TABLE 1V: Electron sector

Combination Result System Ref.
bx (—0.94£1.4) x 107 GeV 7 [17]
by (—0.9+1.4) x 107 GeV 7 [17]
bz (—03+£44) x1073° GeV 7 [17]
Lbr+d- —25.—3Gr+4dy —dg) (09+£22) x10727 QeV 7 [17]
1(24. — g7 —br +4d, —d_ —dg) (—0.8+2.0) x 10727 GeV [17]
+tann(dyvz — Hxr)
bx (0.14+2.4) x 10732 GeV (18]
by (—L.7T+£25) x 107" GeV 7 [18]
bz (—29 4 39) x 107* eV " [18]
by <31x107% CeV 7 [19]
bz | «T71x107®GQev [19]
bx (28 +6.1) x 1072 GeV  K/He magnetometer [20]
by (6.8 +£6.1) x 1072 GeV " [20]
Te <3.2x107** Hg/Cs comparison [21]
|E| < 20 radians/s Penning trap [22]
K s <1.6x107# (23]
5] (J =X.,Y) < 107% CGeV  Hg/Cs comparison [24]*
CXX —CYY (—2.9+6.3) x 107" Optical, microwave resonators [25]*
lexy) (2.1£09) x 107" L [25]*
lexz) (—1.54+0.9) x 107 [25]*
3CYZ) (—0.5+ 1.2) x 10716 ” [25]*
cxx +eyy — 202z (—106 £ 147) x 10~18 » [25]*
RER (13.3+£98) x 107* [25]*
covr) (2.1+£4.6) x 107" [26]*
(X 7) (—1.6£6.3) x 1071 ” [26]*
exy) (7.6£3.5) x 10716 [26]*
eXX —CYY (1.15+0.64) x 107 [26]*
lexx + cvy — 2cz7 — 0.25(Fq_ g1p=1 % [26]*
%c(h—y i <8 x 107"  Optical resonators [27]*
lexx —ery] < 1.6 x10° [27]*
lexx +evy — 2czz| < 107"  Heavy-ion storage ring [28]*
102 [28]*

leeraey s leeryy s |eera |




TARLE VIT: Photon sector

Comhination Resnlt System Ref.
Fier ) ’ —0. B} x 1017 tating optical resonators B
I 0.L+0 10~*"  Ro al 2
# (—7.7 L40) % 107" Optical. microwave rescnators  [23]%
" (294£23) x 107" Rolaving microwave resonsiors [43]
" (—31+£25) % 10~*®  Rotating optical rescnateors [44]
" (—0.63=013) = 107"  Kotating microwave resonstors |15
L
" (—1.7 L 1.6) x 107"  Optical, microwave rescnators [256]*
i (=3.7+23) x 107*  Micrawave resananor, maser [453]
& (1.7 £ 2.6) x 10~*%  Optical resonators [17]
" (1.4 L 1.4) x 107" Microwave resonascrs [43]
(fe_)*2 (—2.0 L09) =107  HRotatinz oprical resonators [42]
i (=103 +39) x 107 Optical, microwave resonators [25]*
o (—6.9+2.2) % 10  Rotating microwave resonstors [13]
4 (5.7 L 49) x 10~*"  Rotasing oprical resonatcrs [44]
c (0.19=0.37) x 107" Rolaving microwave resonztors [43]
" —1.0+3.3) % 10 ¥  Optical, microwsve rescnators  [26]*
( p
" ( 3.241.3) % 107"  Microwave resonascr, maser  [46]
" (—6.3=124) x 107" Oplical resonators [47]
’ —3. Ao VileTowrave resonators B
" 35+£43)x10 ¥ M :
[.A"t_}yz (—03=x14) =10 " Rotating oprical resonators [42

(0.0 L 4.2) x 107¢
(2.1 +£2.1) x 10716
(—1.54+4.4) x 10 16
(—0.15 =0.37) x 10~1°
(0.52 =2.52) = 1071°
(=05 +13) x 107"
(3.6 £ 9.0) » 10716
(1.7 £ 3.6) » 10713

Optical, microweve resonators |25
[lotaring mictowave resonators [43

Rotaring oprical rescmators [

Microwave resomnancr, maser [43
Oiptical resonators [47

Microwave resonasors [4



TATLE VIT: Pheton sector (combimied !

