Higuchi VS Vainshtein

to appear on ArXiv, soon!

Matteo Fasiello and Andrew J.Tolley
Case Western Reserve University

Outline

I) the whys of dRGT massive gravity
2) massive cosmologies
3) despair not
4) a seemingly unrelated note, the Higuchi bound
5) Vainshtein mechanism, again
6) Higuchi vs Vainshtein
7) examples, attempted resolutions and links with the above
8) despair not, again
9) conclusions and future work

A very short reminder

Fierz-Pauli:
$S=\int d^{4} x\left[-\frac{1}{2} \partial_{\lambda} h_{\mu \nu} \partial^{\lambda} h^{\mu \nu}+\partial_{\mu} h_{\nu \lambda} \partial^{\nu} h^{\mu \lambda}-\partial_{\mu} h^{\mu \nu} \partial_{\nu} h+\frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h-\frac{1}{2} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)\right]$
g.r. bit
m.g. part
for $m=0$ there's a gauge symmetry

$$
h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}(x)+\partial_{\nu} \xi_{\mu}(x)
$$

for $m \neq 0$
broken gauge symmetry, 5 DOF

~1970 vDVZ discontinuity:

Add an external symmetric source to the action above:

$$
L=\ldots+\alpha h_{\mu \nu} T^{\mu \nu} \quad \text { specifically } \quad T^{\mu \nu}(x)=M \delta_{0}^{\mu} \delta_{0}^{\nu} \delta^{3}(x)
$$

solution:

$h_{00}(x)=\frac{M}{6 \pi M_{P}} \frac{e^{-m r}}{r}$
$h_{0 i}(x)=0$
$h_{i j}(x)=\frac{M}{12 \pi M_{P}} \frac{e^{-m r}}{r} \delta_{i j}$

$$
\begin{aligned}
& \begin{array}{l}
m=0 \\
\phi=-\frac{G M}{r} \quad \psi=-\frac{G M}{r} \\
\alpha=-\frac{4 G M}{b}
\end{array}
\end{aligned}
$$

If we want the same Newtonian potential,

$$
\phi_{m}=\phi_{0} \Rightarrow \alpha=\frac{3 G M}{b} \quad 25 \% \text { off ! }
$$

$$
\begin{array}{rc}
R_{\mu \nu}+m^{2} h_{\mu \nu} \sim T_{\mu \nu} \\
h_{\mu \nu} \sim 1 & R \sim m^{2}
\end{array}
$$

$$
R \sim \nabla^{2} \phi ; \quad \phi \sim \frac{G M}{r} \Rightarrow R \sim \frac{G M}{r^{3}} \sim m^{2}
$$

therefore

C. Deffayet, G. Dvali, G. Gabadadze, A. Vainshtein hep-th/0106001
Phys.Rev. D65 (2002) 044026
G. Chkareuli, D. Pirtskhalava airXiv 11.05.1783

As it turns out, Vainshtein screening mechanism helps restoring continuity with G.R. in the limit $m->0$.
but then, just when you thought the party could start...

Boulware and Deser show up with their ghost and ruin it!
see: C. Deffayet, first talk of this morning

Stuckelberg's resurrection

~ 2003 Arkani-Hamed, Georgi, Schwartz
reintroduced this method which restores gauge invariance in massive gravity, e.g. ϕ 's we will see later, and made easier to identify some effective theory properties, including the scale of the cutoff

$$
S=\int d^{4} x\left[\mathcal{L}_{m=0}-\frac{1}{2} m^{2}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right) \ldots\right]
$$

$h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}$
$\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} ; \quad \delta A_{\mu}=-\xi_{\mu}$
cutoff in the first analysis came out too low, below the non-linear regime itself.
but , by adding higher order graviton selfinteractions with appropriate coefficients things do work!

$$
\begin{aligned}
& A_{\mu} \rightarrow a_{\mu}+\partial_{\mu} \phi \\
& \delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \\
& \delta A_{\mu}=\partial_{\mu} \Lambda ; \quad \delta \phi=-\Lambda
\end{aligned}
$$

dRGT: Ghost-free m.g. theory at fully non-linear level

* No Boulware-Deser Ghost, at all orders

De Rham, Gabadadze,Tolley Hassan, Rosen

* Screening mechanism in the non linear regime that restores continuity with G.R. as m approaches 0
* High enough cutoff so that the theory different regimes can be described

Quantum

$S=S_{E H}+2 m^{2} \int d^{4} x \sqrt{-g}\left[\varepsilon_{2}\left(\delta-\sqrt{g^{-1} f}\right)+\alpha_{3} \varepsilon_{3}\left(\delta-\sqrt{g^{-1} f}\right)+\alpha_{4} \varepsilon_{4}\left(\delta-\sqrt{g^{-1} f}\right)\right]$

