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and found

Since in local QFT odd powers of the energy mean that CPT is violated also,
we can take this bound to be a bound on the scale of CPT violation.

On the other hand, Lorentz violation does not necessarily imply CPT violation, so
We may assume that there exist two scales, one scale for the Lorentz
Violation, and one scale for the CPT violation, with
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Why is it interesting to consider quantum field theories where Lorentz symmetry
Is explicitly broken?



The set of power-counting renormalizable theories is considerably “small”



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study 
extensions of the Standard Model, effective field theories, nuclear physics, and 
the theory of critical phenomena



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study 
extensions of the Standard Model, effective field theories, nuclear physics, and 
the theory of critical phenomena

Here we are interested in the renormalization of Lorentz violating theories 
obtained improving the behavior of propagators with the help of 

higher space derivatives



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study 
extensions of the Standard Model, effective field theories, nuclear physics, and 
the theory of critical phenomena

Here we are interested in the renormalization of Lorentz violating theories 
obtained improving the behavior of propagators with the help of 

higher space derivatives
and study under which conditions 

no higher time derivatives are turned on



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study 
extensions of the Standard Model, effective field theories, nuclear physics, and 
the theory of critical phenomena

Here we are interested in the renormalization of Lorentz violating theories 
obtained improving the behavior of propagators with the help of 

higher space derivatives
and study under which conditions 

no higher time derivatives are turned on
to be consistent with unitarity



The set of power-counting renormalizable theories is considerably “small”

Relaxing some assumptions can enlarge it, but often it enlarges it too much

Without locality in principle every theory can be made finite

Without unitarity even gravity can be renormalized

Relaxing Lorentz invariance appears to be interesting in its own right

It could be useful to define the ultraviolet limit of quantum gravity, to study 
extensions of the Standard Model, effective field theories, nuclear physics, and 
the theory of critical phenomena

Here we are interested in the renormalization of Lorentz violating theories 
obtained improving the behavior of propagators with the help of 

higher space derivatives
and study under which conditions 

no higher time derivatives are turned on
to be consistent with unitarity

The approach that I proposed is based of a modified criterion of power counting, 
dubbed                       weighted power counting
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is the “weighted dimension”
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The propagator

behaves better than usual in the barred directions

Adding “weighted relevant’’ terms we get a free theory

that flows to the previous one in the UV and to the Lorentz invariant 
free theory in the infrared

(actually, the IR Lorentz recovery is much more subtle, see below)
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we see that                  is a homogeneous weighted function of degree

Its overall divergent part is a homogeneous weighted polynomial of degree

Performing a “weighted rescaling”                                       of external momenta,

together with a change of variables 
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we see that polynomiality demands

and the maximal number of legs is

E = 2 implies                  2

E > 2 implies              < 2 

Conclusion:

renormalization does not turn on
higher time derivatives
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The weighted scale invariance is anomalous at the quantum level
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Källen-Lehman representation and unitarity

Cutting rules



Causality

Our theories satisfy Bogoliubov's definition of causality

which is a simple consequence of the largest time equation and the 
cutting rules

For the two-point function this is just the statement

if        >0

immediate consequence of
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An example of four dimensional scalar-fermion theory is
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The quadratic lagrangian reads
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which can be reached taking a suitable limit on the general one. 
We get non-propagating ghosts and a quadratic lagrangian

We have             degrees of freedom with energies    

which gives the propagator
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To have better control over the diagramatic structure in super-renormalizable
theories or theories containing super-renormalizable gauge interactions
it is convenient to parametrize the gauge lagrangian as

In this way in Feynman diagrams every external leg has a factor g attached to it, 
which lowers the weight

Then counterterms have the form
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Compatibility with the covariant structure demands

Polynomiality demands that the weights of 

be strictly positive 

Absence of IR divergences in Feynman diagrams at non-exceptional 
external momenta demands
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Solutions exist for every

The simplest choice is

We can also make the simplifying assumption

n = odd is necessary to describe chiral fermions
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The case

allows us to formulate a consistent Lorentz violating extended Standard Model 

that contains both the dimension-5 vertex                                                  

that gives Majorana masses to left-handed neutrinos after symmetry breaking,

that can describe proton decay. 

Such vertices are renormalizable by weighted power counting

Matching the vertex                with estimates of the electron neutrino Majorana

mass the scale of Lorentzn violation has roughly the value

and the four fermion interactions
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It can be shown that the gauge anomalies vanish, since they coincide with those of

the Standard Model

At low energies we have the Colladay-Kostelecky Standard-Model Extension

where
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Once Lorentz invariance is broken at some energy, it is not automatic to recover

it at lower energies, because renormalization makes couplings run independently

For example, we can find at low energies

 
 )ˆ( 

The Lorentz invariant surface is RG invariant. Nielsen conjectured long ago that

it could also be IR attractive (evidence is not strong)

In general, we must argue as in the case of asymptotic safety: all low-energy

Lorentz violating parameters that flow to the surface can be kept, all those that flow

away from the surface must be set to zero (fine tuning)
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Given that the model contains four fermion interactions at the fundamental 
level, we may ask if it is possible to describe the known low-energy physics 
without introducing elementary scalars, in the Nambu—Jona-Lasinio spirit.

Then the Higgs field must be composite and arise as a low-energy effect of the 
four fermion vertices.

Suppressing the elementary Higgs field, we obtain the scalarless model

Moveover, since the gauge interactions are super-renormalizable, in the weighted 
power counting framework, at very high energies they become negligible and the
model reduces to a four fermion model in two weighted dimensions, described by 
the lagrangian
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When gauge interactions are turned on, the Goldstone bosons are “eaten” by 
W’s and Z, as usual. Precisely, the effective potential becomes

Choosing the unitary gauge fixing
we find the gauge-boson mass terms. The masses are  
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and the measured value of the Fermi constant, we find the top mass

Moreover,

for
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A weighted power-counting criterion can be used to renormalize Lorentz 
violating theories that contain higher space derivatives, but no higher time 
derivatives
Renormalizable theories can contain two scalar-two fermion vertices and four 
fermion vertices

We can construct an extended Standard Model that gives masses to left neutrinos
without introducing right neutrinos or other extra fields. We can also describe 
proton decay

It is thus natural to ask ourselves if the scalarless variant of the model is able to 
reproduce all known low-energy physics without the ambiguities of usual Nambu—
Jona-Lasinio non-renormalizable approaches. 

We have shown, in the leading order of the large Nc limit and with gauge interactions 
switched off, that the effective potential admits a Lorentz invariant (local) minimum, 
that gives masses to fermion and gauge bosons, and produces composite Higgs 
bosons.

At very high energies gauge and Higgs interactions become negligible, since they
are super-renormalizable, so the model becomes a four fermion model in two
weighted dimensions.
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High-energy Lorentz violations could allow us to define the ultraviolet limit
of quantum gravity. Hopefully suitable mechanisms could make the violations 
undetectable even in principle

Observe that               is the weighted dimension where Lorentz violating gravity 
becomes strictly renormalizable. The real challenge is to break the local Lorentz 
symmetry without destroying unitarity.

We shown that the scalarless model in unambiguous and predicts relations among
the parameters of the Standard Model. Our approximation has a good 50% of
error, but one prediction, the relatiom between the top mass and the Fermi constant
turns out to be in astonishing agreement with experiment.

If this were shown to be not possible, we would have a good reason to think that
Lorentz invariance (and therefore CPT) must be exact at arbitrarily high energies.