é:-' ol Combinalion Resull Syslem Rel.
. =
g ; -
s o figr — 2cic (—5.8 to 12) = 107**  Collider physics [E1]*
S 5 Ryp — S, < 6 x 1072 Astrophysics |52)*
¥y 8 - [Fr— bl <ox1070 [72]*
§ 5 Rep ;1.4 10718 7 [50]*
~ & e <34 x107%  Oplical atomic clocks [23]
éﬁ 1‘? & <22 x 1077  Heavy-ion storage ring [o4]*
& ?? i <22 x 107" Astrophysics [55]*
BN .
& & ” SHRIET G5 [55]*
P éw & < 16 %10 ® Sagnac interferometer [56]*
=) 3]
S N (4) 7 31 i -
S & i min +(17'5) < 10 CME polarization [10]*
N 5 1= +(17H) = 1073t » [10]*
== &3 k¥ te
ey § |£%| for some a <2 %10 %7 Cosmological birefrmgence [57]*
g A k*| fora=1,...,10 <2y 107 [o]*
§ 4
L 3 o1 - .
I s ké%ﬁj]lﬂ < 16 % 107%" GeV  Schumanr resonances [E8]*
3 ;
& o kf‘l:.:;]lll ; < 12 % 107 GeV = [8]*
& e H o w 1fu A - - i - .
g‘ % '3 ('F:‘:|.f3:Ei,f;:'\Jn|E +3|ﬁr§::.1m|3) FRvET (1013) x 10 ** GeV  CMB polarization [2)*
§8 F I 1(34+1)x10 2 GeV 7 [10]*
3 & Z 'Ef'{‘;l.:tf\'I ' —(217%) x 107 QeV 4 [10]*
8§ 8 & (V) .
o e -
& E?'G - c% ‘Ffr_(:f:l.n:ul < 14 % 10 *' GV Schumant rcsonances [o8]*
G~ A k2 (—1.4+09+05) x 10-% GeV  CMB polarization |79
T8 e = S , : T .
£ § = & : (2.3+£5.4) x 10 ** GeV - [12]*
P& 59 4 <25%10 BGeV 7 [60]*. [12]*
= S - S : E— ;
< @ z s ” (124 2.2) x 107 eV i [€1]. [12]*
- ¥ <8 " (12 L 7yx 10~ Geyw ¥ [10]*
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4 (6.044.0) = 107 GeV 4, GETRiE
i < 4w 107 eV Chsmalogical Hirefrmgence [65]*, [10]*
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Recent analysis of gamma-ray bursts suggests a bound on the scale M of
Lorentz violation in the dispersion relation

c(E)wc(l—%)

M > 1.3-101%GeV

and found

Since in local QFT odd powers of the energy mean that CPT is violated also,
we can take this bound to be a bound on the scale AcpT of CPT violation.

On the other hand, Lorentz violation does not necessarily imply CPT violation, so

We may assume that there exist two scales, one scale A for the Lorentz
Violation, and one scale ;'\cpT for the CPT violation, with

AcpT 2 AL



For the same reason, we may assume that there exists an energy range
Ar < E < Acpt

that is well described by a Lorentz violating, but CPT invariant quantum field theory.
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For the same reason, we may assume that there exists an energy range
Ar < E < Acpt

that is well described by a Lorentz violating, but CPT invariant quantum field theory.

Our estimate will give
Ap ~ 10"GeV

so the mentioned range spans at least 4-5 orders of magnitude.

