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Many Successfull Faces

△ Gravity Theory: PN &PPN
corrections

△ Cosmology: Expansion laws, Structure
formation

△ Field Theory: Good EFT (unitary
with cut-off at MP)
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Lorentz Preserving Massive Gravity

◮ Linearized GR in Minkowski:
Spin 2, Lorentz invariant, long range (massless).

V (r) ∼
[
T
µν
1

(
ηµ(σηρ)ν − 1/2ηµνησρ

)
T
ρσ
2

]
r−1

◮ Graviton Mass: L = L(2)
EH + m2(hµνh

µν − ah2)
Unitary only for a = 1

V (r)a=1 ∼
[
T
µν
1

(
ηµ(σηρ)ν − 1/3ηµνησρ

)
T
ρσ
2

]
e−mrr−1

vDVZ’72
• Gravity weaker at large distances, with different tensor

structure (vDVZ discontinuity: PN destroyed)

• Way out: for a source M , linear analysis valid up to
r⋆ ∼ (Mm−2M−2

P )1/3
Vainshtein’72 (BDR’08)

• Strong coupling problem: low cut-off Λc ∼ (m2MP)1/3
AH’02

△ Alternatives: non-trivial backgrounds; breaking Lorentz sym.; m(�).
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Massive Gravity in Curved Backgrounds

◮ de Sitter:

−6
√

gH 2 +
√

ḡm2(hµνh
µν − adSh2)

• No vDVZ: H regulates the strong coupling (also in AdS)

• No unitary for m2 ≤ 2H 2 (ok in AdS) Higuchi’87

• For m = 2H 2, no scalar degrees of freedom DeserWaldrom’01

◮ General Background Effects

• In general 6 DOF. 5 DOF at linear level in certain cases

• The extra DOF is always a ghost

• A Lagrangian with aM = 1 will in general produce adS 6= 1:

h ∼ B + ĥ, h2
�h ∼ ĥ2

�B

△ Fine tuned (not if gauge invariance) situation Dubovsky’04

△ Theories with well behaved 6th mode

{

Hidden (K = 0)

strong coupling
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Choice of the Background & Linear Action

◮ Background: gµν = a(η)ηµν
• For pure GR only dS is a solution

• Modified gravity: modified Friedman equation Scalar or vector
condensates, bigravity, extra-dimensions... DTT’05,BDG’07

• Definite energy as a sign of stability for ω2,∆≪ H

◮ Linear action: Covariant breaking mass term (LB)

Lm = a(η)4
(
m0

2h00h00 + 2m1
2h0ih0i −m2

2hĳhĳ + m2
3hiihjj − 2m2

4h00hii

)

• Only gravitational perturbations

• mi(η)

• Facts for Minkowski with constant masses (to change):
Rubakov’04,Dubovsky’04,RubakovTinyakov’08







m1 6= 0 and m0 6= 0 : 6 DOF including a ghost

m0 = 0 : 5 DOF which may be ghost-free

m1 = 0 : 2 DOF (massive GW),mr correction to Newton’s law



General case

Unbroken SO(3): decoupling of tensor, vectors and scalars.
◮ Tensor and Vector modes

• Massive GW (m ≡ m2)

• Massive, LB vectors with cutoff Λc ∼ a
√

m1MP

◮ Scalar modes:
Kinetic term of the Hamiltonian: Two DOF

(π1, π2)K−1

(

π1

π2

)

=
(π1, π2)

M 2
Pa2




3− 4∆

a2m2

1

−2

−2 2H2

m2

0





(

π1

π2

)

• Positive eigenstates for m1
2 > 0, 6H 2 ≥ m2

0 > 0

• H → 0 with fixed m0: hit detK = 0 (strong coupling)

• Otherwise the eigenvalues can be O(1).

Potential: High momentum (∆→∞) stable for

H ′a−1 < −
[

m2
1

4
+

(m2
1 − 2m2

4)
2

16m2
1

]

< 0
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Scalar DOF for Particular cases I

◮ m0 = 0 (m1 6= 0):
At most ONE scalar DOF (similar to aM = 1). Kinetic part

K ∝ [− [am
2

4(m2

1 −m
2

4) + m
2

1H
′]

︸ ︷︷ ︸

A

∆+a(m4

4 + 2H
2
m

2

µ) + 2m
2

4H
′

− 2H (m2

4)′
︸ ︷︷ ︸

B

]/P

• Ghost free for A > 0 (large ∆) B > 0 (also in Minkowski)

