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A 95 year-long successful theory
a single free parameter and it works great J

@ Weak Equivalence principle (10713

@ Solar system tests (weak field) (103 — 105

@ Binary pulsar (nonlinear) (10~3)

@ Newton’s Law tested between 10~ "mm and 10'8mm

however .....

@ CMB + Supernovae data require Dark energy
p=wp,w < 0. Expanded acceleration
Perhaps just a tiny (??) cosmological constant, w = —1,
A ~ (10~*eV)* or a bizarre fluid?

@ Is GR an isolated theory ?
Can we modify GR at large distances?
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Massive Deformed GR

@ Add to GR an extra piece such that when g,,, = 7, + hu
(VGR+ Laer) = Lspinz + mP (@h b +bH?) + -

@ To build a mass term we need an extra tensor field: with g,,, and
g"" there is no non-trivial polynomial of g with no derivative

@ Introduce a new tensor field G, then scalar objects can be
constructed from the metric using

Xt = gh*Gay 7n = Tr(X"™)
@ Example: G, = Mo
9 G =4 — W, + W hy, + -
a(r — 42+ b(m— 2 +4) = <ah,u,h*“’ n bhz) T

@ The metric G,,, can be dynamical or a priori given: two different
formulations of massive gravity
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The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric )

@ To recover diff (gauge) invariance introduce 4 (Stuckelberg)

scalars to recast the fixed metric as

004 008
= i oxv 18

Minimal set of DOF to recover diff invariance

G, and X' transform as tensors and 7, = Tr(X") as scalars
@ Geometrically ®* are coordinates of some fictitious flat space M

point-wise identified with the physical spacetime with a tetrad

basis e* = doA
@ One can chose coordinates such that (Unitary gauge)

OPA

A
oxr = O = Guv = Ty



Actions for Massive Gravity

Stuckelberg Formulation ]

Snon = [ d*x VoM [A(g) - 4m? V(X))

Bigravity Formulation J

The extra metric G,,, = g, is dynamical
Sun = [ d*x M [VaR(g) + x VG R(G) - 4G V(X)]

When  — oo, g, gets non-dynamical: §,.,, = e/ e3iias
e? = do” and Q,W = au¢AaV¢A 1AB

making contact with the Stuckelberg formulation



Stuckelberg vs Bigravity

@ The Stuckelberg formulation is minimal, sort of EFT ©®

@ The Stuckelberg formulation contains absolute objects
it is an eether-like theory ©®

@ Fixed flat second metric prevents a spatially flat FRW massive
gravity cosmology @

@ Similar troubles with Black Hole (horizon) solutions ®

@ Bigravity formulation: all objects are dynamical determined ©
No problems with horizons and flat FRW solutions ©

@ The bigravity formulation is more complicated ®

From now on we will focus on the Stuckelberg formulation in the
unitary gauge
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Degrees of Freedom: Linear Level

e GR M2ED =T5) . Gu = + hu
DOF10-2x4=2 4 gauge modes dh,, = 9,& + 9.,

@ Massive gravitons (Minkowski) have 5 DOF, more DOF needed

@ Give up gauge symmetry. Fierz-Pauli theory (1939)

Lrp = M LE) , + MM (ah, ™ + bH?)

E,(;V) — 12 (ahu, + bhn,) = Mﬁz T;(J) 8”E,(J/) -0
4 constraints DOF10-4=6=5+1

@ The sixth mode is a ghost (Boulware-Deser).
Absent in flat space when a+ b = 0 (FP theory)
present in curved space and at the non-linear level

@ When the ghost is projected out, light bending badly contradicts
experiments (van Dam, Veltman, Zakharov) vdVZ discontinuity



vdVZ and the Ghost: Linearized Level

Lorentz invariant decomposition A, = h[] + 9, Al) + 8.8, + o
In GR ¢ and A,, are gauge modes !
£® =nhll <D—mza) AT+ AT (D—m2a) AT
(6, ) —0+(a+4b)m? (a-+4b)ym?O
P (a+4b)ym?a  (a+ b)m? 02
only ¢ couples with the matter (trace EMT) and generically it is a ghost

(a+b)

<9>= “(a+b)O+ m?

