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Part 1. The 3 sins of massive gravity

1.1. Introduction: why « massive gravity » ?

1.2.  Quadratic massive gravity: the Pauli-Fierz theory and the vDVZ
discontinuity

1.3. Non linear Pauli-Fierz theory and the Vainshtein Mechanism

1.4. The Goldstone picture (and « decoupling limit »)  of non linear
massive gravity,  and what can one get from it ?



One way to modify gravity at « large distances »
… and get rid of dark energy (or dark matter) ?

Changing the dynamics
of gravity ?

Dark matter
dark energy ?

1.1. Introduction: Why « massive gravity » ?



for this idea to work…

One obviously needs
a very light graviton 
(of Compton length
of order of the size of 
the Universe) 

I.e. to « replace » the cosmological constant by a 
non vanishing graviton mass…

NB: It seems one of the 
Einstein’s motivations to 
introduce the cosmological
constant was to try to « give a 
mass to the graviton »

(see « Einstein’s mistake and the 
cosmological constant »
by A. Harvey and E. Schucking, 
Am. J. of Phys. Vol. 68, Issue 8 (2000))



Only Ghost-free (quadratic) action for a 
massive spin two Pauli, Fierz 1939

(NB: breaks explicitly gauge invariance)
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Pauli-Fierz action: second order action 
for a massive spin two

second order in h  ≡ g -  

The propagators read

1.2.  Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity



Coupling the graviton with a conserved energy-momentum tensor
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R
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The amplitude between two conserved sources T and S
is given by A =
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d4xSö÷(x)hö÷(x)

For a massless graviton:

For a massive graviton:
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In Fourier 
space



e.g. amplitude between two non relativistic sources:

Têö
÷
∝ diag(m1ê , 0, 0, 0)

Sêö
÷
∝ diag(m2ê , 0, 0, 0)

A ø
3
2mê 1mê 2 Instead of A ø

2
1mê 1mê 2

Rescaling of Newton constant GNewton = 3
4G(4)

defined from Cavendish 
experiment

appearing in 
the action

but amplitude between an electromagnetic probe  
and a non-relativistic source is the same as in the 
massless case (the only difference between massive and massless

case is in the trace part) wrong light bending! (factor ¾)



N.B.,  the PF mass term reads

h00 enters linearly both in the kinetic
part and  the mass term, and is thus a 
Lagrange multiplier of the theory…

… which equation of motion enables to eliminate
one of the a priori 6 dynamical d.o.f. hij

By contrast the h0i are not Lagrange multipliers

5 propagating d.o.f. in the quadratic PF
h  is transverse traceless in vacuum.



1.3. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form

The interaction term is chosen such that

• It is invariant under diffeomorphisms
• It has flat space-time as a vacuum
• When expanded around a flat metric
(g  =   + h , f  =  )
It gives the Pauli-Fierz mass term

Einstein-Hilbert action 
for the g metric

Matter action 
(coupled to metric g)

Interaction term coupling
the metric g and the non 
dynamical metric f

Matter energy-momentum tensor

Leads to the e.o.m. M2
PGμν =

¡
Tμν + T

g
μν(f, g)

¢
Effective energy-momentum
tensor ( f,g dependent)

Isham, Salam, Strathdee, 1971



Some working examples

Look for static spherically symmetric solutions 

with

Hμν = gμν − fμν

(infinite number of models with similar properties) 

Boulware Deser, 1972, BD in the following

Arkani-Hamed, Georgi, Schwarz, 2003
AGS in the following

(in the « Pauli-Fierz universality class » [Damour, Kogan, 2003])
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With the ansatz (not the most general one) 
gABdx

AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

Gauge transformation

gμνdx
μdxν = −eν(R)dt2 + eλ(R)dR2 +R2dΩ2

fμνdx
μdxν = −dt2 +

µ
1−

Rμ0(R)
2

¶2
e−μ(R)dR2 + e−μ(R)R2dΩ2

Then look for an expansion in
GN (or in RS ∝ GN M) of the would-be solution

Which can easily be compared to Schwarzschild



This coefficient equals +1 
in Schwarzschild solution
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Wrong light bending!

+ …

+ …

+O(1)ï+...

