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Conformal Cosmology (I)

The idea is simple: we should exploit the conformal symmetry,
even so that it is obviously broken.

Conformal Cosmological (CC) models (A. Friedman; F. Hoyle &
J. Narlikar; V. Pervushin; . . . ) are alternative to SC.

First of all, we have to prove that CC could provide a valuable
phenomenology.

That is not trivial. In particular, we know that the Hoyle-Narlikar
model fails in description of WMAP and SNe Ia data.

In parallel, one can try to build a fundamental theory of GR and
Cosmology starting from the conformal symmetry, see e.g.
[D. Blas, M. Shaposhnikov, D. Zenhusern, PRD 2011].

One should also describe the mechanism of conformal symmetry
breaking.
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Conformal Cosmology (II)

Postulate the definition of conformal variables F
(n)
C via the

standard ones F
(n)
s and the cosmological scale factor a for the

given conformal weight:

F
(n)
c = a−nF

(n)
s

The conformal interval ds̃2 is then

ds̃2 = a−2 · ds2 = a−2
[
(dt)2 − a2(dxk)2

]
= (dη)2 − (dxk)2

where η = a−1t is the conformal time.

Postulate of CC: only conformal quantities are measurable
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Conformal Cosmology (III)

The Einstein–Friedman equations in the Conformal Cosmology for
a flat universe read:

(
da

dη

)2

= ρη = H2
0Ω(a), Ω(1) = 1,

Ω(a) ≡ ΩΛa
4 +ΩMattera+ΩRadiation +ΩRigida

−2

where η is the conformal time, H0 is the present-day Hubble
parameter.

Remind the SC equation:

(
da

adt

)2

= H2
0 a

−4Ω(a)
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Conformal Cosmology (IV)

The Conformal Cosmology is based on the Weyl definition of the
measurable interval as the ratio of the Einstein interval and units
defined as reversed masses:

1 + z =
λ0 m0

[λ0a(t)] m0
=

λ0 m0

λ0 [a(t)m0]

where λ0 is the wave length of a photon emitted at the present day
instance and m0 is a standard mass used for measurements.
In CC all masses are running: m(η) = m0a(η).

The SC definition corresponds to expansion of lengths:

(1 + z)sc =
λ0

[λ0a(t)]

The CC definition corresponds to decreasing masses:

(1 + z)cc =
m0

[m0a(t)]
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The rigid state (I)

Definition of the rigid state:
it is the state for which pressure is equal to the density,

rigid state ⇔ P = wρ for w = 1

N.B. Rigid state is not the same as the steady state in the
Hoyle-Narlikar model.

The question: what kind of physical state can it be?
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The rigid state (II)

The fit of SNe Ia data within the Standard Cosmology, where the
measured distance is identified with the standard space interval,
gives

ΩΛ ≈ 0.7,

ΩMatter ≈ 0.3,

ΩRadiation ≈ 0,

ΩRigid ≈ 0

The corresponding fit in the CC gives a different content of the
Universe (see below)
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SNe Ia in CC (II)

The fit of SNe Ia data within the Conformal Cosmology gives

The fit for CC models for the total Davis et al. sample without
constraints on Ωm.

Constraints on Ωm Ωm ΩΛ Ωrad Ωrig χ2

No constraints .20 .03 0.00 0.81 203.03

The χ2 values for pure flat CC models for the total sample.

Model types Ωm = 1 ΩΛ = 1 Ωrad = 1 Ωrig = 1

χ2 1312.74 6350.61 590.60 238.62

Ref.: A. Zakharov and V. Pervushin, Conformal Cosmological Model Parameters with Distant SNe Ia Data: ’gold’

and ’silver’, Int.J.Mod.Phys. D 19 (2010) 1875 [arXiv:1006.4745 [gr-qc]]
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SNe Ia in CC (II)

The fit of SNe Ia data within the Conformal Cosmology gives

CC optimal
SC optimal
CC rigid
CC matter
CC lambda
CC rad

Ref.: A. Zakharov and V. Pervushin, Conformal Cosmological Model Parameters with Distant SNe Ia Data: ’gold’

and ’silver’, Int.J.Mod.Phys. D 19 (2010) 1875 [arXiv:1006.4745 [gr-qc]]
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Chemical evolution epoch

The scale factor behavior during the chemical evolution epoch is rather
well known from observations. The description of the primordial helium
abundance requires the square root dependence of the z-factor on the
measurable time-interval

(1 + z)−1 ∼
√
tmeasurable

In SC this dependence is explained by radiation dominance.

