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✦DECOUPLING LIMIT
- solutions in different regimes
- solutions with the source

✦ FULL SYSTEM: STATIC SPHERICALLY SYMMETRIC SOLUTION
- solution far from a source
- solution close to a source and the Vainshtein proposal
- validity of DL solutions
- numerical results for the full system

✦CONCLUSION

OUTLINE



✦Action for Massive Gravity

S =
∫

d4x

(
M2

P

2
√
−g R[g] + Vint[f, g] +

√
−gLm[g]

)

Decoupling Limit
MP →∞, m→ 0

(
MP m4

)1/5 ∼ const, Tµν/MP ∼ const



Solutions in the Decoupling Limit

Singularity

BD potential AGS potential
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Unique solution for the 
fixed “flat” asymptotic at infinity

A family of solutions with the 
same “flat” asymptotic at infinity



w →
√

8
9ξ

{
u→ 0
v → const.

{
u→ −A

2
v → A

2 ln ξ

w → A

ξ2

No singularity at r=0Curvature (“conical”) 
singularity at r=0

Physical solutions?
✦ Let us include a smoothed source 

and ask for regularity at r=0

Q-scaling Vainshtein scaling



solutions with source
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Full system: Metrics and Equations of Motion
✦ Bi-diagonal ansatz in the “Unitary” gauge:

✦ “Schwarzschild” gauge:

Schwarzschild-like

flat

✦ Equations of motion:

gµνdxµdxν = −eν(R)dt2 + eλ(R)dR2 + R2dΩ2

fµνdxµdxν = −dt2 +
(

1− Rµ′(R)
2

)2

e−µ(R)dR2 + e−µ(R)R2dΩ2

gABdxAdxB = −J(r)dt2 + K(r)dr2 + L(r)r2dΩ2

fABdxAdxB = −dt2 + dr2 + r2dΩ2

eν−λ

(
λ′

R
+

1
R2

(eλ − 1)
)

= 8πGN (T g
tt + ρeν) ,

ν′

R
+

1
R2

(
1− eλ

)
= 8πGN

(
T g

RR + Peλ
)
,

∇µT g
µR = 0.



✦      is defined via the gauge transformation

✦  While the Stuckelberg field X is defined such that: 

✦  This corresponds to the Stuckelberg field: 

Relation between    ,   and    µw

✦  In the Decoupling Limit: 

φ′ = −Rµ

2
w = (RV m)−2 µ

✦  Rescaling

φ



solution far from source

solution:

λ0 =
mC1

2

(
1 +

1
mR

)
e−mR,

ν0 = −C1

R
e−mR,

µ0 =
C1

2R

(
1 +

1
mR

+
1

(mR)2

)
e−mR

✦ Expansion in Newton’s constant:
λ = λ0 + λ1 + ... etc., with λi, νi, µi ∝ Gi+1

N

Ett ⇒ λ′
0

R
+

λ0

R2
= −m2

2
(λ0 + 3µ0 + Rµ′

0)

Err ⇒ ν′
0

R
− λ0

R2
=

m2

2
(ν0 + 2µ0)

Bianchi ⇒ λ0

R2
=

ν′
0

2R

✦ Equations of motion:



solutions very far from source:
infinitely many solutions!

Decoupling Limit

µ ∼ R−3 + ...

δµ ∼ Ce−#R

Full system

µ ∼ e#−R + ...

δµ ∼ Ce−#e#
√

R

Important for numerics!!!



not very far from source

solution:

λ′
1

R
+

λ1

R2
= −m2

2
(3µ1 + Rµ′

1)

ν′
1

R
− λ1

R2
= m2µ1

λ1

R2
=

ν′
1

2R
+ Q(µ0),

Q(µ) = − 1
2R

{
3α

(
6µµ′ + 2Rµ′2 +

3
2
Rµµ′′ +

1
2
R2µ′µ′′

)

+β

(
10µµ′ + 5Rµ′2 +

5
2
Rµµ′′ +

3
2
R2µ′µ′′

)}

ν = −2
3

RS

R
+

R2
S

R2

n1

(mR)4
+O(R3

S)

λ =
1
3

RS

R
+

R2
S

R2

l1
(mR)4

+O(R3
S)

µ =
1

3(mR)2
RS

R
+

R2
S

R2

m1

(mR)6
+O(R3

S)

relevant at

RV =
(

RS

m4

)1/5

mR! 1



Vainshtein scaling close to source

✦ Expansion in m: f(R) =
∞∑

n=0

m2nfn(R)

✦ 0th order:
λ0 = −ν0 = − ln

(
1− RS

R

)

µ0 = m0

√
RS/R" λ0, ν0

1st order
solution

ν = −RS

R
+ n1(mR)2

√
RS

R
+O

(
m4

)

λ =
RS

R
+ l1(mR)2

√
RS

R
+O

(
m4

)

µ = m0

√
RS

R
+ m1(mR)2 +O

(
m4

)

assume 

RV =
(

RS

m4

)1/5

R! RS



S ∝
∫

d4x
√
−g R

Non-perturbative regime, 
General Relativity

R! RV

linear regime, 
non-General Relativity

RV ! R

S ∝
∫

d4x
√
−g R + Vint[g̃, g]

RV =
(

RS

m4

)1/5

General picture



Validity of DL solutions
All other terms <=> cubic interaction (kept in DL) 

Q-scaling Vainshtein scaling

h ∼ RS/R

A ∼ 0

h ∼ RS/R

∂∂φ ∼ µ ∼
√

RS/R

A ∼ 0

R ∼ RS

∂∂φ ∼ µ ∼ m2R4
V /R2

R ∼ R2
V m

✦ for R>(Vainshtein radius) DL is valid up to 1/m

✦ for R<(Vainshtein radius),

R2
V m! R! m−1 RS ! R! m−1

N.B. Inside the star the solution changes, 
DL is still valid.



R/RV

Decoupling Limit <=> full system
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R/RV

Decoupling Limit <=> full system
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Numerics

RELAXATION vs SHOOTING

 

Damour, Kogan, 
Papazoglou’03

Relaxation Shooting

Impose all the boundary conditions
Might miss a singularity

More reliable for checking singular solutions
Requires adjusting initial conditions to 

get required boundaries
Extremely difficult for highly non-linear systems

and for several equations



Conclusion
✦ It is possible to obtain the DL in the case of static spherically 

symmetric ansatz. This decoupling limit corresponds to DL in the 
Goldstone picture. 

✦ The scaling conjectured by Vainshtein at small radius is only a 
limiting case in an infinite family of non singular solutions each 
showing a Vainshtein recovery of GR solutions below the Vainshtein 
radius but a different common scaling at small distances.

✦ For AGS potential a family of solutions exists containing the new 
scaling solution with an Vainshtein-like solution as an asymptotic. 
The requirement of no-conical singularity at zero chooses uniquely 
the Vainshtein-like solution. 

✦ For the full system (not DL) regular (everywhere) solution exist for 
AGS potential featuring a Vainshtein-like recovery of solutions of 
General Relativity and flat asymptotic at infinity.

✦ ? Compact objects: neutron stars and black holes ?



✦ For the full system of Massive Gravity (not DL) we have found 
numerically solution(s) for in the case of AGS potential term and 

extended objects.

Conclusion

It is possible to show analytically that there is an infinite number 
of solutions at the infinity (the initial data at infinity does not fix 

uniquely the solution) 

Compact objects: neutron stars and black holes?