• Can be singular A = 0, B = 0. NO scalar DOF. Related to a
gauge invariance (conformal invariance in LI limit)

• For the FP limit only works for dS and

m2(η) =
2H 2m2

I

m2
I + (2H 2 −m2

I )a(η)

◮ Potential: No high momentum instabilities for m2
2 > m2

3

Tachyons can also be avoided, but tachyons are not so dangerous
in FRW (even interesting)



Scalar DOF for Particular cases II

◮ m1 = 0:
At most ONE scalar DOF (related to ghost-condensate,
bigravity). Lagrangian

L =
M 2

Pa2

H 2

{

m4
η

2(m2
2 −m2

3)
ψ′2 −

[
H ′

a
∆ + M 2

]

ψ2

}

• Singular Minkowski limit (one less DOF)
• mη = 0: No DOF (singular case in Mink)
• For dS, also singular: expected corrections from backgrounds

and/or higher order:

ω2(1 + B) = Bp2 +
c2

Λ2
p4

• FRW: ψ ordinary DOF

◮ Potential strong coupling scales:

Λt ∼
M 2

Pm4
η

2H 2(m2
2 −m2

3)
, Λs ∼

M 2
PH ′

H 2
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Newtonian Potentials for Conserved

Sources

◮ Coupling to a conserved point-like source:
Li = T00Φ + TiiΨ, T ′00 = −HT00, Tĳ = Tĳ = 0

◮ GR: ΦGR = ΨGR = T
M 2

P
r

△ General case: TWO DOF (which can be stable).

• Static limit: Small distances (∆≫ anything) at small times

Φ = ΦGR

(
1 + α1

2r2 + O(β1r2)
)
, Ψ = ΨGR

(
1 + α2

2r2 + O(β2r2)
)

• No vDVZ mi → 0 implies αi
2 → 0

• At αi
2r2 ∼ 1, linear aproximation OK (even at r →∞)
Φ = ΦGR (1 + β [e−αr − 1])

• Breaks down in degenerate cases:
(also m2 = m3, for which 2m2

3Ψ = m2
4Φ: vDVZ)



Newtonian Potentials in Degenerate Cases

◮ m1 = 0: 1 DOF ψ

Ψ = ΨGR + a

(

2a Hm2
2m2

4 ψ + m4
η ψ
′

2∆H (m2
2 −m2

3)

)

,

Φ = Ψ + a m2
2

(
2a H (m2

2 − 3m2
3)ψ −m4

4 ψ
′

∆H (m2
2 −m2

3)

)

,

with

ψ′′ =
2(m2

2 −m2
3)H ′

a m4
ηM

2
P

(T00 −M 2
P∆ψ) + q1(mi ,H )ψ+ q1(mi ,H )ψ′.

• T00 = M 2
P∆ψ + O(m)

• For not conserved sources, vDVZ and strong coupling

Exact linear solution confirms this (compare to Minkowski)

Φ = ΦGR

[
1 + α

(
e−µr − 1

)]
, (ΦM = ΦGR [1 + α1r ])
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Newtonian Potentials in Degenerate Cases

◮ m1 = 0, mη = 0: No DOF (singular in Minkowski)

Φ = ΦGR

[

1 +
M0

(m2
2 −m2

3)

(
e−µr − 1 + M1re−µr

)
]

,

Ψ = ΨGR

[

1 +
a2 m2

2m2
4

(m2
2 −m2

3)µ2

(
e−µr − 1

)
]

• µ2 ∝ P
(m2

2
−m2

3
)H ′

• Ill defined dS limit (strong coupling)

△ The FRW ALWAYS produces small perturbations at r →∞
without discontinuity for mi → 0 (no vDVZ)

◮ m0 = 0

• In general 1 DOF and no vDVZ

• For the case without scalar DOF no vDVZ but

Φ = ΦGR

(
1 + µ2r2

)



Summary and Outlook

• LI Massive gravity in Minkowski is problematic
Some problems disappear in curved backgrounds or in LB
theories

• For LB mass terms, the 6 polarizations of the metric can be
stable for H ′ < 0 (H ′ → 0 singular) and good GR limit

• There are situations with 5, 4, 3, 2 DOF without neither
instabilities nor discontinuity (fine-tuned background)

• Different masses can be constraint from experiments:

◮ Graviton mass: pulsar timing, binary pulsar energy loss ArunWill’09

◮ Vector mass: CMB, Λc > Λinf

◮ Scalar mass: Solar System, structure formation

△ No trace of the corrections 1/rλ of the non-linear solution

△ Look for concrete backgrounds and cosmological evolution
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