+O(1)ï+...
with ï =

m4R5

RS

Vainshtein 1972
In « some kind »
[Damour et al.  2003]
of non linear PF

Introduces a  new length scale R    in the problem
below which the perturbation theory diverges!

V

with Rv = (RSm
à4)1/5For the sun: bigger than solar system! 



So, what is going on at smaller distances?

Vainshtein 1972 

There exists an other perturbative expansion at smaller distances, 
defined around (ordinary) Schwarzschild and  reading:

with

• This goes smoothly toward Schwarzschild as m goes to zero

• This leads to corrections to Schwarzschild which are non 
analytic in the Newton constant 

λ(R) = +RS
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To summarize: 2 regimes
with ï =

m4R5

RS

Valid for R À Rv with Rv = (RSm
à4)1/5

Valid for R ¿ Rv

Expansion around
Schwarzschild

solution

Crucial question: can one join the two
regimes in a single existing non singular

(asymptotically flat) solution? (Boulware Deser 72)

Standard 
perturbation theory
around flat space



This was investigated (by numerical integration) by 
Damour, Kogan and Papazoglou (2003)

No non-singular solution found
matching the two behaviours (always
singularities appearing at finite radius) 

(see also Jun, Kang 1986)

In the 2nd part of this talk:

A new look on this problem using in 
particular the « Goldstone picture » of 
massive gravity in the « Decoupling limit. »

(in collaboration with E. Babichev and R.Ziour
2009-2010)



1.4. The Goldstone picture (and « decoupling limit ») 
of non linear massive gravity,  and what can one get from it ?

Originally proposed in the analysis of Arkani-Hamed, 
Georgi and Schwartz (2003) using « Stückelberg »
fields …

and leads (For a generic theory in the PF universality
class) to the cubic action in the scalar sector (helicity
0) of the model

Other cubic terms omitted

With  = (m4 MP)1/5
« Strong coupling scale »
(hidden cutoff of the model ?)



Basic idea

The theory considered has the usual diffeo invariance  
gμν(x) = ∂μx

0σ(x)∂νx
0τ (x)g0στ (x

0(x))

fμν(x) = ∂μx
0σ(x)∂νx

0τ (x)f 0στ (x
0(x))

This can be used to go back and forth from a « unitary
gauge » where fAB = ηAB

To a « non unitary gauge » where some of the 
d.o.f. of the g metric are put into f  thanks to a 
gauge transformation of the form

fμν(x) = ∂μX
A(x)∂νX

B(x)ηAB (X(x))

gμν(x) = ∂μX
A(x)∂νX

B(x)gAB (X(x))

gμν
(x)

x
μ

ηAB

X
A

fμν(
x)

XA(x)
XA: 4 scalar fields
[cf. Chamseddine, Mukhanov 2010-2011]



Expand then the theory around the unitary gauge as  

XA(x) = δAμ x
μ + πA(x)

πA(x) = δAμ (A
μ(x) + ημν∂νφ) .

Unitary gauge 
coordinates

« pion » fields

The interaction term expanded
at quadratic order in the new fields A and  reads

A gets a kinetic term via the mass term
 only gets one via a mixing term

M2
Pm

2

8

Z
d4x

£
h2 − hμνh

μν − FμνF
μν

−4(h∂A− hμν∂
μAν)− 4(h∂μ∂μφ− hμν∂

μ∂νφ)]



One can demix  from h by defining

hμν = ĥμν −m
2ημνφ

And the interaction term reads then at quadratic order

S =
M2
Pm

2

8

Z
d4x

n
ĥ2 − ĥμν ĥ

μν − FμνF
μν − 4(ĥ∂A− ĥμν∂

μAν)

+6m2
h
φ(∂μ∂

μ + 2m2)φ− ĥφ+ 2φ∂A
io

The canonically normalized  is given by φ̃ =MPm
2φ

Taking then the 
« Decoupling Limit »

One is left with …
MP → ∞

m → 0

Λ = (m4MP )
1/5 ∼ const

Tμν/MP ∼ const,



With  = (m4 MP)1/5

E.g. around a heavy source:       of mass M

+ + ….

