
Particle Production in R
2 Gravity

Elena Arbuzova

Dubna University

Hot Topics in Modern Cosmology
Spontaneous Workshop VI
7 - 12 May, 2012, Cargese

Elena Arbuzova Particle Production . . .



Cosmological Evolution and Particle Production

in R2 Gravity

E.V. Arbuzova, A.D. Dolgov, L.Reverberi
JCAP02(2012)049, e-Print: arXiv:1112.4995.

The Universe evolution during the radiation-dominated
epoch in the R2–extended gravity theory is considered.

The equations of motion for R and H are solved
analytically and numerically.

The particle production rate by the oscillating curvature is
calculated in one-loop approximation.

The back reaction of particle production on the evolution
of R is taken into account.

Possible implications of the model for cosmological
creation of non-thermal dark matter are discussed.
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Particle Production and Back Reaction

We derive a closed equation of motion for cosmological
evolution of R in the model with the action

S = −
m2

Pl

16π

∫∫∫

d4x
√

−g

(

R−
R2

6m2

)

+ Sm

with the account of the back-reaction of particle production.
Cosmological models with an action quadratic in the curvature
tensors:

Ya.B. Zeldovich, A.A. Starobinsky, JETP Lett. 26, 252,
1977.

V.Ts. Gurovich, A.A. Starobinsky, Sov. Phys. JETP 50
(1979) 844; [Zh. Eksp. Teor. Fiz. 77 (1979) 1683];

A.A. Starobinsky, JETP Lett.30 (1979) 682; [Pisma Zh.
Eksp. Teor. Fiz. 30 (1979) 719].
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Pioneering Papers

In such models the universe may have experienced an
exponential (inflationary) expansion without invoking phase
transitions in the very early Universe.

A. A. Starobinsky, Phys. Lett. B91, 99 (1980).

This model has a graceful exit to matter-dominated stage
which is induced by the new scalar degree of freedom, the
scalaron (curvature scalar), which becomes a dynamical field
in R2-theory.
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Pioneering Papers

A. A. Starobinsky. Nonsingular model of the Universe
with the quantum-gravitational de Sitter stage and its
observational consequences. In: Proc. of the Second
Seminar ”Quantum Theory of Gravity” (Moscow, 13-15
Oct. 1981), INR Press, Moscow , 1982, pp. 58-72;
reprinted in: Quantum Gravity, eds. M. A. Markov and P.
C. West. Plenum Publ. Co., N.Y., 1984, pp. 103-128.

Higher-order terms appear as a result of radiative corrections
to the usual Einstein-Hilbert action after taking the
expectation value of the energy-momentum tensor of matter in
a curved background.
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Pioneering Papers

The reheating process, due to gravitational particle production
from scalaron oscillations, leads to a transition to a
Friedmann-like Universe.

Ya.B. Zeldovich, A.A. Starobinsky, JETP Lett. 26, 252,
1977.

A. Vilenkin, Phys. Rev. D32, 2511 (1985).
The estimation of particle production rate by the
oscillating gravitational field in R2 gravity:

Γ ∼ m3/m2
Pl .

M. B. Mijić, M. S. Morris and Wai-Mo Suen, Phys. Rev.
D34, 2934 (1986).

Wai-Mo Suen, P. R. Andreson, Phys. Rev. D35,
2940-2954 (1987).
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Recent Papers

Recent consideration of further processes of matter
heating:

D. S. Gorbunov and A. G. Panin, ”Scalaron the mighty:
producing dark matter and baryon asymmetry at
reheating”, arXiv:1009.2448;
”Free scalar dark matter candidates in R2-inflation: the
light, the heavy and the superheavy”, arXiv:1201.3539.

Hayato Motohashi, Atsushi Nishizawa,”Reheating after
f (R) inflation”, arXiv:1204.1472.
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Particle Production in R2 Gravity

We consider a massless scalar field φ minimally-coupled to
gravity:

Sφ =
1

2

∫∫∫

d4x
√

−g gµν∂µφ∂νφ .

In spatially-flat FRW background it leads to the equation of
motion:

φ̈+ 3Hφ̇− 1

a2
∆φ = 0 .

Field φ enters the equation of motion for R

R̈+ 3HṘ+m2

(

R+
8π

m2
Pl

Tµ
µ

)

= 0

via the trace of its energy-momentum tensor:

Tµ
µ(φ) = −gµν∂µφ∂νφ ≡ −(∂φ)2 .
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Conformal Quantities

For the conformally rescaled field, χ ≡ a(t)φ, and conformal
time η, such as a dη = dt, the action takes the form:

Sχ =
1

2

∫
∫
∫

dη d3x

(

χ′2 − (~∇χ)2 − a2R

6
χ2

)

.