Why is it interesting to consider quantum field theories where Lorentz symmetry
Is explicitly broken?
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The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite
Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study
extensions of the Standard Model, effective field theories, nuclear physics, and
the theory of critical phenomena

Here we are interested in the renormalization of Lorentz violating theories
obtained improving the behavior of propagators with the help of
higher space derivatives

and study under which conditions
no higher time derivatives are turned on

to be consistent with unitarity

The approach that | proposed is based of a modified criterion of power counting,
dubbed weighted power counting
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Scalar fields

Break spacetime in two pieces:

Mp = Mp ® Mp d=d+d
Break coordinates and momenta correspondingly: p = (ﬁ, ]_9)
Consider Lroe = 1(599)2 + | (5?1(,0)2
the free theory 2 QAJQLR_Q

This free theory is invariant under the “weighted” scale transformation

—Q Q(d/2-1)

T — Te ™, T — e Un ©— e

where d= C?Jr E/n is the “weighted dimension”
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The propagator 1

~ Ay
k2 + ks
AL

behaves better than usual in the barred directions

Adding “weighted relevant” terms we get a free theory

P R AN M2(=k/n)
) A\2 E :l k 30 42
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The propagator 1

EQ I (EQ ) T

! Ai(n—l)

behaves better than usual in the barred directions

Adding “weighted relevant” terms we get a free theory

mn

P A M2(A=k/n)
(8@)2 + Z , 2k(n-l)/n (a 5‘9)2
k=0 2AL

1
2

that flows to the previous one in the UV and to the Lorentz invariant
free theory in the infrared

(actually, the IR Lorentz recovery is much more subtle, see below)



Add vertices {83915132903\1& constructed with ¢, O and 0.

() P2 _
Call ON" =P1+ = their degrees under

i — 3 et T — T e n

N = number of legs, &= extra label



Add vertices {3p15p290NL constructed with ¢, O and

() P2
Call ON" =P1+ = their degrees under

i — 3 et T — T e n

N = number of legs, &= extra label

Other quadratic terms can Am —m \9
be treated as “vertices” for the o Agm_g ( ‘P) )
purposes of renormalization L
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Consider a diagram G with L loops, | internal legs, E external legs and Unr
vertices of type (N , )

I

dLﬁﬁ dLDp . |4
(k) — / ] / ( P} (0, k) T[]V (00 k)
=1

(2m) LD 27T)LD Pl




(@)

Consider a diagram G with L loops, | internal legs, E external legs and Unr
vertices of type (N , )

I

dLﬁﬁ dLDp . 14
16 = [ o= | i [P 0 [TV 0
j—1

(2m) LD 27T)LD P

dP% dP7 s a weighted measure of degree D= D+ D/n
pda-p



(@)

Consider a diagram G with L loops, | internal legs, E external legs and Unr
vertices of type (N , o)
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dLﬁA dLD . |4
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Consider a diagram G with L loops, | internal legs, E external legs and Unr
vertices of type (N , o)

I

dLﬁA dLD . |4
To (k) — / i P / ( L2 TP o) [TV )
j—1

27 )LD QW)LD Pl

dP% dP7 s a weighted measure of degree D= D+ D/n
pda-p

Performing a “weighted rescaling” (k, k) — (\k, \!/"k) of external momenta,

together with a change of variables (p p) ()\2/5, )\l/n}_?)

we see that IG (k) iIs a homogeneous weighted function of degree

Vv
LP-20+Y §=LD-2T+ Y 60}
7=1 (N,a)
Its overall divergent part is a homogeneous weighted polynomial of degree
w(G)=Ld—21+ Y sv
(N,a)
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Using the standard relations

L=1-V+1, E+2=)Y Nuy

we get (Vo)
(@) = d(B) + Y o) [0 — d(v)
(N,at)
Where
d(X)Ed(l—%) + X

Renormalizable theories have

5 < d(N)

ndeed 807 < d(N) implies w(G) < d(E)
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Writing d(N) — d — ]%[ (d—2)

we see that polynomiality demands d > 2

2d
and the maximal number of legsis Nyax — {—}

d— 2
E =2 implies w(G) < 2 Conclusion:

renormalization does not turn on
E>2implies w(G) <2 higher time derivatives
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Examples

1 A

1
2 2A; 1A

n=2: six-dimensional * -theory

Strictly-renormalizable models are classically weighted scale invariant,
namely invariant under

—Q d/2—1)

T— T e z—z e Un (,0—><,er(

The weighted scale invariance is anomalous at the quantum level
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Four dimensional examples
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Kallen-Lehman representation and unitarity

dik etk sk)
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Cutting rules

d ] ~n —
AE(z) = /%e@k'xﬁ(iko)p(kg,kz)

