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Introduction

Let us consider an electromagnetic potential in:

Vacuum → standard Coulomb potential U ∼ Q1Q2

r
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Introduction

Let us consider an electromagnetic potential in:

Vacuum → standard Coulomb potential U ∼ Q1Q2

r

Plasma → Debye screening and Yukawa-like potential:

U ∼ Q1Q2

r
exp−mDr mD = mD(T, µ,m...)

Associated to the polarization of the medium.
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Introduction

Let us consider an electromagnetic potential in:

Vacuum → standard Coulomb potential U ∼ Q1Q2

r

Plasma → Debye screening and Yukawa-like potential:

U ∼ Q1Q2

r
exp−mDr mD = mD(T, µ,m...)

The potential is calculated from the photon EOM:

[kρkρg
µν − kµkν + Πµν(k)]Aν(k) = J µ(k)

U(r) = Q1Q2

∫

d3k

(2π)3
exp(ikr)

k2 − Π00(k)
=

Q1Q2

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin kr

kr
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Introduction - 2

Usually Π00 is independent of the photon momentum k and Debye
screening comes from poles at purely imaginary k (Π00 = −m2

D).
When a Bose condensate is present the situation is quite different:

There is k dependence of Π00. As a consequence, the potential is
not Yukawa-like but exponentially decreasing and oscillating at the
same time. Moreover there are power-law decreasing terms.

The dependence on the coupling constant e is not analytic
anymore.

Debye screening is stronger than in standard cases.
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The model

We studied an abelian gauge theory containing massive charged
fermions and bosons:

L = −1

4
FµνF

µν − m2

B
|φ|2 + |(∂µ + i eAµ)φ|2 + ψ̄(i∂/− eA/− mF)ψ

and assumed µF 6= 0, Q = 0.

Angela Lepidi - SW3 ”New Topics in Modern Cosmology”, Cargese, 27 April - 1 May, 2009 – p. 4



The model

Bosons will compensate the fermion net charge, hence naively
µB = −µF . But this condition is realized only when µB < mB because
µB > mB leads to senseless distribution function:

fB(E, T ) =
1

exp[(E − µB)/T ] − 1

fB(E = mB, µB) ≤ 0 ?!?!?
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Bose condensate

If the boson-antiboson asymmetry is so large that µB = mB is not
sufficient to ensure Q = 0, a Bose condensate would be formed:

f
(C)
B

(E,C, T ) =
1

exp[(E −mB)/T ] − 1
+ C δ(q) ≡ fB(E,mB , T ) + C δ(q),

f̄B(E,−mB , T ) =
1

exp[(E +mB)/T ] − 1

The formation of the condensate depends on the boson density and

takes place below a critical temperature TC =
√

3J B

0

e mB

while its
amplitude C depends on the fermion chemical potential, the
temperature T , and the particle masses:

C = −4π

Z

dq q2
ˆ

fB(EB ,mB , T ) − f̄B(EB ,−mB , T ) − 2fF (EF , µF , T ) + 2f̄F (EF , µF , T )
˜

(1)
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The physical problem

We included in our system:

non zero temperature → astrophysics and cosmology.

chemical potential → matter-antimatter asymmetry.

Bose condensate → applications to

Primordial universe (BG).

E-W breaking.

Helium white dwarfs.

and calculated the photon polarization tensor and the electrostatic

potential.
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Our approach

In abelian theories at the lowest order many subtleties can be
ignored. Hence we were able to use a physically intuitive procedure to
perform our analysis, in particular:

We are dealing with an abelian theory and considering up to the
second order in the c.c. e. Hence we could use a
standard perturbative approach.
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Thermal effects are taken into account by calculating the average
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Our approach

In abelian theories at the lowest order many subtleties can be
ignored. Hence we were able to use a physically intuitive procedure to
perform our analysis, in particular:

We are dealing with an abelian theory and considering up to the
second order in the c.c. e. Hence we could use a
standard perturbative approach.

Thermal effects are taken into account by calculating the average
over the thermal bath.

After performing a Fourier transform, we finally found the photon
polarization tensor Πµν which is a quite complicated function of
the temperature T , the fermion and boson masses (mF ,mB) and
the photon momentum kµ.
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Thermal field theory

Observables measured in empty space-time, e.g. cross sections
measured in accelerators

Conventional QFT

If we are dealing with non-negligible matter and radiation
densities, e.g. early-universe cosmology, astrophysics of compact
stars, extreme situations in experiments . . .

