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Plan

= After a short review of Palatini gravity
we give descriptive account of some
recent cosmological models with non-
minimal coupling between scalar field
and curvature in this framework. The

topics to be discussed include:
® Generalized Friedmann eguation

= Estimation of model parameters by
astrophysical data




= Bayesian analysis of model comparison
and selection

= Dynamical system analysis in terms of
effective potential

= Comparison against the standard

(LCDM) cosmological model
= Statefinder diagnostics
= A role of quadratic Starobinsky term
= Future and initial singularities




What we call today Palatini formalism was firstly introduced

by Einstein himself (1925). It gives interesting alternative for

metric gravity. [t 1s genuine second order while metric
extensions are 4th order.




@ Palatini f(R)— gravity

Palatini formalism is based on the assumption that the metric
g and the torsionless (symmetric) connection [ are assumed to
be independent dynamical variables.

The action for f(R) Gravity is introduced to be:

A= Agrﬂv + Amat = [ \V dl:t f mut)ddf (1}

where R = R(g,I) = g™ Rup(I') is the generalized Ricci scalar
and R (l) is the Ricci tensor of a torsionless connection T

The gravitational part of the Lagrangian is controlled by a
given real analytic function of one real variable f(R). The
total Lagrangian contains also a matter part Ly in minimal
interaction with the gravitational field g and x = 8nG.

(As usual, assume the spacetime manifold to be a Lorentzian

manifold M with dim M = 4)




Equations of motion, ensuing from the first order & la Palatini
formalism are:

1
F(R)R{m-']{r} - 5“‘?}5#1-' = K Ty (2)
detg f'(R)g"") (3)
where [y = —jgﬁ,f‘gl?‘ denotes the matter source stress-energy

tensor and V' means covariant derivative with respect to I

In order to solve (3) one defines the metric h by

Vdet hh*Y = /detg f'(R)g"" (4)

As a result (!dim M =4) one gets

b = (R (5)

i.e. that both metrics h and g are conformally equivalent.




Therefore, as it is well known, equation (3) implies that

=T (h),

uv

and R(‘m-}(r) — Rll!"r'{:h:} — Rll!"r'-

Equation (2) can be supplemented by the scalar-valued

(structural) equation obtained by taking the trace of (2), (we
define T=1trT)

f'(R)R—2f(R) = kg™ Tap = KT (6)

which controls solutions of (2).

For any solution R = R(t) of (21) one can introduce a (1,1)
tensor F(R(Y))
v ) qv K v
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Now the system (2)-(3) reduces to the generalized Einstein
equations for the metric g under the form

guaPy'(7) = R (f'(R(7))g) (8)

o Matter-free case (= universality, M. Ferraris, M.
Francaviglia and |. Volovich)

f(Ro)
Rph-‘ {:g) — EF(ED:}

Euv

l.e.
Ruv (g8) = Ngu

where Ry is any solution to

F(R)R —2f(R) =0



Comparison with a purely metric formalism.

a’ﬂl — ‘ﬂ'gﬁl"r" _I' A]ij — / ||||.-' dEt f _|_ 2]":]’_]1]3'[ 4;1-'{

The same action leads to the fourth-order field eq.

/ 1 ,
f {RJR{M)(F) ) f{ :}Hm [T gm.-D]f [:Ff) — I'::Tm_-
After contraction it gives
F(R)R—2f(R)+30f'(R)=xt

Particularly, for T= 0, constant curvature solutions R = Ry of

the algebraic eq.
f'(R)R—2f(R)=0

are the same as in Palatini formalism.



@ Ricci type Lagrangians gr-qc/9906043

Let us consider a (1,1) tensor valued concomitant of a metric
g and a linear torsionless connection I defined by

Py =Pi(g.T) = g™ Ryw)(T)

One can use it to define a family of scalar concomitants of the
Riccl type
Pk = TI'F"J!{

for k=1,...n. We can eliminate the higher order Ricci scalars
pi with k > n=dim M, by using a characteristic polynomial
equation for the n x n matrix P. One immediately recognizes
that R=p; =trP and S =p; = trP?.

