Deforming Gravity

L. Pilo¹

¹Department of Physics University of L'Aquila

Cargese 2012

Comelli-Crisostomi-Nesti-LP arXiv:1204.1027 [hep-th]

ヘロア ヘロア ヘビア ヘビア

1/22

Einstein's GR

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10 $^{-3}$)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10 $^{-3}$
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

however

- CMB + Supernovae data require Dark energy $p = w\rho$, w < 0. Expanded acceleration Perhaps just a tiny (??) cosmological constant, w = -1, $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? Can we modify GR at large distances?

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

however

- CMB + Supernovae data require Dark energy $p = w\rho$, w < 0. Expanded acceleration Perhaps just a tiny (??) cosmological constant, w = -1, $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? Can we modify GR at large distances?

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

however

- CMB + Supernovae data require Dark energy $p = w\rho$, w < 0. Expanded acceleration Perhaps just a tiny (??) cosmological constant, w = -1, $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? Can we modify GR at large distances?

- Weak Equivalence principle (10⁻¹³)
- Solar system tests (weak field) $(10^{-3} 10^{-5})$
- Binary pulsar (nonlinear) (10⁻³)
- Newton's Law tested between 10⁻¹mm and 10¹⁶mm

however

- CMB + Supernovae data require Dark energy $p = w\rho$, w < 0. Expanded acceleration Perhaps just a tiny (??) cosmological constant, w = -1, $\Lambda \sim (10^{-4} \text{ eV})^4$ or a bizarre fluid?
- Is GR an isolated theory ? Can we modify GR at large distances?

・ロン ・回 と ・ ヨン ・ ヨン … ヨ

• Add to GR an extra piece such that when $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

$$(\sqrt{g} R + \mathcal{L}_{def}) = \mathcal{L}_{spin 2} + m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2\right) + \cdots$$

- To build a mass term we need an extra tensor field: with $g_{\mu\nu}$ and $g^{\mu\nu}$ there is no non-trivial polynomial of g with no derivative
- Introduce a new tensor field G_{μν}, then scalar objects can be constructed from the metric using

$$X^{\mu}_{\nu} = g^{\mu\alpha} G_{\alpha\nu} \qquad \tau_n = \operatorname{Tr}(X^n)$$

• Example: $G_{\alpha\nu} = \eta_{\alpha\nu}$

$$g^{\mu\nu}G_{\mu\nu} = 4 - h^{\mu\nu}\eta_{\mu\nu} + h^{\mu\nu}h_{\mu\nu} + \cdots$$
$$a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (ah_{\mu\nu}h^{\mu\nu} + bh^2) + \cdots$$

• Add to GR an extra piece such that when $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

$$(\sqrt{g} R + \mathcal{L}_{def}) = \mathcal{L}_{spin 2} + m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2\right) + \cdots$$

- To build a mass term we need an extra tensor field: with $g_{\mu\nu}$ and $g^{\mu\nu}$ there is no non-trivial polynomial of g with no derivative
- Introduce a new tensor field G_{μν}, then scalar objects can be constructed from the metric using

$$X^{\mu}_{\nu} = g^{\mu\alpha}G_{\alpha\nu}$$
 $au_n = \operatorname{Tr}(X^n)$

• Example: $G_{\alpha\nu} = \eta_{\alpha\nu}$

$$g^{\mu\nu}G_{\mu\nu} = 4 - h^{\mu\nu}\eta_{\mu\nu} + h^{\mu\nu}h_{\mu\nu} + \cdots$$
$$a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (ah_{\mu\nu}h^{\mu\nu} + bh^2) + \cdots$$

• Add to GR an extra piece such that when $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

$$(\sqrt{g} R + \mathcal{L}_{def}) = \mathcal{L}_{spin 2} + m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2\right) + \cdots$$

- To build a mass term we need an extra tensor field: with $g_{\mu\nu}$ and $g^{\mu\nu}$ there is no non-trivial polynomial of g with no derivative
- Introduce a new tensor field G_{μν}, then scalar objects can be constructed from the metric using

$$X^{\mu}_{
u} = g^{\mu lpha} G_{lpha
u} \qquad au_n = \operatorname{Tr}(X^n)$$

• Example: $G_{\alpha\nu} = \eta_{\alpha\nu}$

$$g^{\mu\nu}G_{\mu\nu} = 4 - h^{\mu\nu}\eta_{\mu\nu} + h^{\mu\nu}h_{\mu\nu} + \cdots$$
$$a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (ah_{\mu\nu}h^{\mu\nu} + bh^2) + \cdots$$

• Add to GR an extra piece such that when $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

$$(\sqrt{g} R + \mathcal{L}_{def}) = \mathcal{L}_{spin 2} + m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2\right) + \cdots$$