In CC it is explained by the universal rigid state dominance,

(1 + z)−1 = aI
√
1 + 2HI (η − ηI )

see details in [D. Behnke, Conformal Cosmology Approach to the

Problem of Dark Matter, PhD Thesis, Rostock Report MPG-VT-UR
248/04 (2004)]
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Conformal action (I)

Let’s exploit both the affine and conformal symmetries: A(4)× C .
For the former the tetrade formalism of Fock and Cartan is applied.

The dilaton field D [Dirac 1973, Deser 1970, Ogievetsky 1973]
then is a Goldstone mode accompanying the spontaneous
conformal symmetry breaking via a scale transformation:

e
µ
(α) = ẽ

µ
(α)e

D

where e
µ
(α)

are the Fock tetrades which relate the Riemann and

Lorentz (tangential) spaces. Then

g̃µν = ẽ(α)µ ⊗ ẽ(α)ν → d̃s
2
= g̃µνdx

µdxν .
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Conformal action (II)

The conformal-invariant action

WC[D, ẽ(α)ν ] = −M2
C

3

8π

∫
d4x

[√−g̃

6
R (4)(g̃) e−2D

− e−D ∂µ

(√
−g̃ g̃µν ∂νe

−D
)]

where MC is the conformal Newton coupling constant.
This action is equivalent [Borisov & Ogievetsky, 1974] to the
standard Hilbert-Einstein one

WE[g ] = −(M2
Pl/16)

∫
d4x

√−gR (4)(g) for

ds2 = gµνdx
µdxν , gµν = e2D ẽ(α)µ ⊗ ẽ(α)ν , MPl = MC
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Dirac-ADM foliation

GR symmetry: kinemetric subgroup of general coordinate
transformation [Zelmanov 1956]

x0 → x̃0 = x̃0(x0), xk → x̃k = x̃k(x0, x1, x2, x3)

This admits the decomposition of the dilaton field into the sum of
the zeroth and nonzeroth harmonics:

D(x0, x1, x2, x3) = 〈D〉(x0) + D(x0, x1, x2, x3),

〈D〉(x0) = V−1
0

∫

V0

d3xD(x0, x1, x2, x3),

∫

V0

d3xD(x0, x1, x2, x3) ≡ 0.

N.B. A gap between 〈D〉 and D should be provided.
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Conformal Cosmology

In our version of CC, the zeroth dilaton harmonics coincides
by definition with the cosmological scale factor logarithm:

〈D〉 = − ln a = ln(1 + z)
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Lapse function

The ADM factorization of the lapse function

N(x0, x j ) = N0(x
0)N (x0, x j )

by the spatial volume average

〈N−1〉 ≡ 1

V0

∫

V0

d3x
1

N(x0, x1, x2, x3)
= N−1

0 (x0)

yields the diffeo-invariant proper dilaton time interval dτ

dτ = N0(x
0)dx0 = a−2dη = a−3dt

The normalization condition for the diffeo-invariant lapse function

〈N−1〉 ≡ 1

V0

∫

V0

d3x
1

N (x0, x j)
= 1
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Dilaton separation

Identifying the zeroth dilaton mode 〈D〉 with the evolution
parameter provides

P〈D〉 =
2

V0

∫

V0

d3x
√−gg00 d

dx0
〈D〉 ≡ 2

d

dτ
〈D〉 = 2v〈D〉 = Const. 6= 0

which can be treated as a generator of the Hamiltonian evolution
in the WDW field space of events.
N.B. Scale-invariance (D → D +Ω) admits only a constant P〈D〉.

