Non-relativistic Quantum Gravity

Diego Blas

based on

- D. Blas, O. Pujolàs and S. Sibiryakov JHEP10(2009)029 (BPSI) D. Blas, O. Pujolàs and S. Sibiryakov PRL104, 181302 (2010) (BPSII) D. Blas, O. Pujolàs and S. Sibiryakov PLB685 (2010) 197 (BPSIII)
 - D. Blas, O. Pujolàs and S. Sibiryakov In progress

Hořava's proposal sets the framework for a perturbatively renormalizable QFT of quantum gravity BUT

- Stable? Unitary?
- Really weakly coupled? (otherwise no better than GR!)
- Correct phenomenology?

Outline

- Introduction
- 2 General framework (toy model)
- 3 Hořava's proposal and "beyond"
- 4 Even beyond
- 6 Conclusions and open issues

General Relativity as a Perturbative QFT

As a perturbative theory around Minkowski $g_{\mu\nu}=\eta_{\mu\nu}+M_P^{-1}h_{\mu\nu}$:

- Unitary theory with 2 massless degrees of freedom $(J=\pm 2)$.
- Gauge invariance related to the equivalence principle and Lorentz invariance (Diff). Uniqueness and universal coupling.
- Non-renormalizable

$$\mathcal{L}_{EH} = h_{\mu\nu} \Box^{\mu\nu\alpha\beta} h_{\alpha\beta} + \frac{h_{\mu\nu}}{M_P} \Box_1^{\mu\nu\alpha\beta\sigma\tau} (h_{\alpha\beta} h_{\sigma\tau}) + M_P^2 O\left(\frac{h^4}{M_P^4}\right)$$

- Computing loops: surface divergence D = 4L 2(P V) = 2(L + 1).
- \triangle Interaction terms of dim > 4
- Using a cut-off Λ : strong coupling at $E \sim M_P$.
- Nice EFT with cut-off $\Lambda \sim M_P \sim 10^{19} \, {\rm GeV}$.
- Any QG theory: either something new at $E \lesssim M_P$ or non-perturbative effects required (*)

General Relativity as a Perturbative QFT

As a perturbative theory around Minkowski $g_{\mu\nu}=\eta_{\mu\nu}+M_P^{-1}h_{\mu\nu}$:

- Unitary theory with 2 massless degrees of freedom $(J = \pm 2)$.
- Gauge invariance related to the equivalence principle and Lorentz invariance (Diff). Uniqueness and universal coupling.
- Non-renormalizable

$$\mathcal{L}_{EH} = h_{\mu\nu} \Box^{\mu\nu\alpha\beta} h_{\alpha\beta} + \frac{h_{\mu\nu}}{M_P} \Box_1^{\mu\nu\alpha\beta\sigma\tau} (h_{\alpha\beta} h_{\sigma\tau}) + M_P^2 O\left(\frac{h^4}{M_P^4}\right)$$

- Computing loops: surface divergence D = 4L 2(P V) = 2(L + 1).
- \triangle Interaction terms of dim > 4
- Using a cut-off Λ : strong coupling at $E \sim M_P$.
- Nice EFT with cut-off $\Lambda \sim M_P \sim 10^{19} \, {\rm GeV}$.
- Any QG theory: either something new at $E \lesssim M_P$ or non-perturbative effects required (*)

Except for gauge invariance¹, a similar (toy) EFT is

$$\mathcal{L} = \phi \Box \phi + \underbrace{\frac{\phi}{M_P} \Box \phi^2 + M_P^2 O\left(\Box \frac{\phi^4}{M_P^4}\right)}_{O_i}$$

- $\dim[\phi] = 1$, i.e. $\dim[O_i] > 4$.
- Superficial divergence D = 4L 2(P V) = 2(L + 1)

 $^{^{1}}$ Indeed no gauge inv. implies ∞ different couplings $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$