The universality property extends also to this class of
Lagrangians L=R+aR*+ bR,y R™




f(S) -Palatini gravity

A — Agnw _I_ -’ﬂlmﬂ[ — f \/ dEt I( + Eli:lr_mdt 4 (g:}

where S =5(g,IN) =g”“ﬁ{m.-]{r}g"‘"[ﬁﬁiﬁ#]{r} is the so called
Ricci squared invariant (in short 5 = R, R).

; 1
2'(S)g ™ Ry (N Ripw) (1) — F(S)gw =xTw  (10)
Vi(V/detgf'(S)g" Riap)(MN)g?*) =0 (11)

Again we try to solve (11) defmmg a new metric h

Vdet hh = \/detg f'(S)g"* Riap)(MNg"™

With the same strategy as before we first find 5(t) as a
solution of the structural equation

K

F(S)S—£(S) = zgﬂﬁ Tap =757 (12)



and then algebraic equation (10) by (P = P;]]I

pr_ ),k (13)

4(5(1))  2H'(5(x))

Mow, the solution for h takes the form

huy = hu(%) = £'(7)\/det P(2) guae (P71), (14)

i.e. in algebraic terms the metric h is conformal to

h=~(g~'Rg~') ' =P 'g (15)

The generalized Einstein equation for the system (10-11) is

R () = P& gy (16)



o Matter free case (T, =0) C.Q.G.15:43-54, 1998,

gr-qc/9611067

One has
(%)
N 41f'(Sp)

where Sp is any root of the structural eq.

F1(S)S —f(S) =0

=2 f

Therefore, universality extends also to this case.
What is novel with respect to the f(R)-case?!

After the suitable rescaling one gets
P? =4/
together with algebraic relation:

PTgF’::I:g



Putting things together in terms of differential geometry we
have obtained two types of differential-geometric structures on
the manifold M:

o almost-product metric structure; P =/,
g(PX,PY)=g(X,Y)

e.g. locally product pseudo-Riemannian, warped product
manifolds, etc.. LMP40:3446, 1999;dg-ga/9612009

;
@ almost-complex Norden structure: P = —/,

g(PX,PY)=—g(X,Y)

e.g. complex manifolds with complex holomorphic metric, the

so-called Norden-Kahler manifolds
Diff. Geom. Appl.12:281, 2000; math-phys/9906012



@ Scalar-tensor (dilaton) cosmology in the first-order
formalism PRD72:063505,2005;gr-qc /0504057

[ = ‘;/E[:l'r{:f?] -+ F(R:}Ld) + KL mat

where f(R) and F(R), some analytic functions,
R =g“ﬁﬁ’u[ﬁ(rj and Ly is a scalar (dilaton) field Lagrangian;

1 i
Ly = _55‘[& duOdy 0+ V (0)

The equations of motion can be recast into the form of
generalized Einstein equations

Ruv (b8) = 8uaPy’

supplemented by field equation for dilaton-like field ¢ (and
matter )

dy (vEF(R)g"9u0) = —/gF(R)V'(0)



where the operator

c f(R 1
P{L.I: E&[\J'_ {b ] dT¢!+E IT?&L’T'f

{b — b(R) =f'(R)+F'(R) Ly
c=c(R)=35(f(R)+F(R)Ly)

and R = R(1) is a solution to the structural equation

2f(R)—f'(R)R+1t=(F'(R)R—F(R)) Ly —F(R)V (0)

@ cosmological applications

For the case V(¢) = 0 generalized Friedmann equation reads:

C (3w; +1);
B 6b +Z 6hg3(l+w;)

_l.

where F(R)*Ly = A*a~° with an arbitrary positive integration
constant A°.




FRW metric

1
1 — Kr?

g=—dr2—|—az{r}[ dr® +r- (dHE—I—SinE{:H}de”. (17)

where a(t) is the so-called scale factor and K is the space
curvature (K =0,1,—1). Perfect fluid

p=wp , p=n,a it (18)

with a positive constant 1, > 0. We assume that realistic
matter w € {0,5} i.e. dust or radiation dominate the
Universes. The trace of the matter energy-momentum tensor

T = (3w — 1)[a(e)] 2O+

must satisfy structural equation
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Abstract.