Interaction  M/M   of 
the external source 
with þà

P The cubic interaction above generates
O(1) coorrection at R=Rv ñ(RSm

à4)1/5

In the decoupling limit, the Vainshtein radius is kept fixed, and 
one can understand the Vainshtein mechanism as

α ( φ̃)3 + β ( φ̃ φ̃,μν φ̃,μν)

and α and β model dependent coefficients

« Strong coupling scale »
(hidden cutoff of the model ?)



An other non trivial property of non-linear Pauli-Fierz: at non 
linear level, it propagates 6 instead of 5 degrees of freedom, 
the energy of the sixth d.o.f. having no lower bound! 

Using the usual ADM decomposition of the metric, the 
non-linear PF Lagrangian reads (for   flat)

With Neither Ni , nor N are 
Lagrange multipliers

6  propagating d.o.f., corresponding to the gij

The e.o.m. of Ni and N determine those as 
functions of the other variables

Boulware, Deser ‘72



Moreover, the reduced Lagrangian for 
those propagating d.o.f. read

⇒ Unbounded from below Hamiltonian

Boulware, Deser 1972

This can be understood in the « Goldstone » description 

C.D., Rombouts 2005
(See also Creminelli, Nicolis, Papucci, Trincherini 2005)

Indeed the action for the scalar polarization

Leads to order 4 E.O.M. ⇒, it describes two
scalars fields, one being ghost-like



Summary of the first part: the 3 sins of massive gravity

They can all be seen at the Decoupling Limit level

• 1. vDVZ discontinuity

Cured by the Vainshtein mechanism ?

• 2. Boulware Deser ghost

Can one get rid of it ?

• 3. Low Strong Coupling scale

Can one have a higher cutoff ?



The end of part 1 



Part 2. Some cures and open issues. 

2.1. The Vainshtein mechanism

2.2.  Vainshtein does not work for Black Holes. 

2.3. Getting rid of the Boulware-Deser ghost

2.4. Strong coupling and UV completion (back to DGP like models ?)

2.5. Some other approaches to non linear massive gravity



2.1. The Vainshtein mechanism

Framework: non linear Pauli-Fierz theory

Matter energy-momentum tensor

Leads to the e.o.m. M2
PGμν =

¡
Tμν + T

g
μν(f, g)

¢
Effective energy-momentum
tensor (f,g) dependent

Bianchi indentity ⇒ ∇μT gμν = 0

(Arkani-Hamed, Georgi, Schwartz)

Babichev, C.D., Ziour, 2009, 2010



gμνdx
μdxν = −eν(R)dt2 + eλ(R)dR2 +R2dΩ2

fμνdx
μdxν = −dt2 +

µ
1−

Rμ0(R)
2

¶2
e−μ(R)dR2 + e−μ(R)R2dΩ2

Ansatz (« , ,  » gauge)

With this ansatz the e.o.m (+ Bianchi) read

eν−λ
µ
λ0

R
+
1

R2
(eλ − 1)

¶
= 8πGN (T

g
tt + ρeν)

ν0

R
+
1

R2
¡
1− eλ

¢
= 8πGN

¡
T gRR + Pe

λ
¢

∇μT gμR = 0





We used a combination of shooting and relaxation 
methods
+ some analytic insight relying on (asymptotic) 
expansions, 

with appropriate Boundary conditions 
(asymptotic flatness, no singularity in R=0)

For setting boundary (or initial) conditions for the 
numerical integration, and better understand the result, 
we used crucially the Decoupling Limit. 



To obtain the Decoupling Limit here, first do the rescaling

And then let
MP → ∞

m → 0

Λ = (m4MP )
1/5 ∼ const

Tμν/MP ∼ const,

The full (non linear) system of e.o.m collapses to 

System of 
equations to be
solved in the DL



System of 
equations to be
solved in the DL

Which can be integrated once to yield the first integral



Recall that  is encoding
the gauge transformation 

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

fμνdx
μdxν = −dt2 +

µ
1−

Rμ0(R)
2

¶2
e−μ(R)dR2

+e−μ(R)R2dΩ2

upon the substitution

Yields exactly one which is obtained using the 
Stückelberg field in the scalar sector