- To build a mass term we need an extra tensor field: with $g_{\mu\nu}$ and $g^{\mu\nu}$ there is no non-trivial polynomial of g with no derivative
- Introduce a new tensor field G_{μν}, then scalar objects can be constructed from the metric using

$$X^{\mu}_{\nu} = g^{\mu lpha} G_{lpha
u} \qquad au_n = \operatorname{Tr}(X^n)$$

• Example: $G_{\alpha\nu} = \eta_{\alpha\nu}$

$$g^{\mu\nu}G_{\mu\nu} = 4 - h^{\mu\nu}\eta_{\mu\nu} + h^{\mu\nu}h_{\mu\nu} + \cdots$$
$$a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (ah_{\mu\nu}h^{\mu\nu} + bh^2) + \cdots$$

• Add to GR an extra piece such that when $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$

$$(\sqrt{g} R + \mathcal{L}_{def}) = \mathcal{L}_{spin 2} + m^2 \left(a h_{\mu\nu} h^{\mu\nu} + b h^2\right) + \cdots$$

- To build a mass term we need an extra tensor field: with $g_{\mu\nu}$ and $g^{\mu\nu}$ there is no non-trivial polynomial of g with no derivative
- Introduce a new tensor field G_{μν}, then scalar objects can be constructed from the metric using

$$X^{\mu}_{\nu} = g^{\mu lpha} G_{lpha
u} \qquad au_n = \operatorname{Tr}(X^n)$$

• Example: $G_{\alpha\nu} = \eta_{\alpha\nu}$

$$g^{\mu\nu}G_{\mu\nu} = 4 - h^{\mu\nu}\eta_{\mu\nu} + h^{\mu\nu}h_{\mu\nu} + \cdots$$
$$a(\tau_1 - 4)^2 + b(\tau_2 - 2\tau_1 + 4) = (ah_{\mu\nu}h^{\mu\nu} + bh^2) + \cdots$$

The extra metric is non-dynamical flat given metric

 To recover diff (gauge) invariance introduce 4 (Stuckelberg) scalars to recast the fixed metric as

$$G_{\mu
u}=rac{\partial \Phi^{A}}{\partial x^{\mu}}\,rac{\partial \Phi^{B}}{\partial x^{
u}}\,\eta_{AB}$$

Minimal set of DOF to recover diff invariance $G_{\mu\nu}$ and X^{μ}_{ν} transform as tensors and $\tau_n = \text{Tr}(X^n)$ as scalar

- Geometrically Φ^A are coordinates of some fictitious flat space \mathcal{M} point-wise identified with the physical spacetime with a tetrad basis $e^A = d\Phi^A$
- One can chose coordinates such that (Unitary gauge)

$$\frac{\partial \Phi^{A}}{\partial x^{\mu}} = \delta^{A}_{\mu} \Rightarrow G_{\mu\nu} = \eta_{\mu\nu}$$

The extra metric is non-dynamical flat given metric

 To recover diff (gauge) invariance introduce 4 (Stuckelberg) scalars to recast the fixed metric as

$$G_{\mu
u} = rac{\partial \Phi^{A}}{\partial x^{\mu}} rac{\partial \Phi^{B}}{\partial x^{
u}} \eta_{AB}$$

Minimal set of DOF to recover diff invariance $G_{\mu\nu}$ and X^{μ}_{ν} transform as tensors and $\tau_n = \text{Tr}(X^n)$ as scalars

- Geometrically Φ^A are coordinates of some fictitious flat space \mathcal{M} point-wise identified with the physical spacetime with a tetrad basis $e^A = d\Phi^A$
- One can chose coordinates such that (Unitary gauge)

$$\frac{\partial \Phi^{A}}{\partial x^{\mu}} = \delta^{A}_{\mu} \Rightarrow G_{\mu\nu} = \eta_{\mu\nu}$$

The extra metric is non-dynamical flat given metric

 To recover diff (gauge) invariance introduce 4 (Stuckelberg) scalars to recast the fixed metric as

$${\cal G}_{\mu
u} = {\partial \Phi^{\cal A}\over\partial x^{\mu}}\, {\partial \Phi^{\cal B}\over\partial x^{
u}}\, \eta_{{\cal A}{\cal B}}$$

Minimal set of DOF to recover diff invariance

 $G_{\mu\nu}$ and X^{μ}_{ν} transform as tensors and $\tau_n = \text{Tr}(X^n)$ as scalars

- Geometrically Φ^A are coordinates of some fictitious flat space \mathcal{M} point-wise identified with the physical spacetime with a tetrad basis $e^A = d\Phi^A$
- One can chose coordinates such that (Unitary gauge)

$$\frac{\partial \Phi^{A}}{\partial x^{\mu}} = \delta^{A}_{\mu} \Rightarrow G_{\mu\nu} = \eta_{\mu\nu}$$

The extra metric is non-dynamical flat given metric

 To recover diff (gauge) invariance introduce 4 (Stuckelberg) scalars to recast the fixed metric as

$$G_{\mu
u} = rac{\partial \Phi^{\mathcal{A}}}{\partial x^{\mu}} rac{\partial \Phi^{\mathcal{B}}}{\partial x^{
u}} \eta_{\mathcal{A}\mathcal{B}}$$

Minimal set of DOF to recover diff invariance

 $G_{\mu\nu}$ and X^{μ}_{ν} transform as tensors and $\tau_n = \text{Tr}(X^n)$ as scalars