The orthogonality condition for D excludes its dependence on the
evolution parameter. Therefore, the canonical momentum of
dilaton nonzeroth modes is equal to zero:

PD/2 = vD =
[
(∂0 − N l∂l)D + ∂lN

l/3
]
/N = 0

N.B. In the Dirac approach the condition vD = 0 was introduced
as an additional second class constraint.
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Action decomposition

WC = WUniverse︸ ︷︷ ︸
=0 for V0=∞

+ Wgraviton + Wpotential,

WUniverse = −V0

τ0∫

τI

dx0N0︸ ︷︷ ︸
=dτ

[(
d 〈D〉
N0dx0

)2

+ ρvτ

]
,

Wgraviton =

∫
d4x

N

6

[
v(a)(b)v(a)(b) − e−4DR (3)(ẽ)

]
,

Wpotential =

∫
d4xN



4

3
e−7D/2△(3)e−D/2

︸ ︷︷ ︸
Newtonian potentials



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Empty Universe Action

WUniverse = −V0

τ0∫

τI

dx0N0︸ ︷︷ ︸
=dτ

[(
d 〈D〉
N0dx0

)2

+ ρvτ

]

where the new term ρvτ is introduced as a possible vacuum energy
contribution

dτ = N0(x
0)dx0 = a−2dη = a−3dt
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Empty Universe limit (I)

At the beginning of Universe in the limit a → 0, action WUniverse

dominates. That means that the Universe was empty, only zeroth
modes of (any) field were there.
Variation of the action with respect to two independent variables
〈D〉 and N0 gives

δWUniverse

δ〈D〉 = 0 ⇒ 2∂τ [∂τ 〈D〉] = dρvτ
d〈D〉 ,

δWUniverse

δN0
= 0 ⇒ [∂τ 〈D〉]2 = ρvτ .

The latter preserves the conformal symmetry (〈D〉 → 〈D〉+ C ), if

ρvτ ≡ H2
τ = H2

0 = Const, where Hτ ≡ −∂τ 〈D〉
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Empty Universe limit (II)

The corresponding Friedman equation:

[∂ηa]
2 = ρcr/a

2 , ρcr = H2
0

(
3M2

Pl

8π

)
≡ H2

0

Then the rigid state horizon is defined:

dhor(a) = 2

a∫

aI→0

da
a√
ρcr

=
a2

H0

The CC coordinate distance – redshift relation for the photon on
the light cone ds2C = dη2 − dr2 = 0 reads

e−〈D〉 ≡ a(η) =
√

1 + 2H0(η − η0); r = η − η0,
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Universe Vacuum Energy (I)

In the Early Universe epoch m(a) = m0a
a→0−→ 0.

The Casimir vacuum energy for a massless field f

H
(f )
Cas =

∑

k

√
k
2

2
=

γ̃(f )

dCas(a)

where γ̃(f ) depends on volume shape, spin etc. Typically for a
sphere γ̃ ∼ 0.1÷ 0.03.
Naturally the energy density is proportional to the inverse size:

ρvη(a) =
∑

f

H
(f )
Cas

V0
=

C0

dCas(a)
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Universe Vacuum Energy (II)

The key assumption: the Casimir dimension dCas(a) is equal to the
Universe horizon:

dCas(a) ≡ dhor(a) = 2

a∫

aI→0

da [ρvη(a)]
−1/2 = 2C0

−1/2

a∫

aI→0

da d
1/2
Cas

This Eq. has the solution

d
1/2
Cas(a) = [C0]

−1/2a → dCas(a) =
a2

C0

Therefore C0 = H0. I.e. the dimensionfull Hubble parameter is
defined by the Universe Casimir vacuum energy.
Here the finite size of the Universe is the only source of the
conformal symmetry breaking.
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Hierarchy of cosmological scales (I)

At the rigid state horizon ηhor = rhor(z) = 1/[2H0(1 + z)2] the
four-dimensional space-time volume is

V
(4)
hor =

4π

3
r3hor(z) · ηhor(z) =

4π

3 · 16H4
0 (1 + z)8

We suggest to exploit the Plank least action postulate and assume
that at the origin the Universe action was minimal:

