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Abstract:

•Observational manifestations of some models of
modified gravity, which have been suggested to
explain the accelerated cosmological expansion,
are analyzed for gravitating systems with time
dependent mass density.

• It is shown that if the mass density rises with
time, the system evolves to the singular state with
infinite curvature scalar.

•The corresponding characteristic time is typically
much shorter than the cosmological time.
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Possible ways to explain accelerated expansion of the Universe:

• Dark Energy

• Modified Gravity

Models with the action:

S =
m2
Pl

16π

∫∫∫
d4x

√
−gf(R) + Sm,

mPl = 1.22 · 1019GeV is the Planck mass,
R is the scalar curvature,
Sm is the matter action.

Usual Einstein gravity:

f(R) = R

Modified gravity:

f(R) = R+ F (R)
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Pioneering papers:

• S. Capozziello, S. Carloni, A. Troisi,
RecentRes. Dev. Astron. Astrophys.1, 625 (2003)

• S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner,
Phys.Rev. D 70, 043528 (2004)

F (R) = −
µ4

R
,

µ is a small parameter with dimension of mass.

However, such a choice of F (R) leads to a strong ex-
ponential instability near massive objects.

• A.D. Dolgov, M. Kawasaki, Phys. Lett. B 573, 1 (2003)
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gR2-term:

• S. Nojiri, S. Odintsov Phys. Rev. D 68, 123512 (2003)

Could terminate the instability with reasonably
small coefficient g for sufficiently dense objects with
ρ > 1 g/cm3.

For the objects with smaller mass density the coeffi-
cient g would be too large and incompatible with the
existing bound on the R2-gravity.
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In the present work we examine a modified gravity
model with

F (R) = λR0

(1 +
R2

R2
0

)−n
− 1


• A.A. Starobinsky, JETP Lett. 86, 157 (2007)

Here

λ > 0 to produce an accelerated cosmological expansion,

n is a positive integer,

R0 ∼ 1/t2U , where tU ≈ 4 · 1017sec is the universe age.
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Cosmology with such gravitational action, as well as some other
cosmological scenarios with modified gravity, were critically
analyzed in recent paper:

S.A. Appleby, R.A. Battye, A.A. Starobinsky,
JCAP 1006, 005 (2010); arXiv:0909.1737v2

It was shown:

• The past singularity exists, when R→∞ at some finite time
in the past.

• The problem can be solved by an addition to the action of R2 -
term with sufficiently small coefficient allowed by the present
observational data.
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The singularity similar to that considered in the present work
was first noticed in the case of cosmological evolution back to
the past in:

S.A. Appleby, R.A. Battye, JCAP 0805, 019 (2008)

Despite mathematical similarities there is an important differ-
ence:

• According AB, singularity may be avoided with a certain
range of initial conditions.

• In our case singularity emerges for any initial conditions.
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A. Dev, D. Jain, S. Jhingan, S. Nojiri, M. Sami, I. Thongkool,
Phys. Rev. D 78 083515 (2008);
I. Thongkool, M. Sami, R. Gannouji, S. Jhingan, Phys. Rev. D
80 043523 (2009);
I. Thongkool, M. Sami, S. Rai Choudhury, Phys. Rev. D 80
127501 (2009).

A.V. Frolov, Phys. Rev. Lett. 101, 061103 (2008)

• Infinite R singularity could arise in the future, unless the ini-
tial conditions for R are not fine-tuned.

• The singularity appears only for certain initial conditions.

• All these singularities can be eliminated by an addition of R2

- term to the action.
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In what follows we will consider a different physical
situation than those discussed in the above mentioned
references.

We study behavior of astronomical objects with mass
density which rises with time.

Mass density is much larger than the cosmological
one:

ρm� ρc ,

ρc ≈ 10−29 g/cm3 is the cosmological energy density
at the present time;
ρm ∼ 10−24g/cm3 is matter density of a dust cloud
in a galaxy.
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The corresponding equations of motion:(
1 + F ′

)
Rµν −

1

2
(R+ F ) gµν

+
(
gµνDαD

α−DµDν
)
F ′ =

8πT
(m)
µν

m2
Pl

,

F ′ = dF/dR,
Dµ is the covariant derivative,

T
(m)
µν is the energy-momentum tensor of matter.

By taking trace over µ and ν we obtain:

3D2F ′−R+RF ′− 2F = T
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In the limit R� R0:

F (R) ≈ −λR0

[
1−

(
R0

R

)2n
]
.

We analyze temporary evolution of solutions of equation

3D2F ′−R+RF ′− 2F = T

for the gravitational field of some massive object with time vary-
ing density.

We assume:

• The gravitational field of this object is weak, as is usually the
case.

• Correspondingly, the background metric is approximately flat.