- Geometrically Φ^A are coordinates of some fictitious flat space \mathcal{M} point-wise identified with the physical spacetime with a tetrad basis $e^A = d\Phi^A$
- One can chose coordinates such that (Unitary gauge)

$$\frac{\partial \Phi^{\mathcal{A}}}{\partial x^{\mu}} = \delta^{\mathcal{A}}_{\mu} \Rightarrow \ \mathcal{G}_{\mu\nu} = \eta_{\mu\nu}$$

Actions for Massive Gravity

Stuckelberg Formulation

$$S_{mGR} = \int d^4x \sqrt{g} M_{
hol}^2 \left[R(g) - 4m^2 V(X)
ight]$$

Bigravity Formulation

The extra metric ${\it G}_{\mu
u}= ilde{g}_{\mu
u}$ is dynamical

$$\mathcal{S}_{MGR} = \int d^4x \, M_{
ho l}^2 \left[\sqrt{g} \, ilde{\mathcal{R}}(g) + \kappa \, \sqrt{ ilde{g}} \, \mathcal{R}(ilde{g}) - 4 \, m^2 \sqrt{g} \, \mathcal{V}(X)
ight]$$

When $\kappa \to \infty$, $\tilde{g}_{\mu\nu}$ gets non-dynamical: $\tilde{g}_{\mu\nu} = e^A_\mu e^B_\nu \tilde{\eta}_{AB}$ $e^A = d\Phi^A$ and $\tilde{g}_{\mu\nu} = \partial_\mu \phi^A \partial_\nu \phi^A \tilde{\eta}_{AB}$

making contact with the Stuckelberg formulation

- The Stuckelberg formulation is minimal, sort of EFT ③
- The Stuckelberg formulation contains absolute objects it is an æther-like theory
- Fixed flat second metric prevents a spatially flat FRW massive gravity cosmology
- Similar troubles with Black Hole (horizon) solutions
- Bigravity formulation: all objects are dynamical determined
 No problems with horizons and flat FRW solutions
- The bigravity formulation is more complicated 🔅

From now on we will focus on the Stuckelberg formulation in the unitary gauge

• GR
$$M_{pl}^2 E_{\mu\nu}^{(1)} = T_{\mu\nu}^{(1)}, \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

DOF 10 - 2 × 4 = 2 4 gauge modes $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Massive gravitons (Minkowski) have 5 DOF, more DOF needed
Give up gauge symmetry. Fierz-Pauli theory (1939)

$$\mathcal{L}_{FP} = M_{pl}^2 \mathcal{L}_{spin2}^{(2)} + M_{pl}^2 m^2 (a h_{\mu\nu} h^{\mu\nu} + b h^2)$$

$$E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 (a h_{\mu\nu} + b h \eta_{\mu\nu}) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \qquad \partial^{\nu} E_{\mu\nu}^{(1)} = 0$$

4 constraints DOF 10 - 4 = 6 = 5 + 1

- The sixth mode is a ghost (Boulware-Deser). Absent in flat space when a + b = 0 (FP theory) present in curved space and at the non-linear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity

• GR
$$M_{\rho l}^2 E_{\mu \nu}^{(1)} = T_{\mu \nu}^{(1)}, \qquad g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}$$

DOF 10 – 2 × 4 = 2 4 gauge modes $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Massive gravitons (Minkowski) have 5 DOF, more DOF needed
Give up gauge symmetry. Fierz-Pauli theory (1939)

$$\mathcal{L}_{FP} = M_{pl}^2 \mathcal{L}_{spin2}^{(2)} + M_{pl}^2 m^2 (a h_{\mu\nu} h^{\mu\nu} + b h^2)$$

$$E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 (a h_{\mu\nu} + b h \eta_{\mu\nu}) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \qquad \partial^{\nu} E_{\mu\nu}^{(1)} =$$

- The sixth mode is a ghost (Boulware-Deser). Absent in flat space when a + b = 0 (FP theory) present in curved space and at the non-linear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity

• GR
$$M_{\rho l}^2 E_{\mu \nu}^{(1)} = T_{\mu \nu}^{(1)}, \qquad g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}$$

DOF 10 – 2 × 4 = 2 4 gauge modes $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Massive gravitons (Minkowski) have 5 DOF, more DOF needed
Give up gauge symmetry. Fierz-Pauli theory (1939)

$$\mathcal{L}_{FP} = M_{pl}^2 \mathcal{L}_{spin2}^{(2)} + M_{pl}^2 m^2 (a h_{\mu\nu} h^{\mu\nu} + b h^2)$$

$$E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 (a h_{\mu\nu} + b h \eta_{\mu\nu}) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \qquad \partial^{\nu} E_{\mu\nu}^{(1)} = 0$$

4 constraints DOF 10 - 4 = 6 = 5 + 1

- The sixth mode is a ghost (Boulware-Deser). Absent in flat space when a + b = 0 (FP theory) present in curved space and at the non-linear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity

• GR
$$M_{\rho l}^2 E_{\mu \nu}^{(1)} = T_{\mu \nu}^{(1)}, \qquad g_{\mu \nu} = \eta_{\mu \nu} + h_{\mu \nu}$$

DOF 10 – 2 × 4 = 2 4 gauge modes $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

- Massive gravitons (Minkowski) have 5 DOF, more DOF needed
- Give up gauge symmetry. Fierz-Pauli theory (1939)

$$\mathcal{L}_{FP} = M_{pl}^2 \mathcal{L}_{spin2}^{(2)} + M_{pl}^2 m^2 (a h_{\mu\nu} h^{\mu\nu} + b h^2)$$

$$E_{\mu\nu}^{(1)} - \frac{1}{4} m^2 (a h_{\mu\nu} + b h \eta_{\mu\nu}) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \qquad \partial^{\nu} E_{\mu\nu}^{(1)} = 0$$

4 constraints DOF 10 - 4 = 6 = 5 + 1

- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when a + b = 0 (FP theory) present in curved space and at the non-linear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity

• GR
$$M_{pl}^2 E_{\mu\nu}^{(1)} = T_{\mu\nu}^{(1)}, \qquad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

DOF 10 – 2 × 4 = 2 4 gauge modes $\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Massive gravitons (Minkowski) have 5 DOF, more DOF needed
 Give up gauge symmetry, Fierz-Pauli theory (1939)

$$\mathcal{L}_{FP} = M_{pl}^2 \, \mathcal{L}_{spin2}^{(2)} + M_{pl}^2 m^2 \, \left(a \, h_{\mu\nu} h^{\mu\nu} + b \, h^2\right)$$

$$E_{\mu\nu}^{(1)} - \frac{1}{4}m^2 (a h_{\mu\nu} + b h \eta_{\mu\nu}) = M_{pl}^{-2} T_{\mu\nu}^{(1)} \qquad \partial^{\nu} E_{\mu\nu}^{(1)} = 0$$

4 constraints

DOF
$$10 - 4 = 6 = 5 + 1$$

- The sixth mode is a ghost (Boulware-Deser).
 Absent in flat space when a + b = 0 (FP theory) present in curved space and at the non-linear level
- When the ghost is projected out, light bending badly contradicts experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity

vdVZ and the Ghost: Linearized Level

Lorentz invariant decomposition $h_{\mu\nu} = h_{\mu\nu}^{TT} + \partial_{(\mu}A_{\nu)}^{T} + \partial_{\mu}\partial_{\nu}\varphi + \eta_{\mu\nu}\phi$ In GR φ and A_{μ} are gauge modes !

$$\mathcal{L}^{(2)} = h_{\mu\nu}^{TT} \left(\Box - m^2 a \right) h^{TT\mu\nu} + A_{\mu}^{T} \left(\Box - m^2 a \right) A^{T\mu} \\ (\phi, \varphi) \begin{pmatrix} -\Box + (a+4b)m^2 & (a+4b)m^2 \Box \\ (a+4b)m^2 \Box & (a+b)m^2 \Box^2 \end{pmatrix}$$

only ϕ couples with the matter (trace EMT) and generically it is a ghost

$$<\phi\,\phi>=-rac{(a+b)}{(a+b)\Box+m^2}$$

The ghost does not propagate if a + b = 0, Pauli-Fierz tuning, only 5 DOF. But the propagator is discontinuous when $m \rightarrow 0$

$$h_{\mu\nu}^{GR} = \frac{\left(\eta_{\mu\alpha}\eta_{\nu\beta} - \frac{1}{2}\eta_{\mu\nu}\eta_{\alpha\beta}\right)}{\Box}T^{\alpha\beta} \qquad h_{\mu\nu}^{PF} = \frac{\left(\eta_{\mu\alpha}\eta_{\nu\beta} - \frac{1}{3}\eta_{\mu\nu}\eta_{\alpha\beta}\right)}{\Box}T^{\alpha\beta}$$

$\bullet~vdVZ \Rightarrow 25\%$ deviation from GR for light bending from the sun

- Experimentally GR prediction are well verified, deviations $< 10^{-4}$
- If the weak field expansion applies, PF theory is ruled out by solar system tests
- Check the validity of the weak field expansion in the solar system
- Check what happens to the linearized PF tuning at the non-linear level

- vdVZ \Rightarrow 25% deviation from GR for light bending from the sun
- Experimentally GR prediction are well verified, deviations $< 10^{-4}$
- If the weak field expansion applies, PF theory is ruled out by solar system tests
- Check the validity of the weak field expansion in the solar system
- Check what happens to the linearized PF tuning at the non-linear level

- vdVZ \Rightarrow 25% deviation from GR for light bending from the sun
- Experimentally GR prediction are well verified, deviations $< 10^{-4}$
- If the weak field expansion applies, PF theory is ruled out by solar system tests
- Check the validity of the weak field expansion in the solar system
- Check what happens to the linearized PF tuning at the non-linear level

- vdVZ \Rightarrow 25% deviation from GR for light bending from the sun
- Experimentally GR prediction are well verified, deviations $< 10^{-4}$
- If the weak field expansion applies, PF theory is ruled out by solar system tests
- Check the validity of the weak field expansion in the solar system
- Check what happens to the linearized PF tuning at the non-linear level