WUniverse = ρcrV
(4)
hor(aPl) =

M2
Pl

H2
0

1

32(1 + zPl)8
= 2π~
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Hierarchy of cosmological scales (II)

Using the present day (τ = τ0) observational data for the Planck
mass and the Hubble parameter

MC e〈D〉(τ0) = MPl = 1.2211 · 1019GeV, 〈D〉(τ0) = 0,

d

dτ
〈D〉(τ0) = H0 = 1.4332 · 10−42GeV ,

we get the primordial redshift value

a−1
Pl = (1 + zPl) ≈ [MPl/H0]

1/4 [4/π]1/8/2 ≃ 0.85 × 1015

N.B. the Plank mass and the present day Hubble parameter value
are related to each other by the age of the Universe expressed in
terms of the cosmological scale factor.
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Hierarchy of cosmological scales (III)

The Poincaré classification of energies arises from the
decomposition of the mean one-particle energy

ωτ = a2
√

k2 + a2M2
0 conjugated to the dilaton time interval:

〈ω〉(n)(a) = (a/aPl)
(n)H0

where 〈ω〉(0)0 = H0, 〈ω〉(2)0 = k0, 〈ω〉(3)0 = M0, 〈ω〉(4)0 = M0Pl. The
conformal weights n = 0, 2, 3, 4 correspond to: the dilaton velocity
vD = H0, the massless energy a2

√
k2, the massive one M0a

3, and
the Newtonian coupling constant MPla

4, respectively.

Nonrelativistic particle (n = 1) can be added, ωnonr.
τ = a1k2/M0.
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Hierarchy of cosmological scales (IV)

This leads to the hierarchy law of the present day (a = 1)
cosmological scales

ω
(n)
0 ≡ 〈ω〉(n)(a)

∣∣∣
(a=1)

= (1/aPl)
(n)H0 ⇒

Hierarchy of cosmological scales in GeV (M∗
Pl =

√
3/(8π)MPl)

n n=0 n=1 n= 2 n=3 n=4

ω
(n)
0 H0≃1.4 ·10−42 R−1≃10−27 k0≃10−12 φ0≃300 M∗

Pl≃4·1018

N.B. k0 ≈ 3◦ K (CMB temperature), φ0 is the EW scale.
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The initial moment

aPl ≡ aI depends on the dominant state:

rhor(a) =

a∫

0

dā ρ
−1/2
conform.(ā) ⇒ aI =

(
H0

MPl

)1/nj

Matter dominance, n = 1, aI , dust ≈ 10−61;
Radiation dominance, n = 1, aI , rad. ≈ 10−30;
Λ term dominance, aI , Λ =???;
Rigid state dominance, n = 4, aI , rigid ≈ 10−15.
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Scale invariance breaking in SM (I)

Let’s consider vacuum creation of scalar (Higgs) bosons. Following
Kirzhnits [1972] we assume that the vacuum expectation is received
from cosmological averaging [Einstein, 1917] of the scalar field:

φ = φ0 + h̄
1

a
√
2
,

∫
d3xh̄ = 0 (1)

So that the breaking of the scale invariance in SM happens in the
same way as in CC.
N.B. Then the whole SM picture is reproduced. But the tachyon
mass is treated not as a fundamental parameter, but as a
consequence of the non-zero vacuum expectation value.
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Scale invariance breaking in SM (II)

The corresponding part of the SM action at the Planck epoch
should also satisfy the Planck least action postulate:

WSM(aPl) ∼ λSM φ4
0 a

4
Pl V

(4)
hor(aPl ) = 2π~

where λSM ∼ 1 and the volume was defined above. This gives

φ0 ≈ a−3
Pl H0 ≈ 100 GeV

N.B. The same comes from the uncertainty principle ∆η ·∆Eη ≥ 1.

Vacuum stability conditions at a = 1

< 0|0 > |φ=φ0
= 1,

d < 0|0 >

dφ

∣∣∣∣
φ=φ0

= 0

yield constraints on the Coleman–Weinberg effective potential

Veff(φ0) = 0,
dVeff(φ0)

dφ0
= 0
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Vacuum creation of primordial particles

Conformal weights of gravitons and scalar particles provide their
nontrivial interaction with dilaton contrary to the cases of fermions
and photons.