We study new FRW type cosmological models of modified gravity treated on the background of Palatini
approach. These models are generalization of Einstein gravity by the presence of a scalar field non-minimally
coupled to the curvature. The models employ Starobinsky’s term in the Lagrangian and dust matter. Therefore,
as a by-product, an exhausted cosmological analysis of general relativity amended by quadratic term is
presented. We investigate dynamics of our models, confront them with the currently available astrophysical data
as well as against ACDM model. We have used the dynamical system methods in order to investigate dynamics
of the models. It reveals the presence of a final sudden singularity. Fitting free parameters we have
demonstrated by statistical analysis that this class of models is in a very good agreement with the data (including
CMB measurements) as well as with the standard ACDM model predictions. One has to use statefinder
diagnostic in order to discriminate among them. Therefore Bayesian methods of model selection have been

employed in order to indicate preferred model. Only in the light of CMB data the concordance model remains
invincible. 18




L=/g(f(R)+ F(R)La)+ Lma
Li = -50"8,46,0

2f(R)— f'(R)R+7 = (F'(R)R— F (R)) Ly

Cosmology from the generalized
Einstein equations

72 _ 2"+ F'La)[3f — "R+ (3F — F'R)Lg]

. ,, 3[2f— f' R+(F' R—F)L 4] [f"+(F"—2F—1(F")2)L4] ]
3 |:sz T _]:F’Lff _|_ f”R—f"-I—[F”R—EF’—EF_l[F’]QR:L.:[ ]

L= \/E (H T+ DL'RE + IJ'RRIH T "}"RH{TL:I) + Linat




New cosmological models: solution I
R=p=na"

where § £ 0,1.

(oo = 0




Quadratic gravity case

ever the case of Einstein gravity supplemented by the quadratic Starobinsky term corresponds
= y ) A 3
to §=0: Lggs = /G({R + aR") + Ly In this simplest case one gets

I} I
y 2 244001+ 217 .
N g SPeIbIE) ot sk piiam
Hy 12— Moa(l + 2P Tl




New cosmological models: solution II

2
. n " .
-;ni[n-mﬁ] s IES e

where £ = [ﬂgﬂ‘-& One needs 3{1 — 4), 76 > (. Now the parameter § cannot vanish.

; 3
Hy* - L8 41200, +2)55 + 25800 (1 +2)75
ﬂﬂ H-h- (21G(2) = Oy 3

W

Hi

a
[J— | G%i;l”unl] T2 '* ':IE_:I”'..'LH ﬁﬂ!]

[MH L |1i£ g (1 4 .1%5 | %Hm[l | :’JH}
M. =aHilg (g, ﬂﬂ,mﬂﬂ_];i

Q5K (0)G(0) =1.




In table 3 we display the best fitted parameters for all our models [,—q, f3—g. I, 11 —q, 11
ag well as for ACDM estimated by CosmoNest package. Parameters (g g, (g for models |
and parameter (1 ,, for models I1 are calculated using equations (4.7), (5.6) and estimated
values of the remaining parameters. We consider two cases: estimations with data sets com-
ing from late universe (i.e. SNIa, H{z) and BAO) and estimations including also information
from early universe (i.e. SNIa, H(z), BAO and CMRB). Top part of the table relates to the

models I: equation (4.6) - the parameters estimated without CME data

i o o o tp m [T oy i

1 a=0 0 s < 10,10 =, § (0,1 = - L.802 £ 2.718(7.007) ).288T 002 () 205) 0.02 &+ 0.01({0.01}) 0.043 0.382
2 Qe 0,40 =, 8 o 401 £ 0.079({4.393) 0.: (0.3 1.004 1.003
3 Qo €< —30,0 >, 2 g < —10,10 =, § (0,1 = ngg{—8-210) 5.BTB” ':'f:_;!‘:lﬂ.'liin:l: 0.238" ::_'E:;':':-:-ZZ.E'.Z'EI_l 0.25 4 ] K3 0.2 0.814 0.878