~1939 Fierz-Pauli:
~1970 van Dam,Veltam, Zakharov
~1972 Vainshtein
~1972 Boulware, Deser
~2003 Arkani-Hamed, Georgi, Schwartz
~2010 De Rham, Gabadadze, Tolley
~2011-12... a lot of ongoing current stuff in massive gravity, cosmologies etc..
[D'Amico et al, arXiv II08.523I]

Massive cosmologies

Set up:

$\bigcirc g_{\mu \nu}=\partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b} \eta_{a b}+H_{\mu \nu}$
$\bigcirc K_{\nu}^{\mu}(g, H)=\delta_{\nu}^{\mu}-\sqrt{\partial^{\mu} \phi^{a} \partial_{\nu} \phi^{b} \eta_{a b}}$
$\bigcirc \mathcal{L}=\frac{M_{p}^{2}}{2} \sqrt{-g}\left(R+m^{2}\left(\mathcal{L}_{2}(K)+\alpha_{3} \mathcal{L}_{3}(K)+\alpha_{4} \mathcal{L}_{4}(K)\right)\right)$
for $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}$ defs see above
We want homogeneous + isotropic solution;
$d s^{2}=-d t^{2}+a^{2}(t) d \vec{x}^{2}, \quad \phi^{0}=f(t), \quad \phi^{i}=x^{i}$

$$
\mathcal{L}=3 M_{P}^{2}\left(-a \dot{a}^{2}-m^{2}|\dot{f}|\left(a^{3}-a^{2}\right)+m^{2}\left(2 a^{3}-3 a^{2}+a\right)\right)
$$

No FRW

e.o.m. varying wrt to " f " gives:
no $a(t)$ evolution!

$$
m^{2} \partial_{t}\left(a^{3}-a^{2}\right)=0
$$

2 notes:
I) α_{3}, α_{4} give a similar result. Might also try changing the flat 3D metric for a more general maximally symmetric 3 -space. No, that won't do.
2) $\mathrm{m}(\mathrm{t})$? If in the above one assumes $m=m(\sigma)$ the eom changes but the price to pay is a varying m :

$$
\partial_{t}\left(m^{2}(\sigma)\left(a^{3}-a^{2}\right)\right)=0
$$

worry not

- things need only look like FRW

$$
r_{*}=\left(\frac{\rho}{3 M_{P}^{2} m^{2}}\right)^{1 / 3} R
$$

the universe filled with pressure-less dust of density ρ
2 regimes:

$$
\rho>\rho_{c o} ; \quad \rho<\rho_{c o} ;
$$

$\rho>\rho_{c o} \quad$ In a Hubble patch $1 / H \sim\left(\rho / 3 M_{P}^{2}\right)^{1 / 2}$
inside the Vainshtein and therefore small corrections, $\sim\left(\frac{m}{H}\right)^{k}$
$\rho<\rho_{c o}$
vDVZ regime, far from GR

For the metric one easily reproduces FRW:

$$
\begin{array}{r}
\left.d s^{2}=-d t^{2}+C \nless<d t d r+A^{2}(t, \phi)\left[d r^{2}+r^{2} d \Omega^{2}\right]\right) \\
\phi^{0}=f(t, r), \quad \phi^{i}=g(t, r) \frac{x^{i}}{r} \\
\left.G_{\mu \nu}=m^{2} \not\right)^{(K)}+\frac{1}{M_{P}^{2}} T_{\mu \nu}
\end{array}
$$

It's the Stuckelbergs that start in m^{2} and are in need solution of the full eom and it won't always be necessarily nice, to make things works one needs to require the following

O The backreaction of $T_{\mu \nu}^{(K)}$ should be negligible
O metric fluctuations should be the GR ones to very high precision

[^0]very different cosmology due to dDVZ
here we are outside the Vainshstein, so linear massive gravity. It does not admit homogeneous and isotropic solution
how to picture it:
many I / m domains inside which all is far from FRW but averaging over many

many domains at distances $\gg 1 / \mathrm{m}$ might get homogeneity and isotropy back again

one might also want to consider:

fully bi-metric theories, i.e. giving dynamics to the absolute metric
~201| Comelli, Crisostomi, Nesti, Pilo.
Von Strauss,Schmidt,Enander, Mortsell, Hassan.
$d s^{2}=a(t)^{2}\left(-d t^{2}+d r^{2}+r^{2} d \Omega^{2}\right)$ $\left.d \tilde{s}^{2}=\omega^{2}(t)\left[-c(t)^{2} d t^{2}+2\right\rangle d t d r+d r^{2}+r^{2} d \Omega^{2}\right]$ there are FRW solutions now, in 2 branches
standard FRW with c.c. depending on m

n.b. also open FRW is possible but instability is an issue there
message: there exists a no go theorem for FRW in massive gravity

*Stuckelbergs, *fully bymetric etc...

all this stems from requiring the right cosmology, no objection to that. We now want to also look at things from another perspective.