- vdVZ \Rightarrow 25% deviation from GR for light bending from the sun
- Experimentally GR prediction are well verified, deviations $< 10^{-4}$
- If the weak field expansion applies, PF theory is ruled out by solar system tests
- Check the validity of the weak field expansion in the solar system
- Check what happens to the linearized PF tuning at the non-linear level

ADM decompositions

$$m{g}_{\mu
u}=egin{pmatrix} -N^2+N_iN_jh^{ij}&N_i\ N_i&\gamma_{ij} \end{pmatrix}$$

Hamiltonian of GR and mGR in the unitary gauge

$$\begin{split} H &= M_{\text{pl}}^2 \int d^3 x \left[N^A \,\mathcal{H}_A + \, m^2 \, N \,\sqrt{\gamma} \, \mathbf{V} \right] \qquad \mathcal{H}_A = (\mathcal{H}, \,\mathcal{H}_i) \\ \Pi^{ij} &\to \text{Conj. momenta of } \gamma_{ij} \\ P^A &= (P^0, P^i) \text{ Conjugate momenta of } N^A = (N, N^i) \\ \mathcal{H}_i &= -2\gamma_{ij} D_k \Pi^{jk} \,, \quad \mathcal{H} = -\gamma^{1/2} \, R^{(3)} + \gamma^{-1/2} \left(\Pi_{ij} \Pi^{ij} - \frac{1}{2} (\Pi_i^j)^2 \right) \\ \text{No time derivatives of } N^A \to P_A = 0 \text{ Constrained theory } ! \end{split}$$

Constrained Theory: Dirac treatment in a nutshell

- Momenta are not all independent → introduce Lagrange multipliers (LMs) to enforce the constraints
- Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

$$H_T = H + \int d^3x \,\lambda^A \Pi_A \,,$$

EoMs: dynamical + time evolution of primary ($P^A = 0$) constraints

enforcing the consistency of constrs. with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\{C_s, i = 1, 2, \dots c\}$ is conserved in time that reduces the number of DoF from 10 down to (10 + 10 - c)/2If some of the LMs are not determined \rightarrow gauge invariance

Constrained Theory: Dirac treatment in a nutshell

- Momenta are not all independent → introduce Lagrange multipliers (LMs) to enforce the constraints
- Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

$$H_T = H + \int d^3x \,\lambda^A \Pi_A \,,$$

EoMs: dynamical + time evolution of primary ($P^A = 0$) constraints

enforcing the consistency of constrs. with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\{C_s, i = 1, 2, \dots c\}$ is conserved in time that reduces the number of DoF from 10 down to (10 + 10 - c)/2If some of the LMs are not determined \rightarrow gauge invariance

Constrained Theory: Dirac treatment in a nutshell

- Momenta are not all independent → introduce Lagrange multipliers (LMs) to enforce the constraints
- Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

$$H_T = H + \int d^3x \,\lambda^A \Pi_A \,,$$

EoMs: dynamical + time evolution of primary ($P^A = 0$) constraints

enforcing the consistency of constrs. with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\{C_s, i = 1, 2, \dots c\}$ is conserved in time that reduces the number of DoF from 10 down to (10 + 10 - c)/2If some of the LMs are not determined \rightarrow gauge invariance

Example: GR

Time evolution of P_A = 0 via Poisson brackets are just the Eqs. of N^A, being H linear in N^A

$$\{P^{A}(t,x), H_{T}(t)\} = \{P^{A}(t,x), H\} = \mathcal{H}_{A} = 0$$

• Thanks to the GR algebra the four secondary constraints are conserved and no LM is determined (Diff invariance)

$$\begin{split} \{\mathcal{H}(x), \ \mathcal{H}(y) &= \mathcal{H}^{i}(x) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) - \mathcal{H}^{i}(y) \ \partial_{i}^{(y)} \ \delta^{(3)}(x-y) \\ \{\mathcal{H}(x), \ \mathcal{H}_{j}(y)\} &= \mathcal{H}(y) \ \partial_{j}^{(x)} \ \delta^{(3)}(x-y) \\ \{\mathcal{H}_{i}(x), \ \mathcal{H}_{j}(y)\} &= \mathcal{H}_{j}(x) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) - \mathcal{H}_{i}(y) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) \end{split}$$

In GR four diffs have to be gauge fixed adding 4 additional constraints

DoF = (6 + 6 - 4 - 4)/2 = 2

The analysis is nonpertutbative and background independent

Example: GR

Time evolution of P_A = 0 via Poisson brackets are just the Eqs. of N^A, being H linear in N^A

$$\{P^{A}(t,x), H_{T}(t)\} = \{P^{A}(t,x), H\} = \mathcal{H}_{A} = 0$$

• Thanks to the GR algebra the four secondary constraints are conserved and no LM is determined (Diff invariance)

$$\begin{split} \{\mathcal{H}(x), \ \mathcal{H}(y) &= \mathcal{H}^{i}(x) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) - \mathcal{H}^{i}(y) \ \partial_{i}^{(y)} \ \delta^{(3)}(x-y) \\ \{\mathcal{H}(x), \ \mathcal{H}_{j}(y)\} &= \mathcal{H}(y) \ \partial_{j}^{(x)} \ \delta^{(3)}(x-y) \\ \{\mathcal{H}_{i}(x), \ \mathcal{H}_{j}(y)\} &= \mathcal{H}_{j}(x) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) - \mathcal{H}_{i}(y) \ \partial_{i}^{(x)} \ \delta^{(3)}(x-y) \end{split}$$