mode |‘i IT: equation (5.5} - the parameters estimated without CMB data

[ & !':.;.__-5 1o, m q0 W .0

1 o O, Qpeec —L 10> & (D,1) - 2.6727 0,997 £+ 0.004(1.000) 0.2564 £ 0.01T(D.250) 0.853 Z39( 0.1 0.242 0.43
B g g €< —60,—10 =, N . €< —1,6>, §& (0,1} 14.6887 L 314 —E7-B70) 0.7 0.5a8t0 .E!.:III" 0.580) 0.009 £ 0.005(0. 003 ) 29 0.68¢

maodel ACT \1 H JHy 1 Do.m 4 - the parameter estimated without CMB dat:
o m 90 Werrn
& Ngm < 0,1 = 0.268 7 [oa(0-268) D.613 0.742
models T: equation {4.6) - the parameters estimated \.'\I” \1I3 data added
Ty o [N 5 90 War i
T ox D, Ik x E 10,10 =, S (0,1 = 0.0018 4 0007 {0.0004) 0.0016 £ 0.0007(0.0004) 0.355 0.097
B o 0,40 >, =0 3.B54 & III 103{3.843) 1.238 BT
9 | OpgeEc—30,0=, g g €< —10,10 =, & £ (0,1 = 20824+ 1- 10 —6.483) 1237+ 1512 (1.078) 210+ 0-08 0172 544 0,596
models I1: equation (5.5} - the parameters estimated with T I:‘- data added

.o oo & 9o Wopy

10 a=0 0. < —1,10 >, § (0,1} - 0,047 2 029 0.35
11 | foe < —60,—-10>, fae e< —1,6 >, S (0,1) 56.342F3 197 (—59.88T) 1.o0s+] 1 153 0.63

model ACDM: H= JHZ 1 — ;. m + fo.mil + )7 - the parameter sstimated with CMB data added

{1 n.m 90 Werrn
12 | Qam < 0,1 = 0.2627 1 L(0.262) 0.608 0.738

The values of estimated parameters (mean of the marginalized posterior probabilities and
68% credible intervals or sample square roots of variance, together with mode of the joined
posterior probabilities, shown in brackets) for all discussed models. Model | ,_,corresponds
to rows No 1, 7; model IB=0: No 2, 8, model I: No 3, 9, model Il ._,: No 4, 10, model II: No 5,

11; ACDM: No 6, 12. Computations were made using Union2 + Hz + BAO data. We
compare estimations without CMB data (top part of the table) with the one employing CMB
data (bottom part).

23




Constraining model parameters by
astrophysical data

Model | Estimation without CMB data || Estimation with CMB data
In BAc DM Model X3 or/2 In BACDM Model | X%07/2

Io—o —08+04 272.287 453.3 £ 0.6 706.235
Is—g 1665.2 + 0.3 274.142 35.5+0.2 310.949
1 —-2.2+0.3 271.400 4.24+0.3 276.668
II.—¢ 21.3+0.2 294.233 169.1 = 0.3 438.839
11 6.5+ 0.3 279.237 206.6 £ 0.3 475.881
ACDM 0 276.583 0 276.726

Values of the logarithm of Bayesian Factor together with the corresponding x2/2
for models based on solutions | and Il, with respect to ACDM model.

46

44 -

42 L

40 r

38 r

36+

M4

Union2 data
model |, special case (3, =0
model |, special case (2.,=0

model |

madel 11, special case £,=0
model Il

_ACDM model

]

——

0.01

0.

1

.1

Comparison of Hubble’s diagrams for model |
(green) and Il (magenta). Grey line

denotes special case of quadratic gravity |,_,.
Blue (I _,) and light blue (Il _,) lines denote
most divergent with respect to ACDM (black)
models without Starobinsky’s term.
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Dynamics of Palatini based
cosmological models

Cosmological models as 2D dynamical systems of Newtonian
type

=

W = (é_)z = /() (e5.= Lnia")

1.
532 +Verr(a) =0

Verr(a) = —%f(a)az




FIG. | {color online). The phase portrait for the ACDM model.
There 15 a single cntical saddle point on the a axis. It represents
the stabic Einstein unmiverse. The trajectory of the flat £ =0
model divides all remaiming ones into closed (inside) and open

(outside} models.