• The covariant derivatives can be replaced by the usual flat
space ones.
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Substituting expression for F (R) at large R, we ob-
tain:

(∂2
t −∆)R− (2n+ 2)

Ṙ2 − (∇R)2

R
+

R2

3n(2n+ 1)

(
R2n

R2n
0

− (n+ 1)

)
−

R2n+2

6n(2n+ 1)λR2n+1
0

(R+ T ) = 0 .

Expressing R through

F ′ = −2nλ

(
R0

R

)2n+1

and introducing the new notation

w = −F ′,
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We get the equation for w, which takes the simple form describ-
ing an unharmonic oscillator:

(∂2
t −∆)w+U ′(w) = 0 .

Potential U(w) is equal to:

U(w) =
1

3
(T − 2λR0)w+

R0

3

[
qν

2nν
w2nν +

(
qν +

2λ

q2nν

)
w1+2nν

1 + 2nν

]
,

where

ν = 1/(2n+ 1), q = 2nλ, U ′(w) = dU/dw.

Notice that infinite R corresponds to F ′ = 0 (w = 0) and if F ′

reaches zero, it would mean that R becomes infinitely large.
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It is useful to remember:

T � R0; T/R0 ∼ ρm/ρc� 1; w� 1.

Potential U would depend upon time, if the mass den-
sity of the object changes with time:

T = T (t).

If only the dominant terms are retained and if the
space derivatives are neglected, equation simplifies to:

ẅ+ T/3−
qν(−R0)

3wν
= 0 .

15



With dimensionless quantities:

t = γτ, w = βz

the equation for z becomes very simple:

z′′− z−ν + (1 + κτ ) = 0 .

Here prime means differentiation with respect to τ and the trace

of the energy-momentum tensor of matter is parametrized as:

T (t) = T0(1 + κτ ) .

Constant β is dimensionless number:

β = γ2T0/3 = q

(
−
R0

T0

)2n+1

.
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γ has dimension of time and determines characteristic
time scale:

γ2 =
3q

(−R0)

(
−
R0

T0

)2(n+1)

.

γ may be much shorter than the universe age, tU ,

due to the small factor (R0/T0)n+1.

Assuming 3q ∼ 1, R0 ∼ 1/t2U , and ρm = 10−24 g/cm3

we find:

• for n = 2: γ ≈ 400 sec.

• for n = 3: γ ≈ 0.004 sec.
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In the case of constant T (κ = 0) or very slowly vary-
ing T (κ� 1) the solution of equation

z′′− z−ν + (1 + κτ ) = 0

is evident.

For small initial values z(0) and z′(0):

z(τ ) oscillates near the minimum of the potential,
which is situated at

zmin = (1 + κτ )−1/ν .
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If the magnitude of z(0) takes a sufficiently large value

z > (1− ν)1/ν,

such that potential

U(z) = z− z1−ν/(1− ν)

becomes positive, at some stage z(τ ) would overjump
potential U(z) which is equal to zero at z = 0.

z(τ ) would reach zero, which corresponds to infinite
R, and so the singularity can be reached in finite time.

Analogous situation can be realized if the initial ve-
locity, z′(0), is sufficiently large.
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The singularity can be also reached in finite time
even if z was initially situated at the minimum of the
potential and the initial velocity z′(0) = 0.

It would take place if κ > 0, i.e. the energy density
rises with time.

The motion of zmin to zero and simultaneous dimin-
ishing of the depth of the potential well make it easier
for z(τ ) to reach zero.
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Figure 1.

Numerical solution: n = 2, κ = 0.01, ρm/ρc = 105.

Ratio z(τ )/zmin(τ ) (left) and functions z(τ ) and zmin(τ ) (right)

The initial conditions: z(0) = 1 and z′(0) = 0.

21



Figure 2.

Numerical solution: n = 3, κ = 0.01, ρm/ρc = 105.

Ratio z(τ )/zmin(τ ) (left) and functions z(τ ) and zmin(τ ) (right)

The initial conditions: z(0) = 1 and z′(0) = 0.
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Figure 3.

Numerical solution: n = 4, κ = 0.01, ρm/ρc = 105.

Ratio z(τ )/zmin(τ ) (left) and functions z(τ ) and zmin(τ ) (right)

The initial conditions: z(0) = 1 and z′(0) = 0.
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It is clearly seen:

• z(τ ) reaches zero after a finite number of oscillations around
zmin(τ ).

• When zmin(τ ) shifts to smaller values, function z(τ ) initially
remains behind zmin(τ ).

• When the displacement from the equilibrium point becomes
large enough, z(τ ) started to run after zmin(τ ) with an in-
creasing speed, then overtakes the position of the minimum,
and oscillates back.

• After a few oscillations the retarded position of z(τ ) happens
to be above the point z0(τ ), where the potential is zero.

• The position of this point moves to smaller values with rising
T (τ ).
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Evolution of the energy density:

T (t) = T0(1 + κτ ) = T0(1 + t/tch) ,

where

t is a physical time,

tch is the characteristic time of the variation.

Coefficient κ is expressed through tch as:

κ = γ/tch .