In GR four diffs have to be gauge fixed adding 4 additional constraints

DoF = (6 + 6 - 4 - 4)/2 = 2

The analysis is nonpertutbative and background independent

• When V deforming potential is turned on, the time evolution of $P_A = 0$ still gives N^A Eqs

 $\{P_A(t,x), H_T(t)\} = S_A = \mathcal{H}_A + \mathcal{V}_A$ 4 new secondary constraints

$$\mathcal{V} = m^2 N \gamma^{1/2} V \qquad \qquad \frac{\partial \mathcal{V}}{\partial N^A} = \mathcal{V}_A$$

• Is time evolution consistent with S_A ? $\nu_{AB} = \nu_{AB}$ $\partial^2 \nu_{AD} A \partial N^B$

$$\mathcal{T}_A \equiv \{\mathcal{S}_A, H_T\} = \{\mathcal{S}_A, H\} - \mathcal{V}_{AB} \lambda^B = 0$$

If the $r = \text{Rank}(\mathcal{V}_{AB}) = 4$: deforming pot. has non degenerate Hessian

all LMs λ^{A} are determined and we are done

DoF=10 - (4 + 4)/2 = 6 = 5 + 1

Around Minkowski: massive spin 2 (5) plus a ghost scalar (1) Boulware-Deser mode

• When V deforming potential is turned on, the time evolution of $P_A = 0$ still gives N^A Eqs

 $\{P_A(t,x), H_T(t)\} = S_A = \mathcal{H}_A + \mathcal{V}_A$ 4 new secondary constraints

$$\mathcal{V} = m^2 N \gamma^{1/2} V \qquad \qquad \frac{\partial \mathcal{V}}{\partial N^A} = \mathcal{V}_A$$

• Is time evolution consistent with S_A ? $\mathcal{V}_{AB} \equiv \mathcal{V}_{AB} = \partial^2 \mathcal{V} / \partial N^A \partial N^B$

$$\mathcal{T}_{A} \equiv \{\mathcal{S}_{A}, H_{T}\} = \{\mathcal{S}_{A}, H\} - \mathcal{V}_{AB} \lambda^{B} = 0$$

If the $r = \text{Rank}(\mathcal{V}_{AB}) = 4$: deforming pot. has non degenerate Hessian all LMs λ^A are determined and we are done DoF=10 - (4 + 4)/2 = 6 = 5 + 1Around Minkowski: massive spin 2 (5) plus a ghost scalar (1) Boulware-Deser mode The Hessian matrix of \mathcal{V} has a single zero mode $\chi^{\mathcal{A}}$, r = 3

$$\mathcal{V}_{AB} \chi^{B} = 0, \qquad \mathcal{V}_{AB} E_{n}^{B} = \kappa_{n} E_{n}^{A}$$
$$\lambda^{A} = z \chi^{A} + \sum_{n=1}^{3} d_{n} E_{n}^{A} \stackrel{\text{def}}{=} z \chi^{A} + \bar{\lambda}^{A}.$$

If det(\mathcal{V}_{ij}) \neq 0, then $\chi^{A} = (1, -\mathcal{V}_{ij}^{-1} \mathcal{V}_{0j})$ Projection of $\dot{\mathcal{T}}_{A} = 0$ along χ^{A} is a **single** new constraint Projection on the remaining eigenvectors gives Three out ($\bar{\lambda}^{A}$) of the four LMs

$$\chi^{A} \{ S_{A}, H \} = \mathcal{T}_{A} \chi^{A} 0 = \mathcal{T} = 0$$
$$E_{n}^{A} \{ S_{A}, H \} - d_{n} \kappa_{n} z = 0 \qquad \text{No sum in } n$$

Time evolution of ${\mathcal T}$

$$\begin{aligned} \mathcal{Q}(x) &= \{\mathcal{T}(x), H_T\} \\ &= \{\mathcal{T}(x), H\} + \int d^3 y \{\mathcal{T}(x), \lambda^A(y) \Pi_A(y)\} = 0 \end{aligned}$$

If Q does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of Q. We are done.
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) + 1 (Q) = 10
 DoF: 10 - 10/2 = 5

If Q = 0 determines z we are done and there is no additional constraints
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) = 8 + 1

DoF: 10 - 9/2 = 5 + 1/2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time evolution of ${\mathcal T}$

$$\mathcal{Q}(x) = \{\mathcal{T}(x), H_T\}$$

= $\{\mathcal{T}(x), H\} + \int d^3y \{\mathcal{T}(x), \lambda^A(y) \Pi_A(y)\} = 0$