A(x) = 0(xo) AT (x) + (—z0) A™ ()

AF(-2) =A%(z),  A¥(2)=A%(z),  A'(z) =0(z0)A™(z) + O(—20) A" (a)



Causality

Our theories satisfy Bogoliubov's definition of causality

2
55 4, 05 _4S!
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which is a simple consequence of the largest time equation and the
cutting rules

For the two-point function this is just the statement
_ AT -
A(r) = AT (x) it (>0
immediate consequence of

A(x) = 0(z0) AT (z) + 0(—x0) A~ ()
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Fermions

The extension to fermions is straightforward. The free lagrangian is

An example is the four fermion theory with = 2.
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Fermions

The extension to fermions is straightforward. The free lagrangian is

M~

L =Ydy

An 1?’/)@

An example is the four fermion theory with = 2.

Cany =5 (P T ) = goges B0’
L

d—2
204
An example of four dimensional scalar-fermion theory is




Gauge fields



Gauge fields

Gauge fields are more tricky. Decompose the gauge fieldas A = (fi. A)



Gauge fields

Gauge fields are more tricky. Decompose the gauge fieldas A = (fi. A)

and assign weights



Gauge fields

Gauge fields are more tricky. Decompose the gauge fieldas A = (A4, 4)

and assign weights

gdl=[D1=1, [gd]=[D]=~.

n
so that the covariant derivative is decomposed consistently,

D = (D,D) =0+ gA,d + gA)



Gauge fields

Gauge fields are more tricky. Decompose the gauge fieldas A = (fi. A)

and assign weights

ghi=[0]=1, [gAl=[D==2

n
so that the covariant derivative is decomposed consistently,

D = (D,D) =0+ gA,d + gA)
The field strength is decomposed in three sets of components,

~ —~—

j‘_:u.!,/ = -F:rlﬂf- —'F:u.u IT;TU,_/- -F:uu = IT_:EE-



Gauge fields

Gauge fields are more tricky. Decompose the gauge fieldas A = (A4, 4)

and assign weights

gdl=[D1=1, [gd]=[D]=~.

n
so that the covariant derivative is decomposed consistently,

D = (D,D) =0+ gA,d + gA)
The field strength is decomposed in three sets of components,

~ —~—

-F:u.!,/ = -F:rlﬂf- —'F:u.u E]Ee -F:up = IT::IE-

The gquadratic lagrangian reads

i .. .
Lo = 5Fup — 7 Farm' (1) Fpo

where T = —D? /A2 and 7’is a polynomial of degree 1, — 1
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The BRST symmetry is unmodified
sl = DRPCP = Gu0" +gf P ALCe,  s0F=~ZfPCher,
sC®*=B*%  sB*=0, sy'=—gT5C%,

We choose the gauge-fixing

. X . o
Lo =8, L g (—EB‘IJFQ“). G=0-A+((v)0- A%,
where ¢ = _82/11% and (¢ Is a polynomial of degree n-1
The ghost propagator is
1
D(1,¢)

where
D(z,y) = zk* + yk?
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The gauge-field propagator is involved, but in the “Feynman” gauge
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The physical degrees of freedom can be read in the Coulomb gauge-fixing
G& =38 A°

which can be reached taking a suitable limit on the general one.
We get non-propagating ghosts and a quadratic lagrangian
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The physical degrees of freedom can be read in the Coulomb gauge-fixing
G& =38 A°

which can be reached taking a suitable limit on the general one.
We get non-propagating ghosts and a quadratic lagrangian

»

We have d — 1 degrees of freedom with energies

E = \/R27/(R2/A2).
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A property of gauge theories is that in four dimensions gauge interactions
are always super-renormalizable

from the weighted power-counting viewpoint
Indeed, for
3
d=1+=
n
the weight of the gauge coupling is

I
————>0 (n>1
=g S B (n>1)

Some fields may have vanishing or negative weights
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Similarly, we can attach possibly weightful coupling constants to scalar fields
and fermions as in
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Then counterterms have the form

ﬁ-L_l Alﬁ(gl A, go, g3 L,?)