That leads in CC to intensive vacuum creation of gravitons and
Higgs bosons.

Let’s look at the main steps of the derivation.
See details in [A.A. et al. PLB 2010].
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Vacuum creation of primordial scalars (I)

In the mean-field approximation, Higgs bosons are described by the action

Wh =

∫
dτ

∑

k2 6=0

vh
k v

h
−k−hkh−ka

2ωh
0k

2

2
=

∑

k2 6=0

ph−kv
h
k − Hh

τ ,

where

ωh
0k(a) =

√
k2 + a2M2

0h

is one-particle energy with respect to the conformal time interval.

For small a, when the mass term in the one-particle energy is less than
the conformal Hubble parameter value aM0h < H0a

−2, particles can be
considered as massless:

ωh
0k(a) ≈

√
k2
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Vacuum creation of primordial scalars (II)

Evolution equations for the Higgs field are solved in the usual way using
the Bogoliubov transformations (squeezing and rotation) with parameters
rhk and θhk .

〈0|Hh
η(a)|0〉 =

∑

k

ωh
0k|βk|2 =

∑

k

ωh
0k

cosh{2rhk (a)} − 1

2
.

Note that zero boundary conditions at a = aI (at the beginning of
creation)

rg k(aI ) = 0, θgk (aI ) = 0

can be assumed. While the Casimir vacuum energy provides non-trivial
solutions.
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Vacuum creation of primordial scalars (III)

Parameters of squeezing r
g
k and rotation θgk should satisfy the equations

∂ηr
g
k = Hη cos 2θ

g
k ,

ωg
0k − ∂ηθ

g
k = Hη coth 2r

g
k sin 2θgk ,

ωg
Bk =

ωg
0k − ∂ηθ

g
k

coth 2rgk
.

A numerical solution is received.

An approximate solution: rappr ≃ 2〈D〉I is reached after the relaxation
time

ηrelax ≃ 2e−2〈D〉I /(2H0) ≡ 2a2I /(2H0),

i.e. a2relax ≃ 2a2Pl.
The corresponding energy

〈0|Hh
k |0〉

∣∣
(a>arelax)

=ωh
0k

cosh[2rhk ]− 1

2
≈ ωh

0k

4a4I
.
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Vacuum creation of primordial scalars (IV)

The sum of energies over k is formally deivergent. But we recongnize
here the Casimir vacuum energy:

〈0|Hh
η|0〉

∣∣
(a>arelax)

≈ 1

2a4I

∑

k

ωh
0k

2
≡ Hh

η Cas(a)

2a4I

The total energy of the created bosons

〈0|Hh
η|0〉 ≃

γ̃H0

4a2a4I
.

It appeared that the dilaton initial data aI = e−〈D〉I and H0 determine
both the total energy of the created particles and their occupation
number Nh at the relaxation time:

Nh(arelax) ≃
〈0|Hh

η|0〉
〈ωh

k 〉
≃ γ̃(h)

16a6I
≃ 1087,

where we divided the total energy by the mean one-particle energy
received from the hierarchy law.
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Number of CMB photons

The number of CMB photons within the Universe horizon is known:

Nγ = 411cm−3 · 4πr
3
h

3
≃ 1087

On the other hand, assuming thermalization of primordial particles,
we get the same order of magnitude, i.e.

Nγ ∼ Nh

N.B. The CMB energy scale (temperature) satisfies the following
relation:

(Nγ)
1/3 ≃ 1029 ≃ λCMBH

−1
0

I.e. CMB photons are “packed” in a cube of the volume V0 ∼ H−3
0 .
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Outlook

Trying to build a model based on conformal and affine
symmetries is certainly worth doing
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Outlook

Trying to build a model based on conformal and affine
symmetries is certainly worth doing

Non-linear realization of these symmetries in GR is
possible without breaking it

A natural way to get the Universe evolution is there

Extensive creation of primordial particles is described in
CC under certain assumptions

Explanation of dark matter, CMB power spectrum, etc. in
CC — to be done
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THANK YOU FOR ATTENTION!
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