ABSTRACT

We present a canonical formulation of gravity theories whose Lagrangian

s an arbitrary function of the Riemann tensor; which, for example, arises In
the low-energy limit of superstring theories. Our approach allows a unified
treatment of various subcases and an easy Identification of the degrees of

freedom of the theory.
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PLAN

» Motivations for“f (Riemann)'’ gravity

» | st-order action

* Hamiltonian formulation
* Phase space reduction

« Conclusion




MOTIVATIONS

 Observational evidence —

Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of

4 The Unlverse |S UﬂdergOlﬂg v - Galaxies, Planets, etc.
accelerated expansion : =

» Not explained by known
mechanisms.

about 400 million yrs.

* What Is responsible for the e Bang Expansin

acceleration? Dark energy? |
Modified gravity? from NASA




/ (Riemann) GRAVITY

» Gravity theories with higher-curvature corrections

|

5= f 0°x =g fRupea)
M

» Much more than currently fashionable f(‘R) .

* Various motivations from high-energy (quantum) physics :
» As counterterms to regularise «Tap» on curved spaces [Utiyama & DeWitt (1962)]
» Einstein-Hilbert action itself is not renormalisable ['t Hooft & Vettman (1974)]

» String theories predict this kind of modifications ...

* String theories are still under development and their predictions are not
secure. Cosmologists may have a chance to determine the true form of
oravity from observations prior to particle physicists.




BASIC KNOWLEDGES

 Generally, the eom for the metric I1s 4th-order :
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» Because Riemann curvature tensor contains 2nd derivatives of metric.

» New dynamical dofs other than the metric will appear.

» Some “landscape’” of f(Riemann) :

» f=f(R) :Metrictscalar on arbitrary background, any D

- "Equivalent” to scalartensor gravity [Teyssandier & Tourrenc (1983), Maeda (1989)]

- Used to explain accelerating expansion [R+R? Starobinsky (1980); R+R™ Capozziello
et al. (2003), Carroll et al. (2004); etc.]

» f=R?+ Weyl? : Metrict+scalar+traceless tensor on D =4 Minkowski [Stelle
17k

- Tensor has negative kinetic term :“ghost”

» Lovelock : 2Znd-order eom, no extra dof [Lovelock (1987)] ...



VWHATTO DO

« Questions to answer :

ow do we treat various sub-classes of f (Riemann) in a unified manner?

ow Is the form of f reflected by the gravitational dynamics!

ow do we control the ghost! ...

* As a first step, we construct
Hamiltonian (| st-order) formulation of ' (Riemann) gravity
» Dynamical (time-evolutional) properties become more transparent.

» Useful for stability analysis ...

* We will keep fto be arbitrary as possible, but let me exclude Lovelock
terms for a while ...




| ST-ORDER f (Riemann) ACTION




BASIC IDEA

* We need an action consists of (at most) |st derivatives.

* Remove 2nd derivatives
L= f(¢.4,9)
wh L=1(66Q +y Q- Auxiliary field
wh L=[(6Q+yQ+id Integration by parts

* Q) is determined (implicitly) in terms of v via

L =

» Possible only when f'is non-linear (non-degenerate) in the 2nd derivative.

» 2 dynamical dofs ¢,
L=f1¢,0,2(9,0,¥)]+vQ(¢,0,y)+ ¢

- Although the real story is a bit more complicated...




AUXILIARY FIELDS

 We can first lower the order of derivative from 4 to 2.

» EFom contains higher-derivative (4th-order) due to nonlinearity of
curvature (2nd derivative of metric) :

f d°x V=8 f(Rupca)
M

|

Sel8ar] = 7

* An equivalent action being linear in curvature

1

S [gaba Qabcd s (;Dade] S 5 f dDX V—8 [f(@abcd) + Qpade (ﬂabcd K Qabcd)]
M

oives two 2nd-order eoms & one constraint equivalent to the 4th-order
Slfle

6s _ 65 _ 65 _, ‘. 65 _,
586119 5Qabcd 590abcd 5gab 8




ADM DECOMPOSITION

A geometrical way to define time
[Arnowitt, Deser & Misner (1962)]

» Metric I1s decomposed into
dynamical/non-dynamical parts:

Yab = 8ab — €ENg Ny

8ab wly N=en,t e =nn,
IBa ki ,yabtb
(t“ = Nn" + %)

» Spacetime tensors will be
orthogonally decomposed using
iInduced metric and normal vector.