The ghost does not propagate if a+ b = 0, Pauli-Fierz tuning, only 5
DOF. But the propagator is discontinuous when m — 0

1 1
R _ (Muamvg — 3Muwap) 7ap ppr _ (Muatlp = 37Mm7aB) +ap
hGA — - T hPF — - T
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vdVZ and the ghost: Linearized Level

@ vdVZ = 25% deviation from GR for light bending from the sun
@ Experimentally GR prediction are well verified, deviations < 10~

@ If the weak field expansion applies, PF theory is ruled out by solar
system tests

@ Check the validity of the weak field expansion in the solar system

@ Check what happens to the linearized PF tuning at the non-linear
level



Hamiltonian Analysis

ADM decompositions

G = <—N2 + N,I\I/hl] N,)
- N; Vi

Hamiltonian of GR and mGR in the unitary gauge
H= M§,/d3x [NAHA+ m? N /v v} Ha = (H, H;)

N’ — Conj. momenta of Vij
PA = (P°, P') Conjugate momenta of N4 = (N, N')

, 1.
Hj = =2y Dk, H =512 R®) 447172 (ﬂ,-,ﬂ’f - z(ﬂ;)z)

No time derivatives of N4 — P4 = 0 Constrained theory !
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Constrained Theory: Dirac treatment in a nutshell

@ Momenta are not all independent — introduce Lagrange
multipliers (LMs) to enforce the constraints

The a set of constraints {C;,i = 1,2,---c} is conserved in time that
reduces the number of DoF from 10 down to (10 +10 — ¢)/2
If some of the LMs are not determined — gauge invariance
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Constrained Theory: Dirac treatment in a nutshell

@ Momenta are not all independent — introduce Lagrange
multipliers (LMs) to enforce the constraints

© Time evolution us generated by the the total Hamiltonian:
canonical + constraints + LMs

Hr = H+/d3x)\AI'IA,

EoMs: dynamical + time evolution of primary (P# = 0) constraints
© enforcing the consistency of constrs. with time evolution produces
new constraints or determine some of the LMs

The a set of constraints {C;,i = 1,2,---c} is conserved in time that
reduces the number of DoF from 10 down to (10 +10 — ¢)/2
If some of the LMs are not determined — gauge invariance
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@ Time evolution of P4 = 0 via Poisson brackets are just the Egs. of
NA, being H linear in NA
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Example: GR

@ Time evolution of P4 = 0 via Poisson brackets are just the Egs. of
NA, being H linear in NA
{PA(t, x), Hr(t)} = {PA(t,x), H} = Ha =0

@ Thanks to the GR algebra the four secondary constraints are
conserved and no LM is determined (Diff invariance)

(RO, Hy) = H (00X 6@ (x — y) - H (1) 8P 6@ (x — y)
(M), 1)} = 1) 8 6@ (x — y)

{00, 70} = 100 0 50 (x — y) — () 8 6P (x — )

In GR four diffs have to be gauge fixed adding 4 additional
constraints

DoF=(6+6—-4—-4)/2=2
The analysis is nonpertutbative and background independent
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mGR

@ When V deforming potential is turned on, the time evolution of
P, = 0 still gives NA Egs

{Pa(t,x), Hr(t)} = Sa=Ha+ Va 4 new secondary constraints

%

_ 2 1/2 Yy
V=mNy'/2V SN

=V
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mGR
@ When V deforming potential is turned on, the time evolution of
P, = 0 still gives NA Egs
{Pa(t,x), Hr(t)} = Sa=Ha+ Va 4 new secondary constraints

oy
_ 2 1/2 _
=mN 4 — =V
1% v 8NA A
@ |s time evolution consistent with Sy ? Vag = Vs =
A 82V JONAONB

Ta = {Sa, Hr} = {Sa, H} = Vag A® =0
If the r = Rank(V4g) = 4: deforming pot. has non degenerate
Hessian
all LMs )\ are determined and we are done
DoF=10-(4+4))2=6=5+1
Around Minkowski: massive spin 2 (5) plus a ghost scalar (1)

Boulware-Deser mode
13/22



mGR

The Hessian matrix of V has a single zero mode x*, r = 3
Vasx? =0, Vag EF = kn E}

3
def -
)\A:ZXA+Z dnE,’? 562XA+)\A.

n=1

If det(V;) # 0, then xA = (1, -V, ' Vy)
Projection of 74 = 0 along x” is a single new constraint B
Projection on the remaining eigenvectors gives Three out (\*) of the
four LMs

XMSa, H} = Tax*0=7 =0

EASa, HY —dpknz =0  Nosuminn
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mGR
Time evolution of 7
Q(x) = {T(x),Hr}
= {700 H}+ [ Y IT(0. 040Ny} =0
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mGR
Time evolution of 7
Q(x) = {7(x),Hr}
= (T H) + [ Py TN D)) =0