This first integral

φ̃



To summarize, in the decoupling limit the full non linear
system reduces to 

Which can be shown to give the leading behaviour of the 
solution in the range  RS ¿ R    ¿ m-1

The Vainshtein radius is in this range



Solving the DL (one only needs to solve the non linear ODE)

Depends on the interaction term
E.g. in the Case of the two interaction terms (+=0)

S
(2)
int = −

1

8
m2M2

P

Z
d4x

p
−f HμνHστ (f

μσfντ − fμνfστ )

S
(3)
int = −

1

8
m2M2

P

Z
d4x

√
−g HμνHστ (g

μσgντ − gμνgστ )

(Boulware Deser)

(Arkani-Hamed, Georgi, Schwarz)

This equation boils down to the simple form

With s = ± 1 and the 
dimensionless quantities



With s = ± 1 and the 
dimensionless quantities

How to read the Vainshtein mechanism and scalings ?

Keep the 
linear part

Assume a power 
law scaling

However, the situation here is in fact more complicated !



Indeed …

At large  (expect w ∝ 1/ 3)

A power law expansion of the would-be solution to this
problem can be found (here with c0 =1)

Unique « solution » of perturbation theory

However… this series is divergent…. 



… but seems to give a good asymptotic expansion of the 
numerical solution at large 

• This can easily been checked numerically for
s= -1 (Boulware Deser) 
(where the Vainshtein solution does not exist at small , 
becoming complex [Damour, Kogan, Papazoglou, 2003] !)

• For s=+1 (Arkani-Hamed et al.) solution is
numerically highly unstable, singularities are 
seemingly arising at finite …

However by using a combination of relaxation 
method / Runge-Kutta/ Asymptotic expansion , 

one can see that solutions (infinitely many !) with
Vainshtein asymptotics at large  do exist.



In our case, using « extended »
Borel resummation (J. Ecalle)

Formal
(divergent) serie

Borel transform

Laplace transform or rather
« convolution average»
extension

Solution of the ODE
s = -1

Unique solution 
with w ∝ 1/ 3

decay at infinity

s = 1

Infinitely many
solutions  with
w ∝ 1/ 3 decay
at infinity

(proof provided to 
us by J. Ecalle)

The difference
between any two
solutions is given
(asymptotically) by 

(with integer k !)

P
k akξ

−k P
k

ak
(k−1)! ξ̃

k−1





So, in the s=+1, the perturbation theory
does not uniquely fix the solution of the 
DL at infinity. 



Back to the full non linear case

One finds the 
unique expansion
At large z (large R)

Flat space perturbation theory,
Starting with
(z=R m-1 and ² ∝ GN) 



However, this misses a subdominant (non 
perturbative) correction of the form

With

Hence, the solution at large z is not unique !



In this case the large distance behaviour

Does not lead to a unique small distance  (¿ 1) 
behaviour (and solution)…

Here we discuss only the s=+1 case (Arkani-Hamed et al.)

At small  (expect w ∝ 1/ 1/2, when the solution is real)

… but one of them has the expected
(Vainshtein’s) scaling



w ∝ 1/ 2 (new « Q » scaling)

w ∝ 1/ 2 (new « Q » scaling)

w ∝ 1/ 3 (large distance)

w ∝ 1/ 1/2 (Vainshtein)

NB: in other cases (e.g. s=-1),
the Vainshtein scaling can be absent 



We have 
to solve with

Most general case (general , ) 
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To summarize our DL findings
• One can find non singular solutions in the DL (but this
can be hard because of numerical instabilities).

• The ghost does not prevent the existence of those
solutions.

• The perturbative expansion (at large R) can be
(depending on the potential) not enough to fix uniquely
the solution.

• There is a new possible scaling at small R

• Solution with the correct large R asymptotics cannot
always be extended all the way to small R (depending
on parameters α and β). 



Numerical solutions of the full non linear system 

«GR regime »«GR regime »

« linear regime »

Yukawa decay

source



The vDVZ discontinuity gets erased for 
distances smaller than RV as expected



(first « Vainshtein »
correction to GR)

Corrections to GR in the R ¿ RV regime



Solutions were obtained for very low density
objects. We did (and still do) not know what
is happening for dense objects (for BHs we
now do know, see thereafter).