Diagrams of the effective potentials

Va] Va]

—anok

—  WVia)
—  Prcomla) - H
-\.I:l:

-2

The diagram of the effective potential in particle—like representation of cosmic dynamics
for model | (left picture) and model Il (right picture) versus ACDM model. Differences
with LCDM model

hecome important m the future time: e, discontimuties of the potential functions {vertical, red
al

lines) denote that V =+ —o0, 1e. @ = oo for @ = o™, It turns out to be finite-time (sudden)
simgularity. In any case the shadowed region below the graph 15 forbdden for the motion.
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Phase portraits

Iy
i ~

i ."f"r./
|II ,l'::ll:lf / -
The phase portraits of the model I (left) and model Il (right). We marked as a bolded
trajectory of the flat model determined by the energy constraint E = 0. The vertical red line
(left picture) passing through the saddle critical point divides each trajectory into two parts:
decelerating (V (a) is a growing function of its argument) and accelerating (V (a) is a

decreasing function of the scale factor) eras.




The role of the quadratic term

Vil ¥lal

Figure 8. The diagram of the effective potential in particle hke representation of cosmic dynamic for
the model of quadratic gravity I5_g versus ACDM model (left picture relates to estimations without
CMB data, the rnight relates to estimations employving CMB data; Table 3, no 2, 6, 8, 12). Mascamum of

the potential function corresponds to unstable static solution (saddle point). Again, until the present
epoch there 15 no stnking differences between plots. One can observe fimte—size sudden singularity in
the near future (vertical, red lines). In any caze the shadowed region below the potential 1s forbindden

for the motion.

W, 1 e —1,I0=, e (0,1 & ]
100, Ty , £« —1,10 >, &€ (0,1 > 27H.974
15D, ', &< —1,10 =, & (0,1 > 278.851
800, ', £« —1,10 =, && (0,1 > 37H.737
1000, 1) . £e —1, 10>, & & (0,1 = 27H.855

Table 1. Comparison of estimated parameters {p ., 4, {ln g and Qg m for model IT with fixed value
of ¥ . It shows that essential parameters as § or (Y , behaves stable under a wide range of g

provided {2y » # 0.




Dark matter

Figure 6. Postenor probability den=sity functions of 1, ; parameter for all cases (red lines). First
row correspond to models I, second to models I1. First column and forth: 8 0 {1.e. quadratic
gravity): second and fifth: o« = 0 . In third and =sixth column 3 parameters were fitted. Black curves
correspond to ACDM model. Left panel: parameters were fitted using Snla, H, and BAO data. Right
panel includes CMB data. In some cases {1 g 1= the same order as Dy ppmnie ~ 0.04. For numerical
values see Table 3.




Statefinder & other diagnostics
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(1+zp*—1"
which is designed to answer the question of nature of dark energy. For ACDM model we have
Om(z) = constant (see black line on fig. 16) which means that cosmological constant A is
the best description of dark energy. For the model Ig_g the function Om is increasing what
means that the best model for dark energy is provided by a phantom. Remaining models
have decreasing Om function and therefore they are of quintessence type. However, one can
notice that two models I' and I 3_p have a long period of being of cosmological constant type.

Om(z) = z=0. 19.5)




Plots of the deceleration parameter
and the effective equation of state

[ |—model I, (,=0 i -2F  |=model I £1,=0

model L. {1;=0 i model L. {1;=0

model 1 i model I

L | model I, 0,=0 i -3t |- model II, 2,=0
[ |— model I i — model IT

r o [=ACDM i — ACDM

—4L —4L

Plots of the deceleration parameter q(a) (left panel) and the effective equation of state w,, (a)

(right panel) for all models under investigation. Only model Il (magenta) provides permanent
acceleration. Models | _, (blue) and Il _, (light blue) have no acceleration epoch at all. There is

intriguing intersection near a = 0.75 for plots representing four models: I, 1,_, Il and ACDM.
Thin, vertical line denotes present time. 32