If Q does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of Q. We are done.
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) + 1 (Q) = 10
 DoF: 10 - 10/2 = 5

If Q = 0 determines z we are done and there is no additional constraints
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) = 8 + 1
 DoF: 10 - 9/2 = 5 + 1/2

Time evolution of ${\mathcal T}$

$$\mathcal{Q}(x) = \{\mathcal{T}(x), H_T\}$$

= $\{\mathcal{T}(x), H\} + \int d^3y \{\mathcal{T}(x), \lambda^A(y) \Pi_A(y)\} = 0$

If Q does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of Q. We are done.
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) + 1 (Q) = 10
 DoE: 10 10/2 = 5

DoF: 10 - 10/2 = 5

If Q = 0 determines z we are done and there is no additional constraints
 Total # of constraints 4 (P_A) + 4 (S_A) + 1 (T) = 8 + 1

DoF: 10 - 9/2 = 5 + 1/2

$$\{\mathcal{T}, \lambda^{\mathcal{A}} \cdot \Pi_{\mathcal{A}}\} = \text{terms } z \text{ indep.} - \int d^{3}y \,\Theta(x, y) \, z(y) = \dots - I[z]$$

$$\Theta(x, y) = \chi^{\mathcal{A}}(x) \{S_{\mathcal{A}}(x), S_{\mathcal{B}}(y)\} \,\chi^{\mathcal{A}}(y) = \mathcal{A}^{i}(x, y) \partial_{i} \delta^{(3)}(x - y)$$

$$\mathcal{A}(x, y) = \mathcal{A}(y, x)$$

Only in field theory Θ can be non zero !

$$I[z] = -\frac{1}{2z(x)}\partial_i \left[z(x)^2 A^i(x,x) \right]$$

Q is free from *z* if $A^i(x, x) = 0$, which consists in the following condition

$$\chi^{0^2} \tilde{\mathcal{V}}_i + 2 \chi^A \chi^j \frac{\partial \tilde{\mathcal{V}}_A}{\partial \gamma^{ij}} = \mathbf{0}, \qquad \qquad \mathcal{V} = \gamma^{1/2} \tilde{\mathcal{V}}$$

mGR: Summary of the Canonical Analysis

Necessary and sufficient conditions for having 5 DoF in mGR

$$\mathsf{Rank}(\tilde{\mathcal{V}}_{AB}) = 3 \Rightarrow \tilde{\mathcal{V}}_{00} - \tilde{\mathcal{V}}_{0i}(\tilde{\mathcal{V}}_{ij})^{-1}\tilde{\mathcal{V}}_{j0} = 0 \tag{1}$$

$$\chi^{0^2} \tilde{\mathcal{V}}_i + 2 \chi^A \chi^j \frac{\partial \tilde{\mathcal{V}}_A}{\partial \gamma^{ij}} = 0 \qquad \chi^A = (1, -\tilde{\mathcal{V}}_{ij}^{-1} \tilde{\mathcal{V}}_{0j}) \qquad (2)$$

Notice: If only (1) holds 5+1/2 DoF propagate

A theory with 5+1/2 DoF is physically acceptable ?

5+1/2 DoF found also in a class of Horava-Lifshitz modified gravity theory

(1) is a homogeneous Monge-Ampere equation

many solutions are know

(2) is much more restrictive

Strategy

- Find a solution of Monge-Ampere equation (rank(V) = 3)
- Check that the candidate satisfies the additional equation to get rid of 1/2 DoF

$$\operatorname{Rank}(\tilde{\mathcal{V}}_{AB}) = 3 \Rightarrow \tilde{\mathcal{V}}_{00} - \tilde{\mathcal{V}}_{0i}(\tilde{\mathcal{V}}_{ij})^{-1}\tilde{\mathcal{V}}_{j0} = 0$$
$$\chi^{0^2} \tilde{\mathcal{V}}_i + 2\chi^A \chi^j \frac{\partial \tilde{\mathcal{V}}_A}{\partial \gamma^{ij}} = 0 \qquad \chi^A = (1, -\tilde{\mathcal{V}}_{ij}^{-1}\tilde{\mathcal{V}}_{0j})$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

2D Lorentz Invariant case

To simplify things: Eqs in 2D where $\tilde{\mathcal{V}}(N, N^1, \gamma)$ and $\gamma_{11} \equiv \gamma$ Lorentz Invariant case: *V* depends on the eiegenvalues $\lambda_1, \lambda_2, \cdots$ of $X = g^{-1}\eta$

After expressing N, N^1 in terms of $\lambda_{1/2}$, det $\tilde{\mathcal{V}}_{AB}$ must hold for any γ ! The resulting equation is cubic and splits into two branches of three differential equations

$$egin{aligned} & ilde{\mathcal{V}}^{(2,0)} = -rac{3}{2\,\lambda_1}\, ilde{\mathcal{V}}^{(1,0)}\,, \quad ilde{\mathcal{V}}^{(0,2)} = -rac{3}{2\,\lambda_2}\, ilde{\mathcal{V}}^{(0,1)}\,, \ & ilde{\mathcal{V}}^{(1,1)} = -rac{\lambda_1^{3/2}\, ilde{\mathcal{V}}^{(1,0)}\pm\lambda_2^{3/2}\, ilde{\mathcal{V}}^{(0,1)}}{2\,\lambda_1\,\lambda_2\,(\lambda_1^{1/2}\pm\lambda_2^{1/2})}. \end{aligned}$$