Thermal Field Theory

〈a†(q)a(q′)〉 = fB(Eq)δ(3)(q − q′)

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ(3)(q − q′)

〈c†(q)c(q′)〉 = fF (Ep)δ(3)(q − q′)

〈c(q)c†(q′)〉 = [1 − fF (Ep)]δ(3)(q − q′)
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The polarization tensor

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0) = e2

Z

d3q

(2π)3E
C δ3(q)

„

1 +
4E2

k2

«

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fB(EB,mB,T) + f̄B(EB,−mB,T)
˜

"

1 +
E2

B

kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#
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The polarization tensor

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0, |k| → 0) = e2

Z

d3q

(2π)3E
C δ3(q)

„

1 +
4E2

k2

«

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fB(EB,mB,T) + f̄B(EB,−mB,T)
˜

"

1 +
E2

B

kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

Besides some "standard", k-independent terms, Π00 contains two
singular in k terms which are strictly related to the condensate:

e2

(2π)3
C

mB

(

4m2

B

k2

)
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The polarization tensor

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0, |k| → 0) = e2

Z

d3q

(2π)3E
C δ3(q)

„

1 +
4E2

k2

«

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fB(EB,mB,T) + f̄B(EB,−mB,T)
˜

"

1 +
E2

B

kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

Besides some "standard", k-independent terms, Π00 contains two
singular in k terms which are strictly related to the condensate:

∫ ∞

0

=

∫ k/2

0

+

∫ ∞

k/2

e2m2
BT

2k
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The polarization tensor

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

−Π00 = e2
[(

m2
0 +

m3
1

k
+
m4

2

k2

)]

m2
0 =

(

2T 2

3

)

+
C

(2π)3mB
m3

1 =
m2

BT

2
m4

2 =
4CmB

(2π)3

The electrostatic potential can hence be calculated as:

U(r) = Q1Q2

∫

d3k

(2π)3
exp(ikr)

k2 − Π00(k)
=

q

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin kr

kr

and it contains contributions from the poles at

k2 + e2
[(

m2
0 +

m3
1

k
+
m4

2

k2

)]

= 0
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The results

T → 0: the integral can be taken using the residues; poles are at
complex values of ks, hence the electrostatic potential has the
standard Debye screening from the imaginary component of k
plus an oscillating term coming from its real component:

U(r) ∼ Q1Q2

exp(−
√

e/2m2r) cos(
√

e/2m2r)

r
.
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The results

T → 0: the integral can be taken using the residues; poles are at
complex values of ks, hence the electrostatic potential has the
standard Debye screening from the imaginary component of k
plus an oscillating term coming from its real component:

U(r) ∼ Q1Q2

exp(−
√

e/2m2r) cos(
√

e/2m2r)

r
.

Finite T : integral over the imaginary axis gives a power law
decreasing term:

U ∼ Q1Q2

1

e2

m3
1

m8

2
r6

Please note: Debye screening is stronger than the standard cases
(mD ∼ e) and non analytic function of e.
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Friedel oscillations

Friedel oscillations appear in degenerate fermionic plasma at T → 0

and are due to the sharp Fermi distribution function.
Mathematically they come from the log term in Π00:

ΠF
00 =

e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

.

Let us assume mF . The distribution function has poles at

qn = µF ± iπT (2n+ 1).

Hence performing the integral along branch cuts (k = 2qn + iy) we get

Un(r) =
Q1Q2e

2T

16π2r3q3n
sin(2µF r) exp−2π(2n+1)Tr
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Friedel oscillations

Friedel oscillations appear in degenerate fermionic plasma at T → 0

and are due to the sharp Fermi distribution function.
Performing the sum over n we get the potentials:

U(r, T ) =
Q1Q2e

2

64π3

sin(2kF r)

k3
F r

4
· 4πrT · exp(−2πrT )

1 − exp(−4πrT )
(mF = 0)

U(r, T ) =
Q1Q2e

2Tm4
F

16π2

cos(2kF r)

k4
F r

2
· exp(−2πrTmF /kF )

1 − exp(−4πrTmF/kF )
(mF ≫ kF )

which vanish for large T and have the low temperature limit:

U(r, T = 0) =
Q1Q2e

2

64π3

sin(2kF r)

k3
F r

4
(mF = 0)

U(r, T = 0) =
Q1Q2e

2mF

64π3

cos(2kF r)

k3
F r

3
(mF ≫ kF )
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Summary and conclusion

Gauge theories with a Bose condensate are of interest in Physics
because of their applications to SM extensions (e.g. SUSY),
cosmology, astrophysics etc.