The Higuchi bound is a condition that stems from requiring stability from the classical theory of linear Massive Gravity

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{E H}+\mathcal{L}_{m}=\sum p^{T} \dot{q}-\left[\frac{1}{2} p^{T} \cdot P \cdot p+\frac{1}{2} q^{T} \cdot Q \cdot q+p^{T} \cdot \overline{P Q} \cdot q\right] \tag{I}
\end{equation*}
$$

Roughly speaking: stability <==> P positive definite

e.g. Fierz-Pauli:

$$
S=S_{E H}-\frac{m^{2}}{4} \int d^{4} x \sqrt{-\bar{g}^{(4)}} h_{\mu \nu} h_{\rho \sigma}\left[f^{\mu \rho} f^{\nu \sigma}-f^{\mu \nu} f^{\rho \sigma}\right]
$$

take:

$$
f^{\mu \nu}=\bar{g}_{E H}^{\mu \nu}
$$

usual tensor decomposition

$$
T_{i j}=T_{i j}^{T t}+2 \partial_{(i} T_{j)}^{t}+\frac{1}{2}\left(\delta_{i j}-\hat{\partial}_{i j}\right) T^{t}+\hat{\partial}_{i j} T^{l}
$$

We are looking at the scalar here, the helicity 0 mode
use ADM formalism
solve constraint equations, solve for p^{t}, h^{t}
canonical transformation: $\quad p^{l} \rightarrow p_{0}+h^{t}\left(m^{2}-2 H^{2}\right) / 4 H ; h^{l} \rightarrow q_{0}+h^{t} / 2$

$$
\begin{aligned}
& I_{0}=p_{0} \dot{q}_{0}-\left[\frac{1}{2}\left[\frac{3 \nu^{2} m^{2}}{12 H^{2}}\right] p_{0}^{2}+\frac{1}{2}\left[\frac{12 H^{2}}{\nu^{2} m^{2}}\right] q_{0}\left(-\nabla^{2}+m^{2}-\frac{9 H^{2}}{4}\right) q_{0}\right] \\
& \nu^{2}=m^{2}-2 H^{2}
\end{aligned}
$$

Immediately, stability dictates

$$
\nu^{2}>0
$$

The Higuchi bound:

$$
m^{2}>2 H^{2}
$$

Vainshtein Mechanism

remember from above: inside the Vainshtein radius lies the region when you recover GR,
schematically then:

$$
3 H^{2}=\Lambda+3 m^{2} \times \Theta(1)
$$

Therefore, we require:

$$
m^{2}<H^{2}
$$

want our theory to be stable

GR works all around us

$$
m^{2}>2 H^{2}
$$

$$
m^{2}<H^{2}
$$

A. Higuchi

Nucl.Phys. B282 (1987) 397
S. Deser, A. Waldron

Phys.Lett. B508 (2001) 347-353 hep-th/0103255

A. I. Vainshtein

Phys.Lett. B39 (1972) 393-394
C. Deffayet, G. Dvali, G. Gabadadze, A. Vainshtein Phys.Rev. D65 (2002) 044026
G. Chkareuli, D. Pirtskhalava airXiv 11.05.1783

Clearly, there's a problem...

But note that, in deriving the Higuchi bound before, a number of assumptions have been implicitly made:
*** Shall we add matter content?
*** Shall we use a different reference metric " f "?
*** F-P theory of massive gravity has ghosts.
How about a ghost free theory?
*** something else?

Let's add matter:

$$
S=S_{E H}+S_{m^{2}}-\int d^{4} x \sqrt{-g^{(4)}}\left[\frac{1}{2} g^{\mu \nu} \partial_{\mu} \Phi \partial_{\nu} \Phi+V(\Phi)\right]
$$

keeping the assumption:

$$
f^{\mu \nu}=\bar{g}^{\mu \nu}
$$

The Higuchi bound now reads

$$
m^{2}>2\left(H^{2}+\dot{H}\right)
$$

L.Grisa, L.Sorbo

Phys.Lett. B686 (2010) 273-278 arXiv:0905.3391

Our set up

* dRGT theory of massive gravity

$$
S_{m^{2}}=2 m^{2} \int d^{4} x \sqrt{-g}\left[\varepsilon_{2}\left(\delta-\sqrt{g^{-1} f}\right)+\alpha_{3} \varepsilon_{3}(. .)+\alpha_{4} \varepsilon_{4}(. .)\right]
$$

