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4 Action for Massive Gravity
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Solutions in the Decoupling Limit

BD potential AGS potential
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Physical solutions?

4 Let us include a smoothed source
and ask for regularity at r=0

Q-scaling Vainshtein scaling
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solutions with source

BD potential AGS potential
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Full system: Metrics and Equations of Motion

4 Bi-diagonal ansatz in the “Unitary” gauge:
gapdridz® = —J(r)dt* + K(r)dr* + L(r)r?dQ?
fapda?da® = —dt® +dr® + r?dQ?

4 "Schwarzschild” gauge:
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4 Equations of motion:
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Relation between w,xand ¢

4 [ is defined via the gauge transformation

fapdXAdXT = —dt? + dr® +r2dQ?
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4 While the Stuckelberg field X is defined such that:
fudatdz” = [(%XA(:E)&,XB(:B)fAB (X (z))] dztdx”

4 This corresponds to the Stuckelberg field:
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4 In the Decoupling Limit: 4 Rescaling
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solution far from source

4 Expansion in Newtons constant:

A=Xo+ A1+ ... etc,, with i, v, < GREY

4 Equations of motion:
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solutions very far from source:
Infinitely many solutions!

Decoupling Limit Full system

e~ R7% 4

Important for numerics!!!




not very far from source mz <1
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Vainshtein scaling close to source

4 Expansion in m: f(R) = i m?" f,,(R)
n=>0

4 Oth order:

Ao = —1y = —1n<1—%>

Lo - mQ\/Rs/R > )\O,VO

assume R > Rg
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General picture
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Validity of DL solutions

All other terms <=> cubic interaction (kept in DL)

4 for R>(Vainshtein radius) DL is valid up to 1/m
4 for R<(Vainshtein radius),

Q-scaling

h~ Rs/R
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Vainshtein scaling
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N.B. Inside the star the solution changes,

DL is still valid.




Decoupling Limit <=> full system




Decoupling Limit <=> full system
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Numerics

RELAXATION vs SHOOTING

S

Damour, Kogan,
Papazoglou’03

Relaxation Shooting

More reliable for checking singular solutions
Requires adjusting initial conditions to
get required boundaries
Extremely difficult for highly non-linear systems
and for several equations

Impose all the boundary conditions
Might miss a singularity




Conclusion

4 1t is possible to obtain the DL in the case of static spherically
symmetric ansatz. This decoupling limit corresponds to DL in the
Goldstone picture.

4 The scaling conjectured by Vainshtein at small radius is only a
limiting case in an infinite family of non singular solutions each
showing a Vainshtein recovery of GR solutions below the Vainshtein
radius but a different common scaling at small distances.

4 For AGS potential a family of solutions exists containing the new
scaling solution with an Vainshtein-like solution as an asymptofic.
The requirement of no-conical singularity at zero chooses uniquely
the Vainshtein-like solution.

4 For the full system (not DL) regular (everywhere) solution exist for
AGS potential featuring a Vainshtein-like recovery of solutions of
General Relativity and flat asymptotic at infinity.

4 ? Compact objects: neutron stars and black holes ?




Conclusion

& For the full system of Massive Gravity (not DL) we have found
numerically solution(s) for in the case of AGS potential term and
extended objects.

Q@ Itis possible to show analytically that there is an infinite number
of solutions at the infinity (the initial data at infinity does not fix
uniquely the solution)

Compact objects: neutron stars and black holes?