The « Q-scaling » does not lead to a 
physical solution (singularities in R=0)



Conclusion (Vainshtein mechanism in massive gravity)

• It works (numerical results also confirmed by Volkov). 

• What is going on for dense object ?

• Black Holes (see next part) ? 

• In other models ?

• Gravitational collapse ?



Can be applied to many cases where one considers space-times 
hosting two « metrics » [rank-2 covariant tensors]

Bimetric theories
Belinfante-Swihart-Lightman-Lee (1957), Isham-Salam-Strathdee (1971), 
Rosen (1973), Ni (1973), Rastall (1975)…

Theories with a prefered frame (with a unit vector ) 
where some mode can propagate in an effective metric

e.g. Einstein-Aether (Jacobson, Mattingly), Horava gravity, …

Bimetric theory for MOND (Milgrom), Ghost-condensate
related (Dubovsky, Sibiryakov), k-essence (Babichev, Mukhanov, 
Vikman) ...

(old and recent) « Massive gravity »
(Isham, Salam, Strathdee;  Gababadze, de Rham, Tolley) 

2.2. (Standard) Vainshtein mechanism does not work for black holes.

C.D.,T. Jacobson, CQG 2012
« On horizon structure of bimetric spacetimes »



2.2.1. Generic properties of horizon structure 
(and some consequences)

Consider a theory with two metrics, gμ ν and fμ ν

We want to investigate the consequence of one of the metrics (say g) 
to have a Killing horizon (in the static-spherically symmetric or 
stationary-axisymmetric cases)
Consider first the case where the two metrics are static
and spherically symmetric

C.D.,T.Jacobson, CQG 2012

i.e. both metric must have the same horizon



First proof (1a)

When both metrics are static and spherically symmetric, they
can be put in the form (in a common coordinate system)

Consider the scalar (assuming B=0 at the horizon)

It must be regular at the horizon r=rH if both metrics are regular there

But A(rH)=0 , and J/A, K/C and r2/D have the same sign, so cannot cancel

One must have J(rH) = 0  
(and hence the killing horizon of g is also one for f)



Second proof (1b)
(based on theorems by Racz and Wald 1992, 1996)

If a space-time has a Killing horizon, then, under rather general
assumptions, it has a « virtual » bifurcation surface.

More precisely: 

if a space-time is static (with « t » reflection symmetry) or 
stationary axisymmetric with « t-φ » reflection symmetry, and if 
the surface gravity of the horizon is non zero (and then
constant)

then

There is an extension of a neighborhood of the horizon to one 
with a bifurcate Killing horizon

(i.e. a Killing horizon which contains a bifurcation surface)
(NB: this applies to any space-time without assuming
anything concerning the field equations)



Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-φ reflection
symmetry of the metric

can be extended globally to the enlarged space-time. 

(where χ is the killing vector)

NB: This extends to the stationary-axisymmetric case



This does not preclude the existence of two geometries one with a 
Killing horizon and one without…. 

But only implies that the non-horizon geometry cannot possess the 
t reflection symmetry

E.g.: the existence of a non zero dt dr component in the g metric
can allow both geometries to be regular at the horizon.

When this is the case (i.e. when the Killing horizon is not a 
Killing horizon for the other metric)

The bifurcation surface of the g spacetime
cannot lie in the interior of the f space-time

Conversely, when the horizons coincide, they must 
have the same surface gravity



This can be put together as 



2.2.2. Some consequences for non-linear Pauli Fierz

• (Standard) Vainshtein mechanism does not 
work for black holes

• Causal structure of static spherically
symmetric solutions



• (Standard) Vainshtein mechanism does not work for 
black holes

In any theory where the Vainshtein mechanism is working for recovering a 
solution close to the Schwarschild Black Hole, the g metric must have a 
(spherical) Killing horizon at r=rH … this must also be a killing horizon for f

Impossible: 
Minkowski ST has no spherical Killing horizons (but only planar)

Indeed, in the standard way of looking at Vainshtein mechanism
of « massive gravity » one has two bi-diagonal metric

gABdx
AdxB = −J(r)dt2 +K(r)dr2 + L(r)r2dΩ2

fABdx
AdxB = −dt2 + dr2 + r2dΩ2

« Massive 
metric »