The equations of motion read:






























R′′ + 2
a′

a
R′ +m2a2R =

8πm2

a2m2
Pl

[

(χ′)2 − (∇χ)2

+
a′2

a2
χ2

−

a′

a
(χχ′ + χ′χ)

]

,

R = −6a′′/a3 ,

χ′′ −∆χ+ (1/6) a2Rχ = 0 .

Here and above prime denotes derivative with respect to
conformal time.
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Quantization

Our aim: to derive a closed equation for R taking the
vacuum average value of χ-dependent quantum operators in
presence of an external classical gravitational field R.

One-loop approximation: A.D. Dolgov, S.H. Hansen,
Nucl.Phys. B548, 408 (1999); arXiv: hep-ph/9810428.

We quantize the free field χ as usually:

χ(0)(x) =

∫∫∫

d3k

(2π)3 2Ek

[

âk e
−ik·x + â†k e

ik·x
]

with the Bose commutation relations:
[

âk, â
†
k

]

= (2π)3 2Ek δ
(3)(k− k′).

where xµ = (η, x), kµ = (Ek, k), and kµk
µ = 0.
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One-loop approximation

Equation of motion

χ′′ −∆χ+ (1/6) a2Rχ = 0

has the formal solution

χ(x) = χ(0)(x)− 1

6

∫
∫
∫

d4yG(x, y) a2(y)R(y)χ(y)

≡ χ(0)(x) + δχ(x) .

The massless Green function is:

G(x, y) =
1

4π|x − y|
δ ((x0 − y0)− |x− y|)

≡
1

4πr
δ(∆η − r) .
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One-loop Approximation

We assume:
particle production effects slightly perturb the free
solution;

δχ can be considered small;

Dyson-like series can be truncated at the first order:

χ(x) ≃ χ(0)(x)−
1

6

∫∫∫

d4yG(x, y) a2(y)R(y)χ(0)(y)

≡ χ(0)(x) + χ(1)(x) .

All terms containing only χ(0) and its derivatives are not
related to particle production and can be re-absorbed by a
renormalization procedure into the parameters of the theory.
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Vacuum Expectation Values

The first order in χ(1):

〈χ2〉 ≃ − 1

48π2

∫
∫
∫ η

η0

dη′
a2(η′)R(η′)

η − η′
,

〈χ′2 − (~∇χ)2〉 ≃ − 1

96π2

∫
∫
∫ η

η0

dη′
(a2(η′)R(η′))′′

η − η′
,

〈χχ′ + χ′χ〉 ≃ −
1

48π2

∫∫∫ η

η0

dη′
(a2(η′)R(η′))′

η − η′
.

We obtain closed integro-differential equation from

R′′ + 2
a′

a
R′ +m2a2R =

8πm2

a2m2
Pl

[

(χ′)2 − (∇χ)2

+
a′2

a2
χ2

−

a′

a
(χχ′ + χ′χ)

]
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Dominant Contribution

The scale factor a basically follows a power-law expansion,
so it varies very little during many oscillation times ω−1.
We expect that dη/η ∼ dt/t and that the dominant
part is given by derivatives of R, since
R′ ∼ ωR+ t−1R ≃ ωR, because ωt ≫ 1.

The dominant contribution of particle production:

R̈+ 3HṘ+m2R ≃−
1

12π

m2

m2
Pl

1

a4

∫∫∫ η

η0

dη′
(a2(η′)R(η′))′′

η − η′

≃ − 1

12π

m2

m2
Pl

∫∫∫ t

t0

dt′
R̈(t′)

t− t′
.

The equation is naturally non-local in time since the impact of
particle production depends upon all the history of the
evolution of the system.
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Truncated Fourier expansion:

R(τ) = C (τ) + Ds(τ) sinm1τ + Dc(τ) cosm1τ

The r.h.s. of previous equation:

g

∫∫∫ t

t0

dt′
R̈(t′)

t − t′
= g

∫∫∫ t−t0

0
dτ

R̈(t − τ )

τ
=

= g

∫∫∫ t−t0

ǫ
dτ

C̈

τ
+

+g cos (m1t)

∫
∫
∫ t−t0

ǫ
dτ

1

τ
[Fc cos (m1τ)− Fs sin (m1τ)]+

+g sin (m1t)

∫∫∫ t−t0

ǫ
dτ

1

τ
[Fc sin (m1τ) + Fs cos (m1τ)] ,

where g ≡ −

1

12π

m2
1

m2
Pl

and

Fc ≡ D̈c + 2m1Ḋs −m2
1Dc , Fs ≡ D̈s − 2m1Ḋc −m2

1Ds .
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Equations for Coefficients

Equating the coefficients multiplying the slow varying terms,
sinm1t, and cosm1t, we obtain the complete set of equations
with the account of particle production.