Compatibility with the covariant structure demands
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Compatibility with the covariant structure demands

l9] = [g1]. l951] > (5], l9g1] > [g3).
Polynomiality demands that the weights of

glr-. E’QL, g3

be strictly positive

Absence of IR divergences in Feynman diagrams at non-exceptional
external momenta demands

d >4
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We can also make the simplifying assumption

g1 =49
The combination of all requirements listed so far gives, in four dimensions
1 3 1 1
— — — i | Qe R ==
3 T s3T5y
0 <[ ] o 1 3
=921 = 2 2n
Solutions exist for every 17 > 3
n = odd is necessary to describe chiral fermions
The simplest choice is
) 1
d=2 n=3 g =lo1]l =lgs] =3,  [g92]=0
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that gives Majorana masses to left-handed neutrinos after symmetry breaking,
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Thecase d = 2. n =3, lg] = [g1] = [g3] = 3 lg2] = 0.
allows us to formulate a consistent Lorentz violating extended Standard Model
that contains both the dimension-5 vertex §2 ;

L = iR (LH)

3
(LH)Q = Z Yoz EijL?aHj €af EMLng,{ + h.c.
a.b=1
that gives Majorana masses to left-handed neutrinos after symmetry breaking,

and the four fermion interactions

| R
e

that can describe proton decay.

Such vertices are renormalizable by weighted power counting

Matching the vertex (LH )2 with estimates of the electron neutrino Majorana

mass the scale of Lorentzn violation has roughly the value

Az ~10*GeV



The (simplified) model reads
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The (simplified) model reads
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The (simplified) model reads
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The (simplified) model reads

_2 )
[ e 2
£ = Byt Bing+ By + Ly — ——(LHP Z —gDF (xrxr) + gm,u,,_ =
41&}_’( 5 1&1 1\ J.XL
1 G 1 0 = ‘ 7 e s 0 1 — = = —'-
GUYFH — — (§°0vH® + g0 D H? + guD*H) — o (9DF + ¢°F) H'H,
. i 4
where 1 G G G 1G5
ﬁb = 1 Z (2111.&"!—;1;/ j—,uu f (T) ,uu) ’
&
/ /\(3)_2 2 (2) g’ 2 g (1) 2 6
Ly=Lyg— HDH - HDH A, H‘DH ] — H
n=br = g HTIDRHT = 432 | Ty Ry )+ e 36A2 i
S abpy D0™ 23 i1ab A\ b
Lxinf = Z Z <0a p— \ 2 D” + 5" E) X1
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At low energies we have the Colladay-Kostelecky Standard-Model Extension

It can be shown that the gauge anomalies vanish, since they coincide with those of

the Standard Model
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Low-energy Lorentz recovery

Once Lorentz invariance is broken at some energy, it is not automatic to recover

it at lower energies, because renormalization makes couplings run independently

For example, we can find at low energies
— /’l ~ ~
wy" (0, +n0,)v

The Lorentz invariant surface is RG invariant. Nielsen conjectured long ago that

it could also be IR attractive (evidence is not strong)

In general, we must argue as in the case of asymptotic safety: all low-energy
Lorentz violating parameters that flow to the surface can be kept, all those that flow

away from the surface must be set to zero (fine tuning)
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Given that the model contains four fermion interactions at the fundamental
level, we may ask if it is possible to describe the known low-energy physics
without introducing elementary scalars, in the Nambu—Jona-Lasinio spirit.

Then the Higgs field must be composite and arise as a low-energy effect of the
four fermion vertices.

Suppressing the elementary Higgs field, we obtain the scalarless model

‘Clll.’}H == ﬁQ —i_JCk_lllf Z \2 QDF (){j’“){ )—|‘ \g 3:1/3:11 — vrd
I=1

Moveover, since the gauge interactions are super-renormalizable, in the weighted
power counting framework, at very high energies they become negligible and the
model reduces to a four fermion model in two weighted dimensions, described by

the lagrangian

T B
Lar = Z Zi? Z (

g:b=1 =1

s ¥
= b{“’g‘ﬁ) X7 + TEH’LL




Consider the t-b model

N )
c _ | N ) ) 82
I= p

1




Consider the t-b model
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Consider the t-b model
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In the large Nc limit, where
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We can prove that

Is a minimum of the effective potential and gives masses to the fermions
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The Lorentz violating fermionic mass terms are not turned on, so the Lorentz
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Moreover, we can read the bound states from the effective potential. We find
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1) two neutral massive bound states of squared masses
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The Lorentz violating fermionic mass terms are not turned on, so the Lorentz
violation remains highly suppressed.