@ If Q does not depend on z, the last LM, we have a new constraint
Z is determinate by the time evolution of Q. We are done.
Total # of constraints 4 (Pa) + 4 (Sa) +1(7) +1(Q) =10
DoF:10-10/2=5
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mGR
Time evolution of 7
Q(x) = {7(x),Hr}
= (T H) + [ Py TN D)) =0

@ If Q does not depend on z, the last LM, we have a new constraint
Z is determinate by the time evolution of Q. We are done.
Total # of constraints 4 (Pa) + 4 (Sa) +1(7) +1(Q) =10
DoF:10-10/2=5

Q If @ = 0 determines z we are done and there is no additional
constraints
Total # of constraints 4 (Pa) +4(Sa) +1(7) =8+ 1

DoF: 10 —9/2 =5+ 1/2
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mGR

{T,M.Ny} = terms zindep. —/dsy@(x,y)z(y) =...— 7]
O(x,y) = x () {Sa(x), Se(y)} X (¥) = A(x, )95 (x - y)
Axy) = Aly,x)

Only in field theory © can be non zero !

2] = 221()()0,- 2(x)2A(x, X)

Qs free from z if A'(x, x) = 0, which consists in the following condition
OVa

V2 S8 =0, V=720
oy
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mGR: Summary of the Canonical Analysis

Necessary and sufficient conditions for having 5 DoF in mGR

Rank(f/AB) =3= ]}00 — )70,-(17,-,-)‘117,-0 =0 (1)
OV o
X V42X MA:O XA =01,V V) ()

Notice: If only (1) holds 5+1/2 DoF propagate
A theory with 5+1/2 DoF is physically acceptable ?

5+1/2 DoF found also in a class of Horava-Lifshitz modified gravity
theory

(1) is a homogeneous Monge-Ampere equation

many solutions are know

(2) is much more restrictive
17/22



Strategy

@ Find a solution of Monge-Ampere equation (rank()) = 3

© Check that the candidate satisfies the additional equation to get
rid of 1/2 DoF

Rank(Vag) = 3 = Voo — Voi(Vj) ™ 'Vjo =0

8V _
xX° V/+2x X! a,YA =0 X =1, -V )
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2D Lorentz Invariant case

To simplify things: Eqgs in 2D where V(N, N',~) and v11 = v
Lorentz Invariant case: V depends on the eiegenvalues A\, Ao, - - - of
X=9"

After expressing N, N' in terms of Ay /2, det Vg must hold for any ~ !
The resulting equation is cubic and splits into two branches of three
differential equations

~ 3 - ~ 3
(200 — __2 p(1,0) 02) _ _ p(0.1)
1% 2 1% , VY 2 1%

3/2 P(1,0) 4 )\3/2 (0,1)

p1) —
2)\1 /\2(>\1/2j:/\1/2)

Solutions, (all !)

a1V A1 A2 +O<2(\ﬁi\ﬁ)+043
VA1 Ao

Vin=

with o 2 3 integration constants.
19/22



2D: Lorentz Invariant case

@ Both I and Il satisfies also the second equation that kills 1/2 DoF

20/22



2D: Lorentz Invariant case

@ Both I and Il satisfies also the second equation that kills 1/2 DoF
@ Interms of X

TF(X1/2) n a3

VdetX  VdetX'

2D version of the ghost free potential found by de
Rham-Gabadadze-Tolley

Vi=aq+as

20/22



2D: Lorentz Invariant case

@ Both I and Il satisfies also the second equation that kills 1/2 DoF
@ Interms of X

TF(X1/2) n a3
VdetX  VdetX’

2D version of the ghost free potential found by de
Rham-Gabadadze-Tolley

@ The second solution is different but does not admits Minkowski as
a background

Vi=aq+as

VTX) —2VdetX o
+ .
Vdet X Vdet X

Vi=a1+ as

20/22
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2D: Loentz Breaking Case

One can generalize the previous solutions to the case of Lorentz
breaking solutions

@ A class of potential singular Hessian

V= [cr B2 - 012 2]

y = N'Ni~; and 3n_1 .. 4 scalar functions of ~;
@ Also the second equation is satisfied when

B> = constant B4 =~"/23,

Unfortunately the previous solutions does not generalizes to 4D
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Conclusions

@ Deforming GR is very difficult

@ A randomly picked deforming potential propagates 5+1 DOF;
one is a ghost around Minkowski space

@ The condition for having 5 DoF can can be encoded in a set
differential equations

@ In 2D, for the the Lorentz invariant case the solutions is unique

@ There is no known underlying symmetry to get the very special
form of V required for having 5 DoF

@ Vis likely to be destabilized by matter’s quantum corrections
@ Phenomenology (original motivation) is difficult
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