DECOMPOSITION OF ACTION

L : Projection by y4°
n : Contraction with n¢

« ADM decomposition of 2nd-order action :

1
N = f dD.X N [ f (Qabcd) _|_60abcd (Rabcd B Qabcdj]
M

K

E_(pabcd (J_ﬂabcd I J_Qabcd) +4e€ J_(pabcn (J_Rabcn 5 J_Qabcn) =2 E‘Pab (J_ﬂanbn 3 Qab)j

2

b i e
where pao = b = 1 Oanbn

 Two eoms immediately determine the redundant components of auxiliary
field :
abcd .

5J_§0 - 1OQabcd = J_ﬂabcd ) 5J_‘70

* Then we get ‘ ‘

1
SiE= 5 f V=glf + 2T (L Ranon — Qap)]
M

aben 2
. 10aben = J_Rabcn




(GEOMETRICAL RELATIONS

» Extrinsic curvature is the “velocity” of metric :

1
Kip =7a" Vetp = == (Yap + 2 D,
b="Ya Vel = 5 (Yab (aPb))

* WWe have

» (Gauss
f

7/cg Ydh Refgh = —2 EKa[c Kd]b s Rabcd [7]

Ya' Vb
» Codazz

Yad Ybe ?/Cf n® Rdefg =2 D[a Kb]c

» and Riccl relations

761 n Vb nf Rcdef o + Kac Kbc o EDanN

| st (time)
derivatives

2nd (time)
derivative




| ST-ORDER ACTION

* Integrating by parts, ¥ appears to be dynamical :

S = f VIYIN [€ ¥ (K Ky + Koo Kb — € N™' DyDpN — Q)
M

1
+ e N Koy £, 59" — € V (IR, + > f]

» Divergence Is canceled by the surface term :

S = 656 dX, n“ ¥’ K,
oM

« No 2nd derivatives in the total action S + S

* Jo be discussed : Eom for Q determines # of DOFs.

of
) \_Pab L5
p 0 Qab




HAMILTONIAN FORMULATION




HAMILTONIAN

« Canonical momenta defined as
o 0SS oS +95)
. ’ Hab = .
576119 5\Pab

P

» Canonical action found via Legendre transformation

S+S’:fdtL:fdt[fde_lx\/M(p-j/+H.‘I’)—H]

where e
H = H[?/abapa ,\Pa , Hap, QabaNa,BCl] s f(NC_l',BaCa)
)

s the Hamiltonian, where Hamiltonian and momentum constraints are

a(b\ljc)dnabncd - p- H) s @ (—26‘1” -0 +f— 2Dan\PClb)

b

ab

W

(yab ) o Hbc Da\PbC




EOMS AND CONSTRAINTS

» Constraints from variations wrt multipliers :
ONERE =07 "o S  @r=t)

» will (after second-class constraints are inserted into the action) turn to be
first-class.

» Constraint from auxiliary field
Ny & DEDEE

9y
0

» will be used to reduce # of non- dynammal variables.

[YGb 9 abs Qab]

- Canonical eoms from variations wrt dynamical variables:

oH : oH
7ab = ) \Pab o

6]7 it 5Hab
ey oH

; ST s Ha i te
P OYab : oPab

These / eqs recover the original 4th-order eom.




| RACE DECOMPOSITION

* ¥ can be decomposed Into the trace and traceless parts :
7‘{’ [ﬁabET\PabE‘Pab—y.‘P ab

T v e

* There are (most generically) a scalar and (traceless) tensor degrees of
freedom :

r f (p-7 +T01- %) = Hlyap, p°, ¥, Ty, Qup, N, f°]
2

b =

== f(ﬁ : ’y + H(D + IT - W) = H[/)/ab, ﬁaba (D, Ha wabaﬂaba QabaNnBa]
2

h £ o 1 a ac
where  sab pb_D_l(y.H\Pb+~y-\PT(y v 1Ly)),

=il = Tl




DONE

* We've obtained canonical eoms and constraints for f(Riemann) in the
most generic form.,

VWHAT TO SEE BELOW

* Any symmetries of f give rise to additional constraints.