Except for gauge invariance¹, a similar (toy) EFT is

$$\mathcal{L} = \phi \Box \phi + \underbrace{\frac{\phi}{M_P} \Box \phi^2 + M_P^2 O\left(\Box \frac{\phi^4}{M_P^4}\right)}_{O_i}$$

- $\dim[\phi] = 1$, i.e. $\dim[O_i] > 4$.
- Superficial divergence D = 4L 2(P V) = 2(L + 1)

 $^{^{1}}$ Indeed no gauge inv. implies ∞ different couplings $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$ $\Rightarrow *$

First UV completion (does not work)

$$\mathcal{L} = \phi(\square^2 + M_P^2\square)\phi + \underbrace{\phi(\square^2 + M_P^2\square)\phi^2 + M_P^2O\left((\square^2 + M_P^2\square)\phi^4\right)}_{O_i}$$

- At high energies $\square \gg M_P^2$, $\dim[\phi] = 0$, i.e. $\dim[O_i] = 4$.
- Superficial divergence D = 4L 4(P V) = 2!
- Renormalizable theory BUT not unitary (something happens at M_P : extra dof)

$$\frac{M_P^2}{\Box(\Box + M_P^2)} = \frac{1}{\Box} - \frac{1}{\Box + M_P^2}$$

 \triangle Extra ghostlike states: No stable configurations at $E \gtrsim M_P$

• Cut-off $\Lambda \sim M_P$.

Possible UV completion: Lorentz breaking (boosts) at $\Delta \sim M_*$)

$$\mathcal{L} = \phi \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi + \underbrace{\frac{\phi}{M_P} \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi^2}_{O_i}$$

- Unitary OK: 1 scalar degree of freedom (2 in phase space)
- Lorentz invariance recovered as a relevant deformation! (for 1 field)
- Something happens at $E \sim M_* \lesssim M_P$: explicit Lorentz breaking

Possible UV completion: Lorentz breaking (boosts) at $\Delta \sim M_*$)

$$\mathcal{L} = \underbrace{\phi \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi}_{O_f} + \underbrace{\frac{\phi}{M_P} \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi^2}_{O_i}$$

High momentum analysis $\Delta \gg M_*^2$ (relevant for loops)

• Anisotropic scaling: free part $(\int \mathrm{d}t \mathrm{d}^3x O_f)$ invariant under

$$t \mapsto \lambda^{-(z+1)}t, \quad x^i \mapsto \lambda^{-1}x^i, \quad \phi \mapsto \lambda^{-(z-2)/2}\phi$$

• Superficial divergence: $[\int^{\Lambda_p} \mathrm{d}p_i]^L [\int^{\Lambda_{p_0}} \mathrm{d}p_0]^L (p_0^2 - p_i^2)^{(V-P)}$

$$D = (((z+1)+3)L - 2(z+1)(P-V)) = (2-z)L + 2(z+1)$$

• For z=2, $\dim \int O_i = \dim \int O_f = 0$, $\dim \phi = 0$. ONLY marginal and relevant operators: RENORMALIZABLE (close to 1+1) (and unitarity: no ∂_0^4 generated -irrelevant)

Toy-model: perturbative behavior

$$\mathcal{L} = \underbrace{\phi \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi}_{O_f} + \underbrace{\frac{\phi}{M_P} \left[-\partial_0^2 + \Delta + \Delta \left(\frac{-\Delta}{M_*^2} \right)^z \right] \phi^2}_{O_i}$$

• For z=2, $\dim \int O_i = \dim \int O_f = 0$, $\dim \phi = 0$. ONLY marginal and relevant operators: RENORMALIZABLE (close to 1+1) (and unitarity: no ∂_0^4 generated -irrelevant)

Different power counting in UV than in IR BUT always works.
 No obvious problem with naturalness.

Toy-model: perturbative behavior

• Tree level unitarity and absence of (low energies) strong coupling

$$\begin{split} \bullet & \; |\mathcal{M}_s^{tree}(2 \to 2)| \sim \left(\frac{E_0}{M_P}\right)^2 \\ \text{Optical Th. } \left(\text{ for } E = \mathcal{E}(p) \equiv p \left(\frac{p}{M_*}\right)^z \right) & \text{BPSIII} \\ & \; |\mathcal{M}(2 \to 2)| \lesssim \left(\frac{E_0}{M_*}\right)^{3z/(z+1)} &= \begin{cases} 1, & \Delta \ll M_*^2 \\ \left(\frac{E_0}{M_*}\right)^2, & \Delta \gg M_*^2 \end{cases} \\ & M_* < M_P \end{split}$$

- Breaking Lorentz inv. implies breaking Diff invariance.
- Space-time endowed with a preferred 3+1 foliation (x^i,t) .

ullet Invariant under foliation preserving Diff: FDiff (preferred t)

$$x^i \mapsto \tilde{x}^i(x^j, t), \quad t \mapsto f(t).$$

ullet Compatible ADM decomposition (including ± 2 polarizations)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} \equiv N^{2}dt^{2} - \gamma_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

Generic Lagrangian

• Compatible ADM decomposition

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} \equiv N^{2}dt^{2} - \gamma_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

• Covariant objects for $x^i \mapsto \tilde{x}^i(x^j,t), \quad t \mapsto f(t).$

$$K_{ij} \equiv \frac{1}{2N} \left(\dot{\gamma}_{ij} - 2\nabla_{(i}N_{j)} \right), \quad \gamma_{ij}, \quad a_i \equiv \partial_i \ln N$$

• Generic Lagrangian (FDiff invariant with just ∂_0^2):

$$\mathcal{L} = M_P^2 N \sqrt{\gamma} \Big(\underbrace{K_{ij} K^{ij} - \lambda (\gamma_{ij} K^{ij})^2}_{K} - V[\gamma_{ij}, {}^{(3)}R^i_{jkl}, \nabla_i, a_i] \Big)$$

ullet RENORMALIZABILITY and UNITARITY (with z=2) for

$$V(\Delta \gg M_*) = M_*^{-4} (B_1 \Delta^2 R + B_2(a_i)^6 + ...)$$

• $\dim \gamma_{ij} = \dim N = 0!$ $\begin{cases} \text{All covariant objects dim} > 0 \text{ (finite } \#)! \\ \text{GR as a relevant deformation: } M_P^2 R \end{cases}$

Degrees of freedom: free part

The contributions at quadratic order (around Mink) come from

- Kinetic part: $K_{ij}K^{ij} \lambda(\gamma_{ij}K^{ij})^2$ (Naively GR: $\lambda \to 1, \alpha \to 0$)
- (dim 2) R, $\alpha a_i a^i$ (low energies)
- (dim 4) R^2 , $R_{ij}R^{ij}$, $\beta_1 R \nabla_i a^i$, $\beta_2 a_i \Delta a^i$
- (dim 6) $(\nabla_i R_{jk})^2$, $(\nabla_i R)^2$, $\beta_3 \Delta R \nabla_i a^i$, $\beta_4 a_i \Delta^2 a^i$
- ⊗ Breaking Diff invariance to FDiff: new degree of freedom!
 - ± 2 polarizations with dispersion relation: $E^2=p^2+\frac{g_4}{M_*^2}p^4+\frac{g_6}{M_*^4}p^6$
 - Extra gapless scalar mode with: $E^2=c_s^2p^2+\frac{s_4}{M_\star^2}p^4+\frac{s_6}{M_\star^4}p^6+...$
 - \triangle $c_s(\lambda,\alpha)^2=rac{2-\alpha}{\alpha}\left(rac{\lambda-1}{3\lambda-1}
 ight)$. Stable for $\lambda>1$ (no ghosts), $0<\alpha<2$.

Original proposals (no a_i): both strongly coupled Hořava 0901.3755

- Non-projectable $\alpha \to 0$: singular limit (no sDOF in Minkowski).
- Projectable $lpha o \infty$: tachyonic $(\Gamma \sim |c_s| M_*)$.

Remaining "healthy" possibilities (no strong coupling or instabilities):

$$0 < \alpha < 2$$
.

- Scalar-tensor theory: IR close to Einstein-Aether and (gauged)
 ghost condensate
 Sergey's talk, together with phenomenology
- Gravitational Breaking of Lorentz invariance at all the scales.
- Two mass scales (without hierarchy problem):

$$M_* < M_P$$

• Most conservative phenomenology: $10^{11} \text{ GeV} < M_{\star} < 10^{15} \text{ GeV}$

Even beyond: two themes

 Perturbative at high energies: no minimal length: Classical spacetime is always a good description.

Probing
$$L\sim 1/R$$
: wavepacket w/ $(\Delta\lambda)^2\leq 1/R$ BPS?? From $\mathcal{E}(p)=p(p/M_*)^z$, $\Delta\lambda\Delta p\sim 1$,

$$R^{z+1}/M_*^{2z} \sim \mathcal{E}(p)/(M_P^2 \Delta \lambda^3) \sim \Delta \lambda^{-(z'+4)}/(M_*^{z'} M_P^2)$$

For $z = z'$, $\Delta \lambda^{2-z} \ge M_*^z/M_P^2$

 The theory may be consistent BUT Lorentz invariance is measured to an astonishing precision in the matter sector

 $c_i - c_i \lesssim 10^{-20}$ Collins, Perez, Sudarsky, Urrutia, Vucetich 04

Can it be recovered as an emergent symmetry (no fine-tuning)?

RG does not help

lengo, Russo, Serone 09

• Breaking FDiff to $x^i \mapsto \tilde{x}^i(x^j, t), \quad t \mapsto t$: the extra Lorentz breaking mode can be made massive! **BUT** not unitary

Can it be done spontaneously? Lorentz breaking mediation suppressed?

SUSY without boosts?

BPS??

Conclusions

- A "healthy" non-relativistic theory of quantum gravity is possible (tamed extra mode).
- For the model to remain weakly coupled, the massless modes in the UV must appear also in the IR.
- The IR limit is a Lorentz-breaking scalar-tensor theory.

Open issues (Manifold and interesting)!)

• Recovery of the Lorentz invariance in the matter sector $(M_* \sim 10^{15} {\rm ~GeV}$ not excluded but fined tuned).

Lorentz breaking mediation suppressed? SUSY without boosts? Groot-Nibbelink-Pospelov 04 $\text{No Lorentz breaking operators of dim} \leq 4: \ c_i - c_j \sim \frac{M_{susy}^2}{M_{\pi}^2}$

- UV complete? (absence of Landau poles, defined non-perturb.)
- More phenomenological test.
 (Cosmology, preferred frame, PPN...).

 Armendariz-Picon, Fariña, Garriga 10
- Exact solutions and black holes.
 (there are black hole solutions with no hair! BH Thermodynamics?)

Response to criticism

• Papazoglou, Sotiriu 09: Strong coupling from IR analysis.

Kimpton, Padilla 10: Strong coupling in a decoupling limit

Henneaux, Kleinschmidt, Lucena-Gómez 09; Pons, Talavera 10:
 Problems with the canonical structure

Response to criticism

• Papazoglou, Sotiriu 09: Strong coupling from IR analysis.

Unfounded
$$(M_* \leq M_P)$$

- Kimpton, Padilla 10: Strong coupling in a decoupling limit
 Incorrect limit (eliminates the real UV behavior coming from mixing)
 - Henneaux, Kleinschmidt, Lucena-Gómez 09; Pons, Talavera 10:
 Problems with the canonical structure

Do not apply to our case