In the first three equations effects of particle production do
not directly appear:

Ȧ+ 2A2 + B2
s + B2

c = −C/6 ,

Ḃs −Bcm1 + 4ABs = −Ds/6 ,

Ḃc + Bsm1 + 4ABc = −Dc/6 .
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Coefficients with Back-Reaction

The remaining three ones have the additional terms:

C̈+ 3AĊ+
3

2
BsḊs +

3

2
BcḊc −

3

2
m1BsDc +

3

2
m1BcDs +m2C

≃ g

∫ t−t0

ǫ

dτ
C̈

τ
,

D̈s + (m2
−m2

1)Ds − 2m1Ḋc + 3A(Ḋs −m1Dc) + 3ĊBs

≃ g

∫ t−t0

ǫ

dτ
Fs cos(mτ) + Fc sin(mτ)

τ
,

D̈c + (m2
−m2

1)Dc + 2m1Ḋs + 3A(Ḋc +m1Ds) + 3ĊBc

≃ g

∫ t−t0

ǫ

dτ
Fc cos(mτ)− Fs sin(mτ)

τ
.
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Analysis of Equation

We analize equation:

D̈s + (m2
−m2

1)Ds − 2m1Ḋc + 3A(Ḋs −m1Dc) + 3ĊBs

≃ g

∫ t−t0

ǫ

dτ
Fs cos(mτ) + Fc sin(mτ)

τ
.

The effective value of τ is about 1/m.

We approximate F(t− τ) ≈ F(t) and take such factors out
of the integrals.

We neglect D̈ in comparison with m
2
D.

The dominant term, which is the coefficient multiplying Ds,
determines the renormalization of m:

m2
1 = m2 + gm2

∫∫∫ t−t0

ǫ

dτ

τ
cosmτ .
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Decay Rate

The next subdominant term, which is the coefficient in front of
Ḋc, determines the decay rate of Dc:

Ḋc =
gm

2
Dc

∫ t−t0

ǫ

dτ

τ
sinmτ ≈

πgm

4
Dc .

We skipped here the term gḊc, which leads to higher order
corrections to the production rate.

The decay rate:

ΓR = −πgm

4
=

m3

48m2
Pl

.

Correspondingly the oscillating part of R or H behaves as

cosm1t → e−ΓRt cosm1t .

We use this result in the calculation of the energy density influx of
the produced particles into the primeval plasma.
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Gravitational Particle Production

The amplitude of gravitational production of two identical χ
particles with momenta p1 and p2 in the first order in PT:

A(p1,p2) ≃
∫∫∫

dη d3x
a2R

6
〈p1,p2 |χχ| 0〉 ,

where the final two-particle state is defined by

|p,q〉 = 1√
2
â†p â

†
q|0〉 .

We find

〈p1,p2|χχ|0〉 =
√
2 ei(Ep1

+Ep2
)η−i(p1+p2)·x .

Here E2
k = k2, and the function a2R has the form

a2(η)R(η) = D(η) sin (ω̃η) ,

where D(η) is a slowly-varying function of conformal time, ω̃ is
the frequency conjugated to conformal time.
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Particle Production Rate

Under these approximations, the amplitude becomes:

A(p1,p2) =
i

6
√
2

∫∫∫

dηd3xD(η)(eiω̃η − e−iω̃η)ei(Ep1
+Ep2

)ηe−i(p1+p2)x

Taking Epi ≥ 0 and neglecting the variation of D with time:

A(p1,p2) ≃ − i

6
√
2
D(η)(2π)4 δ(3)(p1 + p2) δ(Ep1 + Ep2 − ω̃) .

The particle production rate per unit comoving volume and unit
conformal time:

n′ =

∫∫∫

d2p1 d
3p2

(2π)6 4 Ep1Ep2

|A(p1, p2)|2
V∆η

≃ D2(η)

576π
,

n is the number density of the produced particles

prime denotes derivative with respect to conformal time.
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Energy Rate

The rate of gravitational energy transformation into
elementary particles:

̺′ =
n′ω̃

2
=

D2(η)ω̃

1152π
.

The rate of the physical energy density variation of the
produced χ-particles:

˙̺χ =
m〈R2〉
1152π

.

〈R2〉 is the square of the amplitude of oscillations of R, ω̃ = am.

The total rate of production of matter:

˙̺PP = Neff ˙̺χ ,

where Neff is the number of the produced particle species.
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Evolution of the Cosmological Energy Density of Matter

The evolution of the cosmological energy density of
matter is determined by the equation:

˙̺ = −4H̺+ ˙̺PP .