Solutions, (all !)

$$\mathcal{V}_{I,II} = \frac{\alpha_1 \sqrt{\lambda_1 \lambda_2} + \alpha_2 \left(\sqrt{\lambda_1} \pm \sqrt{\lambda_2}\right) + \alpha_3}{\sqrt{\lambda_1 \lambda_2}},$$

with $\alpha_{1,2,3}$ integration constants.

2D: Lorentz Invariant case

Both I and II satisfies also the second equation that kills 1/2 DoF
In terms of X

$$\mathcal{V}_I = \alpha_1 + \alpha_2 \, rac{\operatorname{Tr}(X^{1/2})}{\sqrt{\det X}} + rac{lpha_3}{\sqrt{\det X}} \, ,$$

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley

 The second solution is different but does not admits Minkowski as a background

$$\mathcal{V}_{II} = \alpha_1 + \alpha_2 \frac{\sqrt{\text{Tr}(X) - 2\sqrt{\det X}}}{\sqrt{\det X}} + \frac{\alpha_3}{\sqrt{\det X}}$$

2D: Lorentz Invariant case

- Both I and II satisfies also the second equation that kills 1/2 DoF
- In terms of X

$$\mathcal{V}_I = \alpha_1 + \alpha_2 \, \frac{\operatorname{Tr}(X^{1/2})}{\sqrt{\det X}} + \frac{\alpha_3}{\sqrt{\det X}} \, ,$$

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley

 The second solution is different but does not admits Minkowski as a background

$$\mathcal{V}_{II} = \alpha_1 + \alpha_2 \frac{\sqrt{\mathrm{Tr}(X) - 2\sqrt{\det X}}}{\sqrt{\det X}} + \frac{\alpha_3}{\sqrt{\det X}}$$

2D: Lorentz Invariant case

- Both I and II satisfies also the second equation that kills 1/2 DoF
- In terms of X

$$\mathcal{V}_I = \alpha_1 + \alpha_2 \, \frac{\operatorname{Tr}(X^{1/2})}{\sqrt{\det X}} + \frac{\alpha_3}{\sqrt{\det X}} \, ,$$

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley

 The second solution is different but does not admits Minkowski as a background

$$\mathcal{V}_{II} = \alpha_1 + \alpha_2 \frac{\sqrt{\text{Tr}(X) - 2\sqrt{\det X}}}{\sqrt{\det X}} + \frac{\alpha_3}{\sqrt{\det X}}$$

One can generalize the previous solutions to the case of Lorentz breaking solutions

• A class of potential singular Hessian

$$\mathcal{V} = \beta_1 \left[(x + \beta_2)^2 - (y^{1/2} + \beta_3)^2 \right]^{1/2} + \beta_4 x \,,$$

- $y = N^i N^j \gamma_{ij}$ and $\beta_{n=1,...,4}$ scalar functions of γ_{ij}
- Also the second equation is satisfied when

$$\beta_2 = \text{constant} \quad \beta_4 = \gamma^{1/2} \bar{\beta}_4$$

Unfortunately the previous solutions does not generalizes to 4D

One can generalize the previous solutions to the case of Lorentz breaking solutions

• A class of potential singular Hessian

$$\mathcal{V} = \beta_1 \left[(x + \beta_2)^2 - (y^{1/2} + \beta_3)^2 \right]^{1/2} + \beta_4 x,$$

 $y = N^i N^j \gamma_{ij}$ and $\beta_{n=1,...,4}$ scalar functions of γ_{ij}

Also the second equation is satisfied when

$$\beta_2 = \text{constant} \quad \beta_4 = \gamma^{1/2} \bar{\beta}_4$$

Unfortunately the previous solutions does not generalizes to 4D

One can generalize the previous solutions to the case of Lorentz breaking solutions

A class of potential singular Hessian

$$\mathcal{V} = \beta_1 \left[(x + \beta_2)^2 - (y^{1/2} + \beta_3)^2 \right]^{1/2} + \beta_4 x,$$

 $y = N^i N^j \gamma_{ij}$ and $\beta_{n=1,...,4}$ scalar functions of γ_{ij}

Also the second equation is satisfied when

$$\beta_2 = \text{ constant} \quad \beta_4 = \gamma^{1/2} \bar{\beta}_4$$

Unfortunately the previous solutions does not generalizes to 4D

• Deforming GR is very difficult

- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

• Deforming GR is very difficult

- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

• Deforming GR is very difficult

- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

- Deforming GR is very difficult
- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

- Deforming GR is very difficult
- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

- Deforming GR is very difficult
- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

- Deforming GR is very difficult
- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of *V* required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult