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equiv. principle 10-12 level     

Solar tests (weak field) 10-4 level

Strong field (binary pulsar) 10-3 level

Tested in the range 10-1 mm up to 1016 mm

                  

However .....

Einstein’s GR
A 90 year-long successful story:
No free parameter and it works ! 

Will ’05
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However ....
there is a dark side

Rotation galaxy curves require 
Dark matter  problems: cusps, 
Tully-Fisher law, nature of DM

CMB + supernovae data need Dark 
energy     at the best we have to 
explain a tiny cosmological 
constant Λ ∼ (10-4 eV)4           
deal with a bizarre fluid:                        
p = w ρ,   w < - 0.78

perhaps, the nature of 
gravity at large scales needs 

to be revised
m < 10-20 - 10-28 eV    
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Modifying GR ? 
Tough Job !

Can we build up a version of GR, modified in IR 
regime (large distances) consistent with 
experiments ? 

The task is not an easy one ! 

First attempt: Fierz-Pauli 1939   

 Recently a number of attempts: GRS, DGP, 
bigravity revisited, ......

This talk mainly focused on exact solutions
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Massless and Massive Gravity
 GR: dynamical field  gμν  D.o.F = 10 - 2 x 4 = 2

 4 gauge invariance (Diffs)
  Linearized analysis

gµν = ηµν h̄µν = hµν −
h

2
ηµν ∂ν h̄µν = 0

h̄µν = −16πGTµν
Lin. Einstein eqs

spin 2 in Minkowski
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Massless and Massive Gravity
 GR: dynamical field  gμν  D.o.F = 10 - 2 x 4 = 2

 4 gauge invariance (Diffs)
  Linearized analysis

gµν = ηµν h̄µν = hµν −
h

2
ηµν ∂ν h̄µν = 0

h̄µν = −16πGTµν
Lin. Einstein eqs

spin 2 in Minkowski

 Massive GR: dynamical field  gμν  D.o.F = 10 - 4 = 6
4 constraints

∂α∂(µhν)α −
1
2
�hµν − ∂µ∂νh +

1
2
gµν

�
�h− ∂α∂βhαβ

�
−

m2
g M2

2
(b h ηµν + a hµν)

= 8πG Tµν . massive spin 2 in Minkowski ≈ 5 D.o.F. 
one extra mode !
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Issues with Lorentz Inv. massive gravity

L = Lkin
spin2 −

m2
gM

2

4
�
a hµνhµν + b h2

�
+ · · ·
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Issues with Lorentz Inv. massive gravity

L = Lkin
spin2 −

m2
gM

2

4
�
a hµνhµν + b h2

�
+ · · ·

When a ≠ b there is a ghost in the spectrum. No good ! 

Fierz-Pauli (FP) a=b. In flat space, no 6th mode;             
5 healthy D.o.F.   

 Yukawa type modification of Newton force: gravity 
shuts off for r >> 1/mg 

 However for FP: fails to reproduce light bending  
(out of 25%, experimental accuracy < 10-4) .    VDZ  
discontinuity 

the ghost is needed for the light bending

Out of Minkowski the 6th mode (ghost) propagates !    
Boulware, Deser 1972
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VDZ discontinuity Van Dam, Veltman, Zaharov 1970
Boulware, Deser 1972
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 FP: 5 states  (massive spin 2)

VDZ discontinuity Van Dam, Veltman, Zaharov 1970
Boulware, Deser 1972

Extra states

Static potential

GR

FP m->0

hGR
µν = (ηµαηνβ+ηµβηνα− 1

2 ηµνηαβ)
−p2

hµνm→0=
(ηµαηνβ+ηµβηνα− 1

3 ηµνηαβ)
−p2
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VDZ discontinuity Van Dam, Veltman, Zaharov 1970
Boulware, Deser 1972

Extra states

Static potential

GR

FP m->0

hGR
µν = (ηµαηνβ+ηµβηνα− 1

2 ηµνηαβ)
−p2

hµνm→0=
(ηµαηνβ+ηµβηνα− 1

3 ηµνηαβ)
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Potential (loc. masses):

V = −Gm1m2
emgr

r

Potential: (loc. mass, photon)

Vγ = −3
2

Gm1 E
emgr

r
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GR: 2 states  (massless spin 2)

 FP: 5 states  (massive spin 2)

VDZ discontinuity Van Dam, Veltman, Zaharov 1970
Boulware, Deser 1972

Extra states

Static potential

GR

FP m->0

hGR
µν = (ηµαηνβ+ηµβηνα− 1

2 ηµνηαβ)
−p2

hµνm→0=
(ηµαηνβ+ηµβηνα− 1

3 ηµνηαβ)
−p2

Potential (loc. masses):

V = −Gm1m2
emgr

r

Potential: (loc. mass, photon)

Vγ = −3
2

Gm1 E
emgr

r

The ghost strikes back !
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Strong coupling and  quantum 
effects

Non-linear extensions of FP theory as EFT 

The coupling becomes large at energy E ∼ Λ5 = (mg4 Mpl)1/5

Λ5-1 ~ 1015 cm, bigger than the solar system scale 

Taking  1/mg ~ horizon size ~ 1028 cm

FP theory and its extension is not valid inside 
the solar system. UV completion is needed.

Arkani-Hamed, 
Georgi, Schwartz

A suitable choice of interactions allows to 
lower Λ down to Λ3 = (mg3 M)1/3 ∼ 1000 Km, 
still too low
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Breaking of Lin. Approx. Vainshtein ‘72
Deffayet-Dvali-

Gabadadze-Vainshtein ‘02
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Breaking of Lin. Approx.
In the presence of an heavy mass source 
the one-graviton exchange approximation 
may fail at the scale                                               
rV = Λ5-1 (M/Mpl)1/3 ∼ (G M mg-4)1/5 > Λ5-1   

Before quantum correction are important 
classical lin. approx. may fail at r = rM

Vainshtein’s picture: vDVZ is fake, continuity 
is recovered non-linearly

 Whether the Vainshtein’s picture is correct 
is still an open problem

 FP theory is at least tricky classically and  
inconsistent as quantum EFT

Vainshtein ‘72
Deffayet-Dvali-

Gabadadze-Vainshtein ‘02
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what about giving it up ? L = Lkin

spin2 + LLBmass + · · ·

LLBmass =
M2

P

4
(m2

0 h2
00 + 2m2

1 h2
0i −m2

2 h2
ij + m2

3 h2
ii − 2m2

4 h00hii)

Useful parametrization: SO(3) reppr.
h00 = ψ ,

h0i = ui + ∂iv , ∂iui = 0,

hij = χij + ∂isj + ∂jsi + ∂i∂jσ + δij τ, ∂isi = ∂jχij = δijχij = 0
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Giving up Lorentz .... Rubakov ’03

The D.o.F. count for FP relies on LI
what about giving it up ? L = Lkin

spin2 + LLBmass + · · ·

LLBmass =
M2

P

4
(m2

0 h2
00 + 2m2

1 h2
0i −m2

2 h2
ij + m2

3 h2
ii − 2m2

4 h00hii)

Useful parametrization: SO(3) reppr.
h00 = ψ ,

h0i = ui + ∂iv , ∂iui = 0,

hij = χij + ∂isj + ∂jsi + ∂i∂jσ + δij τ, ∂isi = ∂jχij = δijχij = 0

δψ = −2∂tξ
0 δv = ∆−1∂t∂mξm − ξ0 , δui = ∂tξ

i
T

δχij = 0 , δSi = ξi
T , δσ = 2∆−1 ∂iξ

i , δτ = 0

Transformation under a diff ξμ
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Propagation
Spin 2 χij   two states propagate with mass m2

Spin 1 si   two states propagate, unless m1 is zero

Spin 0:  τ, σ,  two states propagate, unless m1 is zero

In general σ is a ghost

6 = 10-6 D.o.F. as expected 

Special phases

m0= 0 the ghost σ is a Lagrange multiplier                                
2 +2 + 1 healthy D.o.F. left

m1= 0 No scalar or vector propagate, just tensors                                
2 healthy tensor D.o.F. left

In both phase there is no VDZ discontinuity !
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Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar     
fields providing the required longitudinal modes 

Arkani-Hamed et al, Dubovsky
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Stuckelberg Fields

Instead of adding by hand masses, one introduces scalar     
fields providing the required longitudinal modes 

(g00)2 m2
0 =

�
ḡ00 − h00 + · · ·

�2
m2

0 → ∂µΦ0 ∂νΦ
0 gµν m2

0

The wanted “tunings” like m0= 0 are casted in symmetries       
of the  scalar sector 

Φ0 → Φ0 + ζ(Φ0, Φi)

The D.o.F. is the same:   (10 + 4) - 2 X 4 = 6 

Unitary gauge   
Φa = Φ̄a + φa Φ̄a Background value

φa = 0 Unitary gauge

Back to 
massive 
gravity

Arkani-Hamed et al, Dubovsky
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S =

�
√

gd4x
�
M2 R + Lmatt

�
+ Λ4

�
d4x
√

gF(X ,V i,Y ij)

X = −Λ−4gµν∂µΦ0∂νΦ
0 V i = −Λ−4gµν∂µΦ0∂νΦ

i ,

Y ij = −Λ−4gµν∂µΦi∂νΦ
j

Action
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S =

�
√

gd4x
�
M2 R + Lmatt

�
+ Λ4

�
d4x
√

gF(X ,V i,Y ij)

X = −Λ−4gµν∂µΦ0∂νΦ
0 V i = −Λ−4gµν∂µΦ0∂νΦ

i ,

Y ij = −Λ−4gµν∂µΦi∂νΦ
j

Action

The function F encodes all the physics: background properties, 
masses, residual symmetries

When Lorentz inv. is broken the the background value of the 
Φs will be spacetime dependent                                          

Wednesday, May 12, 2010



Spherical symmetric solution
Originally first found in bigravity Berezhiani, Comelli, Nesti, Pilo ’08

Comelli, Nesti Pilo to appear

Lorentz breaking background

gµν = ηµν Φ0 = Λ2 t , Φi = Λ2 xi SO(3) preserved

The goldstone EMT is zero on-shell

Goldstone action with the residual symmetry Φi -> Φi + Π(Φ0)
=> m1=0 in a flat background 

F ≡ F(X ,Wij)

Wij = −Λ−4gµν∂µΦi∂νΦj − Λ−8 X−1 gµν∂µΦi∂νΦ0gαβ∂αΦ0∂βΦj
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Spherically symm. ansatz

c0>0 stability

c0- 6 c1 ≥ 0 grav. non 
-tachyonic

ds2 = −J(r) dt2 + K(r) dr2 + r2 dΩ2

Φ0 = Λ(t + h(r) ) , Φi = ϕ(r)
Λ2 xi

r
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General properties: exterior solution
Tµν = TMatt

µν + TGold
µν ≡ TGold

µν

Spherically symm. ansatz

Einst. tensor is diagonal -> EMT Gold. is diagonal

         =>  TGoldtt = TGoldrr =>  Ett = Err => K=1/J

Analitycally solvable example

F = c0

�
X−1 +W1

�
+ c1(W3

1 − 3W1W2 − 6W1 + 2W3 − 12)
Wn = Tr(Wn)

c0>0 stability

c0- 6 c1 ≥ 0 grav. non 
-tachyonic

ds2 = −J(r) dt2 + K(r) dr2 + r2 dΩ2

Φ0 = Λ(t + h(r) ) , Φi = ϕ(r)
Λ2 xi

r
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Einst. tensor is diagonal -> EMT Gold. is diagonal

         =>  TGoldtt = TGoldrr =>  Ett = Err => K=1/J

Analitycally solvable example

F = c0

�
X−1 +W1

�
+ c1(W3

1 − 3W1W2 − 6W1 + 2W3 − 12)
Wn = Tr(Wn)

c0>0 stability

c0- 6 c1 ≥ 0 grav. non 
-tachyonic

More examples in bigravity models

ds2 = −J(r) dt2 + K(r) dr2 + r2 dΩ2

Φ0 = Λ(t + h(r) ) , Φi = ϕ(r)
Λ2 xi

r
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the value of b depends on c0 and c1
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γ = 12
c1

c0
for b=1

Total Energy (Komar, ADM) in a shell of radius r 

E(r) = MS + S γ rγ+1

When γ+1 < 0 the energy is finite but gravity is modified 

TGold
tt = −S

(1 + γ)
4π

rγ−2 J(r)
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         TGoldtr = 0 => φ = b r  

the value of b depends on c0 and c1

J(r) = 1− 2 G MS

r
+ 2Λ r2 + 2 G S rγ Λ ∼ c1 m8(b2 − 1)

γ = 12
c1

c0
for b=1

Total Energy (Komar, ADM) in a shell of radius r 

E(r) = MS + S γ rγ+1

When γ+1 < 0 the energy is finite but gravity is modified 
On-shell Golstones’ 
EMT tensor: WEC 

violated when γ+1>0
TGold

tt = −S
(1 + γ)

4π
rγ−2 J(r)
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Consistency requires a non-democratic perturbation

J = 1 + � J1(r) , J = 1 + � K1(r) , ϕ = r + � ϕ1(r) , h = �1/2 h1(r)
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Even for constant density it’s hard,                               
we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

J = 1 + � J1(r) , J = 1 + � K1(r) , ϕ = r + � ϕ1(r) , h = �1/2 h1(r)

ρ = � ρ0 , p = �2 p2(r)

The solution can be found and the matching with the ext. solution gives

Ms =
4
3
π R3 ρ0 + ∆MS ≡MSb + ∆MS ∆Ms = −18 m2 MSb R2

5(1 + γ)

S = − 72π m2 ρ0 R4−γ

2γ3 − 7γ2 − 5γ + 4
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S = 0 ????

Can be the exterior part of a star ? 
Add matter EMT (perfect fluid), solve E.o.M. in the inner 

part and then match with the exterior solution

Even for constant density it’s hard,                               
we use perturbation theory (weak gravity)

Consistency requires a non-democratic perturbation

J = 1 + � J1(r) , J = 1 + � K1(r) , ϕ = r + � ϕ1(r) , h = �1/2 h1(r)

ρ = � ρ0 , p = �2 p2(r)

The solution can be found and the matching with the ext. solution gives

De-
gravitation  

when 

Ms =
4
3
π R3 ρ0 + ∆MS ≡MSb + ∆MS ∆Ms = −18 m2 MSb R2

5(1 + γ)

S = − 72π m2 ρ0 R4−γ

2γ3 − 7γ2 − 5γ + 4
Wednesday, May 12, 2010
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Integral form of Komar energy with a time-like Killing vector
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Integral form of Komar energy with a time-like Killing vector

E(rext) = −2
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t=const
(T ν

µ −
1
2
T )ξµ nν

√
h d3x
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Integral form of Komar energy with a time-like Killing vector

E(rext) = −2
�

t=const
(T ν

µ −
1
2
T )ξµ nν

√
h d3x

≡ Eint + Eext = MSb + ∆MS + S γ r1+γ
ext

When γ+1<0 
negligible, for 

large rext
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Energy, slight return

Integral form of Komar energy with a time-like Killing vector

E(rext) = −2
�

t=const
(T ν

µ −
1
2
T )ξµ nν

√
h d3x

≡ Eint + Eext = MSb + ∆MS + S γ r1+γ
ext

The interior non-democratic linearized 
solution have checked numerically 
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Conclusions
The phase m1=0 is rather interesting

Modified spherically symmetric solutions with screening or 
anti-screening of the “bare” mass

Perturbation theory around flat space is difficult: the 
“naive” perturbation expansion is far form the exact solution

To be done: in progress ....

What happens to the missing modes, propagate in  generic 
backgrounds; healthy ?

The missing modes may by relevant in the growth of 
cosmological perturbation
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