We assume:
The produced matter is relativistic and so the first term in
the r.h.s. describes the usual cosmological red-shift.
The second term is the particle source from the
oscillations of R.
Since ̺ is not oscillating but a smoothly varying function
of time, its red-shift is predominantly determined by the
non-oscillating part of the Hubble parameter:

h(τ ) ≃ α + β τ 1/4 sin(ωτ + ϕ)

2τ
≡ α

2τ
+ hosc .
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Evolution of the Cosmological Energy Density

Parameterizing the oscillating part of the Hubble parameter as

Hosc ≃ β cosmt/t ,

we find the oscillating part of curvature:

R ≃ −6βm sinmt

t
e−ΓRt .

Here we took into account the exponential damping of R ,
which was for brevity omitted in the expression for H.

Correspondingly the energy density of matter obeys
the equation:

˙̺ = −
2α

t
̺+

β2m3Neff

32πt2
e−2ΓRt .
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˙̺ = −2α

t
̺+

β2m3Neff

32πt2
e−2ΓRt .

Short times, 2ΓRt < 1:
We neglect the exponential damping factor.

The energy density of matter would be:

̺ = ̺in

(

tin

t

)2α1

+
β2m3Neff

32π(2α1 − 1)t

(

1− t2α1−1
in

t2α1−1

)

.

The energy density of matter at the initial time tin is:

̺in =
3m2

Plκ

32πt2in
.

Parameter κ is arbitrary, and depends upon the thermal
history of the universe before tin.
κ = 0 is possible, since the equations of motion have
non-trivial oscillating solutions even if ̺ = 0.
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˙̺ = −2α

t
̺+

β2m3Neff

32πt2
e−2ΓRt .

Large times, 2ΓRt > 1:
We ignore the source (second) term and the equation
becomes homogeneous.

This choice corresponds to the GR solution and it is
realized when the oscillations disappear.

The solution is simply the relativistically red-shifted energy
density with the initial value determined at t = 1/(2ΓR):

̺ =
m6

768πm2
Pl (2ΓRt)2α2

[

κ

8
(2tinΓR)

2α1−2+

β2Neff

2α1 − 1

(

1− (2ΓRtin)
2α1−1

)

]

.
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Large times, 2ΓRt > 1

̺ =
m6

768πm2
Pl (2ΓRt)2α2

[

κ

8
(2tinΓR)

2α1−2+

β2Neff

2α1 − 1

(

1− (2ΓRtin)
2α1−1

)

]

.

The first term in this solution is the contribution of
normal thermalized relativistic matter.
The second term also describes relativistic matter, but
this matter might not be thermalized, at least during
some cosmological period.
Depending upon parameters the relative magnitude of
non-thermalized matter might vary from negligibly small
up to being the dominant one.
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Discussion and Implications

The characteristic decay time of the oscillating

curvature:

τR =
1

2ΓR

=
24m2

Pl

m3
≃ 2

(

105 GeV

m

)3

seconds .

The contribution of the produced particles into
the total cosmological energy density reaches its

maximum value at approximately this time.
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Discussion and Implications

The ratio of the energy density of the newly produced
energetic particles and that of those already existing in plasma:

̺hi

̺therm

=
8β2Neff

κ(2α1 − 1)

1 − (2ΓRtin)
2α1−1

(2ΓRtin)2α1−2
.

If we take tin ≃ 1/m, then tinΓR ≃ m2/m2
Pl ≪ 1 and

the effects of non-thermalized matter may be negligible.
For large β and possibly small κ the non-thermal particles
may play a significant role in the cosmological history.

The influx of energetic protons and antiprotons could have an
impact on BBN:

This would allow to obtain bounds on m or to improve
the agreement between theoretical predictions for BBN
and measurements of primordial light nuclei abundances.
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Implications or Observational Manifestations

Creation of heavy SUSY DM by oscillations of R.
Energy density of LSP thermally produced

̺ ∼ Nγ

σannmPl

∼ ̺c

(

mSUSY

103GeV

)2

If mSUSY > 1TeV, LSP cannot be thermally produced,
i.e. Universe was never heated up to mSUSY. However,
oscillatons of R could create heavy LSP with ̺ ∼ ̺c.

Impact on BBN by energetic p, p̄, and other particles, e.g.
γ, (work in progress).

In contemporary Universe R may oscillate in wide
frequency range: (radio)< ω < m, and create
observable sources of radiation.
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CONCLUSIONS

In R2-cosmology R and H oscillate with
frequency m and with initially rising amplitude.
Cosmological evolution differs from GR even if

m → ∞, e.g. 〈H〉 6= 1/(2t).
Particle production by oscillating R damps

oscillations, returning to GR.

Oscillating R might be source of non-thermal
DM, e.g. of very heavy LSP.
In contemporary astronomical objects oscillation frequency
could vary from m down to very low frequency. The
oscillations may produce radiation from high energy
cosmic rays down to radio waves.
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THE END

THANK YOU FOR THE

ATTENTION!
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