» They are usually 2nd-class and to be inserted into the action to eliminate
unnecessary variables.

* One exceptional case Is of conformal gravity where conformal (gauge)
transformation Is generated by a constraint.




PHASE SPACE REDUCTION




PROCEDURE

* Our generic Hamiltonian is still reducible in presence of 2nd-class
constraints.

* The roles of the constraint eq :

of
0Q,, : 2e P =
Jnikats 50,

A) Q determined (f'is nonlinear in Q) : ¥ dynamical ...

[Yaba Haba Qab]

B) Q undetermined (f'is at most linear in Q) : ¥ non-dynamical

* Precisely, a scalar may arise from non-linearity of the trace while a tensor
may arise from that of the traceless part of the second derivative.




| ST CLASS, 2ZND CLASS

* Way to reduce action/Hamiltonian :

|. Take time derivative of the above “primary’’ constraint to find a “secondary”
constraint (Dirac)

2.1t they are 2nd-class, insert them into the canonical action to reduce action/
Hamiltonian (Faddeev & Jackiw)

» |st class constraints
- commute with all the other constraints (modulo constraints),
- generate gauge transformations (“Dirac conjecture™).

- should be kept to make gauge symmetries of the system explicit.

» 2nd class constraints
- do not commute with at least one other constraint,

- are safely inserted into the action to eliminate non-dynamical dofs.




EXAMPLE 1@ EINST

« Action
f=R il 6Q, W=y
« Constraints

» Primary: 9% =4 (2nd-class)

» Secondary : Tl = 2 pap — 27; P Yap (2Nd-class)

« Action/Hamiltonian reduce into ADM'’s

L = fﬁ ) 7_ H[YabaﬁabaNalga]
2

where o ab 2y p yab

[ D

» No extra dof.




EXAMPLE 2: f(R)

* Action
F=00R B R

« Constraints
» Primary: P =0  (2nd-class)

2
» Secondary : Tl p = — Yac Ybd TpCd (2nd-class) ()
/ O

« Reduced action/Hamiltonian

L: ([j?/+H(I))_H[)/abaﬁabaq)anaN?lBa]
%

~ab
where D=

» Extra scalar dof.

 Agrees with the independent result [Deruelle,YS,Youssef (2009)].




EXAMPLE 3: C?

* Action
f = Cabcd Cade = Rabcd Rade =

4 7
R, RY + R?

D-2 (D-1)(D-2)

4
GO — iy 3) 1QY + o]

111, — (11 - 11)4p

ab = + R,
« Constraints i 04 b7

» Primary: v-¥ =0 (2nd-class)

D
» Secondary:y-p — > T - Il = 0 (depends on whether D =4 or not)

» The secondary constraint can be |st-class depending on # of dimensions.
This moment we only use the primary constraint.




« Action Is reduced to be

T f (-7 + 7 - 1) = Hyaps 7, 0%, 7025, TL N, B°]
)2

y -1l
D -1

» Extra traceless tensor dof (but see below).

wab ] wdb — T\{{ab ] ﬂ-ab = THab ; H = fy 5 H

« Hamiltonian

H = f(NC+,8“Ca+HCH)
>

where 11 works as a Lagrange multiplier and
D
SIS s U L

» In D=4, (1 is the generator of conformal transformation and commute

with other constraints. [Boulware (1984)]

» [t D >4, more secondary constraints may arise. They might be used to

further eliminate dofs (undone).



SUMMARY OF THIS PART

* Non-linearity of the second derivative determines what types of extra
dofs arise :

- Trpart | Tr-less part| Extra dofs Extra gauge
Ssym.

f(R) - Scalar
s Conformal
D5




CONCLUSION



CONCLUSION+

& Glilevements
» Hamiltonian formulation of f (Riemann) gravity has been established.

» Effective & simple way to reduce generic Hamiltonian to those of typical

sub-cases (R, f(R), C?) was shown.

» Plans for the future [all In progress]

Properties of ¥ on various non-trivial backgrounds (e.g. FLRWV, black holes) :
s there always “ghost™? If yes, what makes 1t harmless?

| ovelock terms

“nergy In higher-derivative gravity theories
Coupling to matter; Surface term: e.g. Junction conditions for braneworld

Feedback to fundamental theories from phenomenological view point of
oravity

fin