Moreover, we can read the bound states from the effective potential. We find

Top=Ne > {2m;(0)7;(—p) @*fi; — m3 fis) — mum; fi; [0 (P)ji(—p) + %5(p) Mji (—p)] }
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Studying the poles we find

1) two neutral massive bound states of squared masses

oftt _ , o _ _
e = dmy, 2my -
tt bb

2) two neutral and two charged massless states, which are the Goldstone bosouns:

2m

3) two charged massive bound states of squared masses
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When gauge interactions are turned on, the Goldstone bosons are “eaten” by
W'’s and Z, as usual. Precisely, the effective potential becomes
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In particular, such relations give
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Using our estimated value
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10 GeV

and the measured value of the Fermi constant, we find the top mass

my = 171.6GeV

Moreover,
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Conclusions

A weighted power-counting criterion can be used to renormalize Lorentz

violating theories that contain higher space derivatives, but no higher time
derivatives

Renormalizable theories can contain two scalar-two fermion vertices and four
fermion vertices

We can construct an extended Standard Model that gives masses to left neutrinos

without introducing right neutrinos or other extra fields. We can also describe
proton decay

At very high energies gauge and Higgs interactions become negligible, since they

are super-renormalizable, so the model becomes a four fermion model in two
weighted dimensions.

It is thus natural to ask ourselves if the scalarless variant of the model is able to

reproduce all known low-energy physics without the ambiguities of usual Nambu—
Jona-Lasinio non-renormalizable approaches.

We have shown, in the leading order of the large Nc limit and with gauge interactions
switched off, that the effective potential admits a Lorentz invariant (local) minimum,

that gives masses to fermion and gauge bosons, and produces composite Higgs
bosons.



We shown that the scalarless model in unambiguous and predicts relations among
the parameters of the Standard Model. Our approximation has a good 50% of

error, but one prediction, the relatiom between the top mass and the Fermi constant
turns out to be in astonishing agreement with experiment.



We shown that the scalarless model in unambiguous and predicts relations among
the parameters of the Standard Model. Our approximation has a good 50% of

error, but one prediction, the relatiom between the top mass and the Fermi constant
turns out to be in astonishing agreement with experiment.

High-energy Lorentz violations could allow us to define the ultraviolet limit
of quantum gravity. Hopefully suitable mechanisms could make the violations
undetectable even in principle



We shown that the scalarless model in unambiguous and predicts relations among
the parameters of the Standard Model. Our approximation has a good 50% of

error, but one prediction, the relatiom between the top mass and the Fermi constant
turns out to be in astonishing agreement with experiment.

High-energy Lorentz violations could allow us to define the ultraviolet limit
of quantum gravity. Hopefully suitable mechanisms could make the violations
undetectable even in principle

Observe that = 2 is the weighted dimension where Lorentz violating gravity
becomes strictly renormalizable. The real challenge is to break the local Lorentz
symmetry without destroying unitarity.



We shown that the scalarless model in unambiguous and predicts relations among
the parameters of the Standard Model. Our approximation has a good 50% of

error, but one prediction, the relatiom between the top mass and the Fermi constant
turns out to be in astonishing agreement with experiment.

High-energy Lorentz violations could allow us to define the ultraviolet limit
of quantum gravity. Hopefully suitable mechanisms could make the violations
undetectable even in principle

Observe that = 2 is the weighted dimension where Lorentz violating gravity
becomes strictly renormalizable. The real challenge is to break the local Lorentz
symmetry without destroying unitarity.

If this were shown to be not possible, we would have a good reason to think that
Lorentz invariance (and therefore CPT) must be exact at arbitrarily high energies.