In this work we studied the simplest abelian one including both
condensate and temperature effects and studied the photon
propagation in the hot charged plasma.

As a result, we found that the electrostatic potential in the
considered system has very peculiar features. In particular, there
is k dependence of Π00 which give rise to oscillating and
exponentially decreasing potential and non analytic dependence
on the coupling constant e.
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Summary and conclusion

Gauge theories with a Bose condensate are of interest in Physics
because of their applications to SM extensions (e.g. SUSY),
cosmology, astrophysics etc.

In this work we studied the simplest abelian one including both
condensate and temperature effects and studied the photon
propagation in the hot charged plasma.

As a result, we found that the electrostatic potential in the
considered system has very peculiar features. In particular, there
is k dependence of Π00 which give rise to oscillating and
exponentially decreasing potential and non analytic dependence
on the coupling constant e.

THE END
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Standard perturbative approach

φ(x) = φ0(x) +

∫

d4y GB(x− y)Jφ(y)

ψ(x) = ψ0(x) +

∫

d4y GF (x− y)eA/(y)ψ(y)

(∂µ∂
µ +m2

B)φ0(x) = 0, (i∂/−mF )ψ0(x) = 0

φ0(x) =

∫

d3q
√

(2π)32E

[

a(q) exp−iqx +b†(q) expiqx
]

ψ0(x) =

∫

d3q
√

(2π)3

√

mF

E

[

cr(q)ur(q) exp−iqx +d†r(q)vr(q) expiqx
]

GB(k) =
1

k2 −m2
B + iǫ

, and GF (k) =
k/+mF

k2 −m2
F + iǫ

BACK
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The photon equation of motion

The most general expression of the photon EOM in the momentum
space is:

[kρkρg
µν − kµkν + Πµν(k)]Aν(k) = J µ(k)

ΠB

µν(k) = e2

Z

d3q

(2π)3E

ˆ

fB(E) + f̄B(E)
˜

×

"

1

2

(2q − k)µ(2q − k)ν

(q − k)2 − m2

B

+
1

2

(2q + k)µ(2q + k)ν

(q + k)2 − m2

B

− gµν

#

ΠF
µν(k) = 2e2

Z

d3q

(2π)3E

ˆ

fF(E) + f̄F(E)
˜

×

"

qν(k + q)µ − qρkρgµν + qµ(k + q)ν

(k + q)2 − m2

F

+
qν(q − k)µ + qρkρgµν + qµ(q − k)ν

(k − q)2 − m2

F

#

Jµ = −e

Z

d4x

(2π)4
exp−ikx

Z

d3q

(2π)3
qµ

E

»

fB(E) − f̄B(E) − 2

„

fF(E) − f̄F(E)

«–

BACK
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Π
00 with BEC - general form

Π00(ω = 0, |k| → 0) =
e2

(2π)3
C

mB

 

1 +
4m2

B

k2

!

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fB(EB,mB,T) + f̄B(EB,−mB,T)
˜

"

1 +
E2

B

kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

BACK
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Debye mass - standard cases

Relativistic fermions with mF ≪ T, µF :

m2
D = e2

(

T 2

3
+
µ2

F

π2

)

Non relativistic fermions:

m2
D =

e2nF

T
, nF =

exp(µ/T )

π2

∫

dqq2e−q2/2mF T

Massless scalars without chemical potential:

m2
D =

e2T 2

3

BACK
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Plasma frequency - standard cases

Massless QED and SQED at high T with no chemical potential:

ω2
P B(mB = 0) = ω2

P F (mF = 0) =
1

9
e2T 2

Massive QED with chemical potential and T → 0:

ω2
p =

e2nF

mF
, nF =

exp(µ/T )

π2

∫

dqq2e−q2/2mF T

BACK
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Our model...

We considered a model with charged fermions and bosons:

L = −1

4
FµνF

µν − m2

B|φ|2 + |(∂µ + i eAµ)φ|2 + ψ̄(i∂/− eA/− mF)ψ

and studied in detail how the photon propagates in the hot plasma.
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Our model...

