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Why modified gravity?

Why going beyond the pure Einstein gravity (GR) interacting
with dust (baryons + CDM) and radiation? — Existence of
dark energy (DE).

Two cases where DE shows itself:
1) inflation in the early Universe — ,
2) present accelerated expansion of the Universe —

The whole known part of the history of our Universe in one
line, according to the standard cosmological scenario:

? —» DS— —FLRWMD—DS —s ?

Remarkable qualitative similarity of DS and DS makes
possible (though not necessary) combined description of both
DS stages (both types of DE) using one class of models.



Possible forms of DE

» Physical DE
New non-gravitational field of matter. DE proper place -
in the rhs of gravity equations.

» Geometrical DE
Modified gravity. DE proper place — in the lhs of gravity
equations.

» A - intermediate case.

Generically, DE can be both physical and geometrical, e.g. in
the case of a non-minimally coupled scalar field or, more
generically, in scalar-tensor gravity. So, there is no alternative
" (either) dark energy or modified gravity”.



f(R) gravity

The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.
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/ f(R)y/—g d*x + Sm
f(R)=R+F(R), R=R\.

One-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) m, ~ const.



Field equations
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where G = Gy = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

1 ) i .
87GT,, pgy = F'(R) R;;—§ F(R)o;;+(v,,,v" — o,’;va,V/) F'(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

Rf'(R) = 2£(R) .



Degrees of freedom

[. In quantum language: particle content.

1. Graviton — spin 2, massless, transverse traceless.

2. Scalaron — spin 0, massive, mass - R-dependent:

m2(R) = 3f+(R) in the WKB-regime.

[I. Equivalently, in classical language: number of free functions
of spatial coordinates at an initial Cauchy hypersurface.

Six, instead of four for GR — two additional functions describe
massive scalar waves.

Thus, 7(R) gravity is a non-perturbative generalization of GR.
It is equivalent to scalar-tensor gravity with wgp = 0 (if

F(R) % 0).



Why R-dependence only?

For almost all other geometric invariants —

R, R*, ChuypoClYP7 R, R etc. (where Cy )0 is the Weyl
tensor) — ghosts appear if the theory is taken in full, in the
non-perturbative regime.

The only known exception: f(R, G) with frrfce — f3c =0,
where G = R, ,,R*"*7 — ARuvR*Y + R? is the
Gauss-Bonnet invariant, does not possess ghosts but has other

problems.

For frrfec — fac # 0, a ghost was found very recently
(A. De Felice and T. Tanaka, Progr. Theor. Phys. 124, 503
(2010)).



Background FRW equations in f(R) gravity

ds® = dt* — a°(t) (dx® + dy® + dz°)

H R = 6(H + 2H?)

U | W

The trace equation (4th order)

3 d 3df,(R) ! —
S (a T) — Rf'(R) + 2f(R) = 871G (pm — 3Pm)

The 0-0 equation (3d order)

df'(R)

. 3(H + HY)f'(R) + fR) _ 871G pm

3H

fF(R
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Conditions for viable f(R) models

|. Conditions of classical and quantum stability:

f(RYy>0, f'(R)>0.

Even the saturation of these inequalities should be avoided:
1. f'(Ry) =0, f"(Ry) # 0: a generic anisotropic space-like
curvature singularity forms.

2. f"(Ry) =0, f"(Ry) # 0: a weak singularity forms, loss of
predictability of the Cauchy evolution.

a(t) =ap + al(t - ts) + 32(t - ts)z + 33|t — ts|5/2 “+ ...

The metric in C2, but not C3, continuous across this
singularity, and there is no unambiguous relation between the
coefficients a3 for t < ts and t > t;. Also, the equivalence of
f(R) gravity to scalar-tensor gravity with is broken in
its vicinity.



[1. Conditions for the existence of the Newtonian limit:

IFI< R, |Fl<1l, RF'«1

for R > R,,, and up to some very large R.

The same conditions for smallness of deviations from GR.
[Il. Laboratory and Solar system tests.

No deviation from the Newton law up to 50 p.

No deviation from the Einstein values of the post-Newtonian
coefficients 3 and v up to 10~* in the Solar system.

IV. Existence of a future stable (or at least metastable) de
Sitter asymptote:

f'(Ras)/f"(Ras) > Rus -

Required since observed properties of DE are close to that of
a cosmological constant.



V. Cosmological tests:
among them the anomalous growth of matter perturbations

for recent redshifts
(%),
P/ m

at the matter-dominated stage for k > mg(R)a, where
m2(R) = 1/3F"(R) .

Results in apparent discrepancy between the linear og and the

primordial slope n, estimated from CMB data (assuming GR)

and from galaxy/cluster data separately.

