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Introduction

The task - the construction of a fundamental particle physics
model accounting for an inflationary scenario in cosmology.

I A scalar field is very convenient for providing an
inflationary stage of the cosmic expansion

I A self-interaction of a scalar field creates problems for
inflation

I The inclusion of the non-minimal coupling ξRφ2 supplies
us with an effective potential providing a slow-roll regime
for the universe

I Due to quantum effects the early evolution of the universe
depends not only on the inflaton-graviton sector, but is
strongly effected by the particle content of the theory



I Main quantum effects are encoded in a special
combination of coupling constants A -
anomalous scaling

I The nature of an inflaton scalar field - could it
be the Higgs boson ?

I Quantum effects and the renormalization group
running

I The asymptotical freedom effect for the
anomalous scaling

I The cosmological model of inflation based on
the non-minimally coupled Higgs boson looks as
compatible with both : cosmological
observations and particle physics bounds, but
some details are not yet clear
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In the context of quantum cosmology the positivity
of the coefficient A makes one-loop wave functions
of the universe (both no-boundary and tunneling)
normalizable.

The anomalous scaling in the case of ξ À 1

determines the quantum rolling force in the effective

equation of the inflationary dynamics and yields the

parameters of the CMB generated during inflation.



For the Standard Model
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In the conventional range of the Higgs mass
115 GeV≤ MH ≤ 180 GeV
this quantity at the electroweak scale belongs to the
range
−48 < A < −20
which strongly contradicts the CMB data which
require
−12 < A < 14.



Taking into account the renormalization group
running
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we see that the value of the A on the inflationary

scale is compatible with the CMB data.



Our results are in a qualitative agreement with those presented
in

F.L. Bezrukov, A. Magnin and M. Shaposhnikov,
Standard Model Higgs boson mass from inflation,
Phys. Lett. B 675, 88 (2009).

F. Bezrukov and M. Shaposhnikov,
Standard Model Higgs boson mass from inflation: two loop
analysis,
JHEP 0907, 089 (2009).

A. De Simone, M. P. Hertzberg and F. Wilczek,
Running Inflation in the Standard Model,
Phys. Lett. B 678, 1 (2009).



One-loop approximation
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From the Jordan frame to the Einstein frame
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At the inflation scale with ϕ > MP/
√
ξ À v and for

large non-minimal coupling ξ À 1
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where inflationary anomalous scaling AI is the
anomalous scaling modified by the quantum
correction to the non-minimal curvature coupling:
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Inflationary slow-roll parameters:
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Their smallness determines the range of the inflationary stage
ϕ > ϕend, terminating at the value of ε̂, which we chose to be
ε̂end = 3/4. Then the inflaton value at the exit from inflation
equals
ϕend ' 2MP/

√
3ξ.



The duration of inflation which starts at ϕ in units of the scale
factor e-folding number N :
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The CMB spectral index ns , the tensor to scalar ratio r and
the spectral index running α:
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Renormalization Group improvement
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These β-functions depend on running couplings λ and ξ as
well as on the rest of the coupling constants in Standard
Model.
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The effect of non-minimal curvature coupling of the

Higgs field

Due to the strong non-minimal coupling between graviton and
Higgs-field sectors the propagator of the Higgs field is
modified by the factor s(t):
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At the electroweak scale s(t) ≈ 1, at inflationary scale
s(t) ∼ 1

ξ
¿ 1.



The one-loop anomalous dimension and β-functions of the
Standard Model modified by the s-factor:
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Inflationary stage versus post-inflationary running

The inflationary stage in units of a Higgs field
e-foldings is very short.

We consider the solutions of RG equations at
one-loop order and only up to terms linear in
∆t ≡ t − tend = ln(ϕ/ϕend).

This approximation will be justified in most of the

Higgs mass range compatible with the CMB data.
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Here λend, γend, ξend are determined at tend and

Aend = A(tend) is a value of the running anomalous

scaling at the end of inflation.



The renormalization group improved potential
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Our ”old” formalism can be directly applied to determine the
parameters of the CMB. They are mainly determined by the
anomalous scaling AI, this quantity should be taken at tend.

We integrate the renormalization group equations from the
top quark mass scale
µ = Mt = 171Gev .



The initial condition ξ(0) is not known.
It should be determined from the CMB normalization condition
for the amplitude of the power spectrum, which yields
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The end of inflation:
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The duration of inflation in units of inflaton field e-foldings
tin − tend = ln(ϕin/ϕend) is very short relative to the
post-inflationary evolution tend ∼ 35,
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The coefficient A which has a big negative values

at the electroweak scale becomes rather small at the

inflationary scale - asymptotic freedom.



Numerical analysis

The running of A(t) depends on the behavior of λ(t). For
small Higgs masses the usual RG flow leads to an instability of
the electroweak vacuum caused by negative values of λ(t) in a
certain range of t.

We present λ(t) for five values of the Higgs mass and the
value of top quark mass Mt = 171 GeV. The highest Higgs
mass MH = 185 GeV, the lowest one corresponds to the
critical (instability bound) value

Mc
H ' 134.27 GeV.
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The position of the instability bound is qualitatively

important for the behavior of the CMB parameters.

This bound depends on the initial data for weak and

strong couplings and, on the top quark mass Mt

which is known with less precision.
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The observational bound on the spectral index

0.94 < ns < 0.99

For Mt = 171 Gev the range of CMB compatible
Higgs mass

135.62 Gev . MH . 184.49 Gev

The upper bound on ns does not generate
restrictions on MH .

The lower CMB bound gives both the upper and
lower restrictions on MH .



In the stability range of MH the anomalous scaling

runs from big negative values A(0) < −20 at the

electroweak scale to small negative values.

This makes the CMB data compatible with the

generally accepted Higgs mass range. The

knowledge of the anomalous scaling flow allows one

to obtain AIend and find the parameters of the CMB

power spectrum as functions of the Higgs mass.



Running of ξ(t)
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The comparison with the results by Bezrukov and
Shaposhnikov
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The comparison with the results by De Simone, Hertzberg and
Wilczek
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Conclusions and discussion

I The model looks remarkably consistent with CMB
observations in the Higgs mass range

135 GeV . MH . 185 GeV,

I The lower CMB bound ns(k0) > 0.94. gives both the
upper and lower restrictions on MH .

I Our approach represents the RG improvement of our
analytical results obtained in the one-loop approximation.



I A peculiar feature of this formalism is that for large
non-minimal coupling ξ À 1 the effect of the Standard
Model particle phenomenology on the parameters of
inflation is completely encoded in one quantity – the
anomalous scaling AI.

I The RG running raises a large negative value of A(0) at
the electroweak scale to a small negative value at the
inflation scale.

I This mechanism can be regarded as asymptotic freedom,
because AI/64π2 determines the strength of quantum
corrections in inflationary dynamics.

I The source of this asymptotic freedom is somewhat
different from that caused by the domination of vector
boson loops over the fermionic and Higgs field ones in
non-gravitational gauge theories. Rather it is a
suppression of the Higgs-inflaton propagators due to a
strong non-minimal mixing in the kinetic term of the
graviton-inflaton sector.



Some open questions

I The correct definition of the damping s-factor
for the scalar field propagators.

I The problem of gauge dependence of the
effective potential.

I The Jordan frame versus Einstein frame.

I The Cartesian coordinates for a scalar field
multiplet versus spherical ones.

I Possible applications to quantum cosmology.



Ultimately,

it will be strongly anticipated discovery of

the Higgs particle at LHC and the more

precise determination of the primordial

spectral index ns by the Planck satelllite that

might decide the fate of this model.