We considered a model with charged fermions and bosons:

L = −1

4
FµνF

µν − m2

B|φ|2 + |(∂µ + i eAµ)φ|2 + ψ̄(i∂/− eA/− mF)ψ

and studied in detail how the photon propagates in the hot plasma.

The Eulero-Lagrange
equations are needed:

∂νF
µν(x) = J µ(x)

.
(i∂/− m)ψ(x) = eA/ψ(x)

(∂µ∂
µ + m2)φ(x) = Jφ(x)
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Our model...

We considered a model with charged fermions and bosons:

L = −1

4
FµνF

µν − m2

B|φ|2 + |(∂µ + i eAµ)φ|2 + ψ̄(i∂/− eA/− mF)ψ

and studied in detail how the photon propagates in the hot plasma.

The Eulero-Lagrange
equations are needed:

∂νF
µν(x) = J µ(x)

J µ(x) = −i e

»

(φ†(x)∂µφ(x)) − (∂µφ†(x))φ(x)

–

+ 2e2Aµ(x)|φ(x)|2 − eψ̄(x)γµψ(x)
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Our model...

We considered a model with charged fermions and bosons:

L = −1

4
FµνF

µν − m2

B|φ|2 + |(∂µ + i eAµ)φ|2 + ψ̄(i∂/− eA/− mF)ψ

and studied in detail how the photon propagates in the hot plasma.

The Eulero-Lagrange
equations are needed:

∂νF
µν(x) = J µ(x)

To study the photon propagation we need its EOM as a function of its
momentum k:

[

kρkρg
µν − kµkν + Πµν(k)

]

Aν(k) = J µ(k)

So the key quantity to study the photon propagation is Πµν , that is the
photon polarization tensor.
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Photon propagation in plasma

Generally, the electrostatic potential in a medium is given by:

U(r) = q

∫

d3k

(2π)3
exp(ikr)

k2 − Π00(k)
=

q

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin kr

kr

In vacuum Π00 = 0 and thus

U(r) =
q

4π

1

r

Angela Lepidi - SW3 ”New Topics in Modern Cosmology”, Cargese, 27 April - 1 May, 2009 – p. 19



Photon propagation in plasma

Generally, the electrostatic potential in a medium is given by:

U(r) = q

∫

d3k

(2π)3
exp(ikr)

k2 − Π00(k)
=

q

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin kr

kr

In the cases which can be found in the literature the particles obey the:

fB(E, T ) =
1

exp[(E − µB)/T ] − 1

fF (E, T ) =
1

exp[(E − µF )/T ] + 1

and it turns out that
√

−Π00(k) = const = mD and hence

U(r) =
q

4π

exp(−mDr)

r
.
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Bose-Einstein condensate

Let us consider a charge-neutral system with a fermion asymmetry
and no net electric charge:

µF 6= 0, Q = 0.

Bosons will compensate the fermion net charge and hence one may
naively expect that µB = −µF .
But the condition µB > mB leads to senseless distribution function:

fB(E, T ) =
1

exp[(E − µB)/T ] − 1

fB(E = mB, µB) ≤ 0 ?!?!?
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Bose-Einstein condensate

If the boson-antiboson asymmetry is so large that µB = mB is not
sufficient to ensure Q = 0, a Bose condensate would be formed and
the boson distribution function would take the form:

f
(C)
B

(E,C, T ) =
1

exp[(E −mB)/T ] − 1
+ C δ(q) ≡ fB(E,mB , T ) + C δ(q),

f̄B(E,−mB , T ) =
1

exp[(E +mB)/T ] − 1

The formation of the condensate will depend on the boson density and

will take place below a critical temperature TC =
√

3JB

0

e mB

while its
amplitude C will depend on the fermion chemical potential, the
temperature T , and the particle masses:

C = −4π

Z

dq q2
ˆ

fB(EB ,mB , T ) − f̄B(EB ,−mB , T ) − 2fF (EF , µF , T ) + 2f̄F (EF , µF , T )
˜

(2)
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Photon propagation with BEC

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0, |k| → 0) = e2

Z

d3q

(2π)3E
C δ3(q)

„

1 +
4E2

k2

«

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fB(EB,mB,T) + f̄B(EB,−mB,T)
˜