Flat 
metric

NB:  this applies also to the new massive gravity of 
de Rham, Gabadadze, Tolley (and in particular to 
solutions of Nieuwenhuizen; Gruzinov, Mirbabayi)



Salam, Strathdee 1977
Isham, Storey 1978

• Causal structure of « type I » static
spherically symmetric solutions 

« Type I » solutions: those with B  0

(as opposed to « type II » solutions, with B = 0, such as 
the ones discussed so far when addressing the Vainshtein
mechanism - (cf. « λ, μ, ν ansatz ») previous part of this
talk)



With

and
Both metric are of 
Schwarzschild-(A)dS form
(no sign of vDVZ or 
massive gravity!)

Namely, the change of variable 
Put the metric f  in the usual static form of S(A)dS:   

(Salam, Strathdee 1977, Isham, Storey, 1978, Damour, Kogan, Papazoglou 2003;  
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

2.2.1. some Type I solutions are known analytically and simple

Integration constant



f

g

Part of the dS horizon 
mapped into the past
timelike infinity of r=rH
2-sphere of Schwarzschild

Part of the Schwarzshild
horizon mapped into the 
future timelike infinity of 
r=rs 2-sphere of de Sitter 

Bifurcation sphere of one space-time does not lie in 
the interior of the other …

E.g. de Sitter (rH) with
Schwarzschild (rs) with rs < rH

Causal Structure
Blas, C.D., Garriga 2005



Conclusions

There exist interesting global constraints on putting 
together two metrics on a same manifold

One simple consequence: failure of the 
usual Vainshtein mechanism to recover
Black holes (but there exist non 
diagonal solutions crossing the horizon)

Consequence for superluminal issues ? 

One simple question: What is the 
ending point of spherical collapse ? 



2.3. Getting rid of the Boulware Deser ghost

de Rahm, Gabadadze; de Rham, Gababadze, Tolley 2010, 2011

Claim: the most general massive gravity (in the sense above) devoid
of a Boulware Deser ghost is given by the 3 (4 counting Λ) 
parameters set of theories:

With



The absence of ghost is first seen in the decoupling limit
(using the observations of C.D., Rombouts 2005; Creminelli, Nicolis, 
Papucci, Trincherini 2005)
.Which instead of the generic

Looks like (de Rham, Gabadadze, 2010) With  = (m4 MP)1/5

With  = (m2 MP)1/3



The absence of ghost in the full theory has been heavily
debated (besides: stability ?)

Gabadadze, de Rham, Tolley; 
Alberte, Chamseddine, Mukhanov; 
Hassan, Rosen, Kluson…

One simple reason for which an extra constraint appears: 
use vierbeins (C.D., Mourad, Zahariade in preparation; 

Hinterblicher, Rosen arXiv:1203.5783 [hep-th])

with

The mass term

Can be written as L.C. of 

Linear in 
e00



2.4. Strong coupling and UV completion

A crucial question for the sake of massive 
gravity and also …. for the DGP model: 

Find a proper UV completion of the model .

Yes/ May be ? 

No/ May be not ? 

Antoniadis, Minasian, Vanhove; Kohlprath, Vanhove;
Kiritsis, Tetradis, Tomaras;  Corley, Lowe, Ramgoolam.

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi.

For DGP 
model, 

String 
theory?



2.5. Some other approaches to Non-Linear massive gravity

« Torsion massive gravity »

Nair, Randjbar-Daemi, Rubakov, 2009
Nikiforova, Randjbar-Daemi, Rubakov, 2009
C.D., Randjbar-Daemi, 2011

« New Massive Gravity » in 3D and 4D

Bergshoeff, Hohm, Townsend, 2009
Bergshoeff, Fernandez-Melgarejo, Rosseel, Townsend, 2012
(see also Paulos, Tolley, 2012)



Conclusions 

Massive gravity is a nice arena to explore large 
distance modifications of gravity.

A first, possibly consistent (?), non linear theory
has recently been proposed by de Rham, 
Gabadadze, Tolley (after about 10 years of 
progresses following the DGP model)…

… with many things still to be explored (in 
particular, stability issues).