with

$$
\begin{array}{r}
\varepsilon_{2}(X)=\frac{1}{2}\left(\operatorname{Tr}^{2}[X]-\operatorname{Tr}\left[X^{2}\right]\right) ; \quad \varepsilon_{3}(X)=\frac{1}{6}\left(\operatorname{Tr}^{3}[X]-3 \operatorname{Tr}\left[X^{2}\right] \operatorname{Tr}[X]+2 \operatorname{Tr}\left[X^{3}\right]\right) \\
\varepsilon_{3}(X)=\frac{1}{24}\left(\operatorname{Tr}^{4}[X]-6 \operatorname{Tr}\left[X^{2}\right] \operatorname{Tr}^{2}[X]+3 \operatorname{Tr}^{2}\left[X^{2}\right]+8 \operatorname{Tr}\left[X^{3}\right] \operatorname{Tr}[X]-6 \operatorname{Tr}\left[X^{4}\right]\right)
\end{array}
$$

** The reference metrics " f " and " g " need not be the same, parametrize it:

$$
f_{\mu \nu}=(1+z) \bar{g}_{\mu \nu}
$$

*** No matter content

$$
\text { dS space, } \quad \dot{\mathrm{H}} \rightarrow 0
$$

Results:

Friedman equation:

$$
3 H^{2}=m^{2}\left(3 z-3 z^{2}\right)+\Lambda
$$

therefore:

$$
m^{2}\left(z-z^{2}\right)<H^{2}
$$

modified Higuchi bound:

$$
m^{2}(1-z-2 z)\left(m^{2}\left(1-z-2 z^{2}\right)-2 H^{2}\right)>0
$$

overall then:

$$
\frac{(1-z-2 z)}{\left(3 z-3 z^{2}\right)} \gg 1
$$

Let's switch on α_{3}, α_{4}

e.o.m. :

$$
3 H^{2}=3 m^{2} z-3 m^{2} z^{2}+3 \alpha_{3} m^{2} z^{2}-\alpha_{3} m^{2} z^{3}+\alpha_{4} m^{2} z^{3}+\Lambda
$$

Higuchi bound:

$$
m^{2}(1+z)\left(1-z\left(2+(-2+z) \alpha_{3}-z \alpha_{4}\right)\right)>2 H^{2}
$$

The requirement now reads:

$$
\frac{m^{2}(1+z)\left(1-z\left(2+(-2+z) \alpha_{3}-z \alpha_{4}\right)\right)}{m^{2} z-3 m^{2} z^{2}+3 \alpha_{3} m^{2} z^{2}-\alpha_{3} m^{2} z^{3}+\alpha_{4} m^{2} z^{3}} \gg 1
$$

This inequality can now indeed be satisfied, but for specifically tuned values of the parameters, which is somewhat unnatural.

Add matter:

Background equation:

$$
\begin{gathered}
H^{2}=m^{2}\left(z-z^{2}\right)+\frac{\bar{\pi}^{2}}{12}+\frac{V_{0}}{6} \\
\dot{H}=-\frac{\bar{\pi}^{2}}{4}-\frac{m^{2}}{2}\left(1-z-2 z^{2}-M+2 M z\right) \\
\dot{\bar{\pi}}+3 H \bar{\pi}+V_{1}=0 ; \quad V_{1}=\frac{d V(\phi)}{d \phi} \\
\dot{z}=-\frac{H}{1-2 z}\left(1-z-2 z^{2}-M+2 M z\right) \\
f_{\mu \nu}=\operatorname{diag}\left[-\mathrm{M}^{2}(\mathrm{t}),(1+\mathrm{z}(\mathrm{t}))^{2}\right]
\end{gathered}
$$

Higuchi bound:

$$
m^{2}(1-z-2 z)>2 H^{2}+2 \dot{H}
$$

qualitative now!,

final expression itself is quite long
again then:

$$
\frac{(1-z-2 z)}{\left(3 z-3 z^{2}\right)} \gg 1
$$

Putting back in the parameters and z^{\prime} does not change the picture which emerged so far:
the time dependence of z makes things even worse

Message

Higuchi VS Vainshstein tension cannot be relaxed in this setup,

- not by adding matter
- not by using two FRW different metrics ...and it makes sense from another perspective as well, as we have seen .
* going fully bimetric?
* inhomogeneities in the ϕ^{\prime} 's ?
we have reasons to be hopeful!

[^0]: خ
 the Stuckelbergs are not homogeneous so there exist a physical "center" for them, of size I/m perturbations will pick on this center and therefore one must require that $\mathrm{m}<\mathrm{H} 0$