"

1 +
E2

B

kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#
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Photon propagation with BEC

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0, |k| → 0) = e2

Z

d3q

(2π)3E
C δ3(q)

„

1 +
4E2

k2

«

+
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2π2

Z ∞

0
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E
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˜
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kq
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˛

˛

˛

˛
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2q − k

˛

˛

˛

˛
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+
e2

2π2

Z ∞

0

dqq2

E

ˆ

fF(EF, µF,T) + f̄F(EF,−µF,T)
˜

"

2 +
(4E2

F
− k2)

2kq
ln

˛

˛

˛

˛

2q + k

2q − k

˛

˛

˛

˛

#

Besides some "standard", k-independent terms, Π00 contains two
singular in k terms which are strictly related to the condensate:

e2

(2π)3
C

mB

(

4m2

B

k2

)
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Photon propagation with BEC

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00(ω = 0, |k| → 0) = e2

Z
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˛
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Besides some "standard", k-independent terms, Π00 contains two
singular in k terms which are strictly related to the condensate:

∫ ∞

0

=

∫ k/2

0

+

∫ ∞

k/2

e2m2
BT

2k
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Photon propagation with BEC

The spatial-spatial component of Πµν , Π00, is needed to work out the
electrostatic potential and is in general a function of C, T,mB,mF :

Π00 = e2
[(

m2
0 +

m3
1

k
+
m4

2

k2

)]

m2
0 =

(

2T 2

3

)

+
C

(2π)3mB
m3

1 =
m2

BT

2
m4

2 =
4CmB

(2π)3

The electrostatic potential can hence be calculated as:

U(r) = q

∫

d3k

(2π)3
exp(ikr)

k2 − Π00(k)
=

q

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin kr

kr
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The electrostatic potential

The potential contains an oscillating exponentially suppressed
term. In the special case T → 0, that is, without the 1/k term:

U(r) ∼ q
exp(−

√

e/2m2r) cos(
√

e/2m2r)

r
.

Generally, T 6= 0 moves the poles but doesn’t change the
shape of the potential;

The screening lenght λD ∼ m−1
D ∼ (

√
e)−1 is non analytic in e;

A similar potential has been found at higher order for fermion
system, where it is dominant at T → 0. The oscillations,
known as Friedel oscillations, have been experimentally observed
.
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The electrostatic potential

The potential contains an oscillating exponentially suppressed
term. In the special case T → 0, that is, without the 1/k term:

U(r) ∼ q
exp(−

√

e/2m2r) cos(
√

e/2m2r)

r
.

Moreover, thermal effects induces a power-law decreasing term
proportional to e−2 and arising from integration on the imaginary
axis:

U ∼ q
1

e2
m3

1

m8
2r

6
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The propagating modes

The spatial components of the photon polarization tensor can be
decomposed as:

Πij = a

(

δij −
kikj

k2

)

+ b
kikj

k2
, Π0j =

kj

ω
b, Π00 =

k2

ω2
b

which can be used to calculate the dispersion relation of the
transversal and longitudinal part of the photon. We focused mainly on
the calculation of the plasma frequency ωp, defined as:

ω2
p = b(ω, |k = 0|) = a(ω, |k = 0|).

Boson condensate contributes to ωp with a constant additive term:

δω2
p =

e2C

(2π)2mB
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Summary and conclusion

Altough it has not been studied until very recently, scalar
electrodynamics with a Bose condensate is of interest in Physics
because its applications to SM extensions (e.g. SUSY),
cosmology, astrophysics etc.

In this work we included both condensate and temperature effects
and studied the photon propagation in the hot charged plasma.

As a result, we found that the electrostatic potential in the
considered system has very peculiar features, both because of its
functional form and its dependence on the coupling constant e.

Interpretation..... Well, there is still a lot of work to do!
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Summary and conclusion

Altough it has not been studied until very recently, scalar
electrodynamics with a Bose condensate is of interest in Physics
because its applications to SM extensions (e.g. SUSY),
cosmology, astrophysics etc.

In this work we included both condensate and temperature effects
and studied the photon propagation in the hot charged plasma.

As a result, we found that the electrostatic potential in the
considered system has very peculiar features, both because of its
functional form and its dependence on the coupling constant e.

Interpretation..... Well, there is still a lot of work to do!

THE END
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