— modal L, (k=0
modal L (lg=0

Figure 15. Plots of parameters JERK j{a) (left panel) and SNAP s{a) (right panel) for investigated
models. From the figure one can see that different models predict different present-day values of
JERK and SNAP. Unfortunately estimations of these parameters are beyvond our present observational
possibilities. However some recent analysis support the current values of jerk bigger than 2 [40|. Thin,

vertical line denotes present epoch. The model parameters were fitted using SNla, H:, BAD and CMB
data (Table 3, No 7-12).

Figure 16. Ploizs of parameter Omiz) allowing to answer the question on nature of dark energy
|41]. For ACDM (black line) we have Om(z) = constant which means that cosmological constant
15 the best descniption of dark energy. For models Tz_g (gray) and I,_g (blue} the function Om 1=
increasing what means that the best model for dark energy 1z provided by a phantom. Remaming
models have decressing Om functions and therefore they are of quintessence type. However, one can
notice that both I and f3_g5 models have a long period of being of cosmological constant tyvpe. The
model parameters were fitted using SN, Hz, BAO and CMB data (Table 3, No 7-12).




In this work we have also examined the significance of the Starobinsky's term. It
appears, and can be seen on the plots of the potentials (fiz 9, 11) and on the Hubhble's
diagram (fig ), that without this term the remaming parameters of the model cannot be
properly fitted. Cuadratic gravity along well qualitatively mimics ACDM model till the
present time (see fig. (8, 17)). However combining it with the non-minimally coupled scalar
field provides fine tuning and much better adjustment to the concordance model. It 18 also to
be ohserved that the parameter o is negative provided that § # 0. In contrast for Ja_g one
has o > 0 which provides the so-called Chameleon effect 42| We have no at the moment
rood explanation for this and the problem will be studded in our future work.




Onr investigations here have aimed to distinguish the favorable model by cosmography
of the FLEW backeground metric in the sample of theoretical models. Because of plenitude of
dynamical scenarios, an introductory selection of sample of theoretical models was necessary
and it accounts in final Bayesian inference. In the Bavesian framework adding of new obser-
vations is natural for improving models parameters. It means that the effects of cosmological
perturbations in this class of models have not been considered here and this important task
is postponed for future investigations. This will allow to enlarge the discriminatory tools for
further analysis. For example, a sound speed of the fluctuations for the quadratic gravity
model 1z—g as caleulated in [24] is

g

which in our case {lp, ~ 4 yields a superluminal value .:'E = 1. Thus such a model should

|/
II i
| |/
II ¥
[
II I
|I|'.".'"ﬂ-

Figure 17. The phase portrait for quadratic gravity model -0 on the plain (2,a) — estimations
including CMB data (see fig. (8)). One can ohserve Big Bang singularity, saddle point corresponding
to static solution as well as behaviour of the system near sudden singularity (red vertical line). Bolded
trajectory of the fat model 15 determined by energy level B = 0.




Cosmology and Non-ecquilibrium Statistical Mechanics

49 Winter School of Theoretical FPhysics, organized by the Wroclaw
University, will take place in Ladek Zdroj, 11-15 February, 2013.
We plan to publish the proceedings.

Organizing Committee:

Z. Haba, L. Borowiec, Z. Popowicz, P. Lugiewicz, A. Blaut

Rim and Scope:

The recent studies of dark matter and dark energy problems rely
on(independent) modifications of both sides of the Einstein equations in
order to explain current cosmic acceleration. The winter school will
concern with both sides of Einstein eguations. The Einstein tensor
determines the matter energy-momentum of a fluid. It can be more complex
than just an 1deal fluid. At the conference statistical mechanics of
relativistic particles forming a fluid and the statistical description of
the large scale evolution will be discussed.

Location

The school will be held in the mountain resort in the south-west of Poland.
This 1s a continuation of the tradition of ERarpacz Winter Schools which
were organized annually for almost half a century in another skiing center.
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