The presented cases for κ = 0.01 and ρm/ρc = 105:

•Figure 1: n = 2 corresponds to tch = 4 · 104 sec,

•Figure 2: n = 3 corresponds to tch = 0.4 sec.
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The characteristic time of the density variation can
be estimated as:

tch ∼ d/v ,
where

d is the size of the system,
v is the velocity of the constituent particles.

• Process of the collapse of the cloud: the velocity would be
quite low and the characteristic time is expected to be close
to the Newton free-fall time.

• The collision of the clouds: the velocities are typically galactic
ones, about 300 km/sec.

• The velocity may be even larger at the collision of the super-
nova ejecta with galactic or intergalactic clouds.
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Another way to estimate κ:

κ =
γv

d
,

where

d is the size of the object with changing mass
density or sizes of the colliding objects.

For n > 2 and astronomically large clouds one should
expect

κ� 1.
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As it is seen from the numerical calculations, the sin-
gularity is reached when

t ∼ tch.

This is much shorter than the cosmological time for
clouds of denser matter in galaxies or a collapsing
cloud forming a star or another denser body.

Possible cases when the conditions leading to singu-
larity can be realized:

• collapse of gas cloud leading finally to star formation;

• collision of two gas clouds in a galaxy;

• stellar ejecta colliding with interstellar or intergalactic matter,
etc.
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In the analysis of equation

(∂2
t −∆)w+U ′(w) = 0 .

the spatial derivates have been neglected.

However, the effect of inhomogeneities can be de-
scribed by an appearance of the term w/d2 with pos-
itive coefficient.

Such a term is equivalent to an addition of an extra
attractive force pushing w or z to zero, i.e. to R→∞.

Thus, in our case the inhomogeneities stimulate singu-
larity formation in contrast to the process of structure
formation due to gravitational (Jeans) instability.
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Possible way to avoid singularity is to introduce R2-
term into the gravitational action:

δF (R) = −R2/6m2 ,

where m is a constant parameter with dimension of
mass.

In the homogeneous case and in the limit of large ratio
R/R0 equation of motion for R is modified as:

[
1−

R2n+2

6λn(2n+ 1)R2n+1
0 m2

]
R̈− (2n+ 2)

Ṙ2

R

−
R2n+2(R+ T )

6λn(2n+ 1)R2n+1
0

= 0 .
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With dimensionless curvature and time

y = −
R

T0
, τ1 = t

[
−

T 2n+2
0

6λn(2n+ 1)R2n+1
0

]1/2

equation for R is transformed into:

(
1 + gy2n+2

)
y′′

−2(n+ 1)
(y′)2

y
+ y2n+2 [y− (1 + κ1τ1)] = 0 ,

where prime means derivative with respect to τ1.
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We have:

g = −
T 2n+2

0

6λn(2n+ 1)m2R2n+1
0

> 0 .

•The factor (1 + gy2n+2) is always non-zero because
g > 0.

•For very large m, or small g, the numerical solution
demonstrates that R would reach infinity in finite
time in accordance with the results presented above.

•Nonzero g would terminate the unbounded rise of
R.

•To avoid too large deviation of R from the usual
gravity coefficient g should be larger than or of the
order of unity: g ≥ 1.
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From the laboratory tests of gravity

• D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach,
B.R. Heckel, C.D. Hoyle, H.E. Swanson, Phys. Rev. Lett.
98 021101 (2007)

m> 10−2.5 eV and we find n ≥ 6.

From

• S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006,
005 (2010); arXiv:0909.1737v2

m� 105 GeV and we find n ≥ 9.

A natural value

m ∼mPl and correspondingly n ≥ 12.

For smaller values of T0 the bounds on n are noticeably stronger.
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The frequency of oscillations in dimensionless time τ or τ1 is
typically of order of unity.

In physical time the frequency would be about:

ω ∼
g−1/2

tU

(
T0

R0

)n+1

≤m.

For example,

• for n = 5 and for a galactic gas cloud with T0/R0 = 105, the
oscillation frequency would be

ω ∼ 1012 Hz ≈ 10−3 eV.

• Higher density objects with ρ = 1 g/cm3 would saturate the
above bound with much higher frequency

ω ∼m.
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For denser objects the variation of T in terms of τ or
τ1 is very slow because of very small κ.

As a result the amplitude of the oscillations around
the equilibrium point would be also small and pos-
sibly such oscillations are of no danger from the
observational point of view.

Still it is possible that there might be intermediate
cases when the oscillations would lead to observable
phenomena.
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We have shown:

•The impact of the considered above versions of mod-
ified gravity on the systems with time dependent
mass density could lead to the singularity R → ∞
during finite time in the future.

•This time is typically much shorter than the cosmo-
logical one.

•An addition of R2 - term could prevent from the
singular behavior but at expense of quite large val-
ues of n ( n ≥ 6 or maybe n ≥ 9) which may be at
odds with the standard cosmological evolution.
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THE END

THANK YOU FOR THE ATTENTION
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