VI. f(R) cosmology should not destroy previous successes of
present and early Universe cosmology in the scope of GR,
including the existence of the matter-dominated stage driven
by non-relativistic matter preceded by the radiation-dominated
stage with the correct BBN and, finally, inflation.



Inflationary models in f(R) gravity

1. The simplest one (Starobinsky, 1980):
R2
6M?
with small one-loop quantum gravitational corrections
producing the scalaron decay via the effect of
particle-antiparticle creation by gravitational field (so all

present matter is created in this way). _
During inflation (H > M): H = (¢, —t), |H| < H?.

F(R) =R+

The only parameter M is fixed by observations — by the
primordial amplitude of adiabatic (density) perturbations in
the gravitationally clustered matter component:

M = 3.0 x 10_6MP/ (50//\/) ,
where N ~ (50 — 55) is the number of e-folds between the
first Hubble radius crossing during inflation of the present
Hubble scale and the end of inflation, Mp; = v/ G ~ 10'° GeV.



Remains viable: ng =1 — & ~ 0.96, r = £ = 13 ~ 0.004.
Observations: ns = 0.963 + 0.012; r < 0.17 (95% CL).

The main and simplest alternative: the simplest scalar field
inflationary model with V() = ™% and
m=M/\/2(1+r)~2.0x 10~ 6Mp, which produces the
same n, but the significantly larger r = % ~ 0.15.

2. Analogues of chaotic inflation: F(R) ~ R?A(R) for R — oo
with A(R) being a slowly varying function of R, namely

A(R) A(R)
AR < == IA(R)| < =7~ -
3. Analogues of new inflation, R =~ R;:
2F(R
F'(R) = 2F (k) F'(Ry) ~ (21) .
Ry R;

Thus, all inflationary models in f(R) gravity are close to the
simplest one over some range of R.



An example: let

R «
f(R):R+R0<—) > 2
Ro

for large R (the first term is important, even if subdominant).

The unstable de Sitter solution: Rys = Ry (ﬁ)l/(a_l). It is

metastable only if « is close to 2, and then Rys > Ry.
Slow-roll regime:

Ris—R  _sv . 2a—2)
=e PV ="k
Ras < 3 <
The power spectrum index of scalar perturbations:
o dIn P((k) 28
ns(k) —1=— N 1 e N(k) = In(k¢/k)

0.95 < ns < 0.99 from the most recent observational data at
the 95% CL (assuming ns = const and r < 1). Then
o —2 < 0.015 for N =50 and o — 2 < 0.022 for N = 60.



However, this model, if taken literally valid for all R, may not
serve as a viable inflationary model since generically it may not
describe oscillations after the end of inflation and transition to
the radiation dominated FRW stage through particle creation
due to formation of the singularity at R = 0:

20 — 1
a—1

Y
) A —
+ y =
b

(t—to)*+an|t—to

a;
a(t) = ao+al(t—to)——23
0

(for inflationary models, + is slightly less than 3).



One viable microphysical model leading to such
form of f(R)

A non-minimally coupled scalar field with a large negative
coupling & (for this choice of signs, £.onr = %):

R £R¢2
T 160G 2

—¢y¢” V(g), €<0, [£]>1.

Leads to ' > 1.
Recent development: the BEH (Higgs) inflation (F Bezrukov

and M. Shaposhnikov, 2008). In the limit |£| > 1, the BEH

scalar tree level potential V(¢) = M

just produces
F(R) = 1eig (R+ & ) with M2 = \/247€2G and

= |¢|R/\ (for this model, |£|G¢3 < 1).



SM loop corrections to the tree potential leads to A = A(¢),
then the same expression for f(R) follows with

> A¢(R)) dIn A(¢(R))
M _m<1+o<w> >

The approximate shift invariance ¢ — ¢ + ¢, ¢ = const
permitting slow-roll inflation for a minimally coupled inflaton
scalar field transforms here to the approximate scale
(dilatation) invariance

¢ — cp, R— c*R, x* — x"/c, n=0,..3

in the physical (Jordan) frame. Of course, this symmetry
needs not be fundamental, i.e. existing in some more
microscopic model at the level of its action.



Simplifying the 3d order FRW equation for the
f(R) = R + (R?/6M?) vacuum model

|. Second order equation (Gurovich and Starobinsky, 1979).
= (a0)"%, €= (12) /'3

d*f M?
de2 + €2/3f1/3

=0

Convenient for the analytical study of oscillations of R after
the end of inflation.



Il. First order equation (Starobinsky, 1980).

dx

1 )
o321 _
x=H ,y—2H H, dt_73x2/3y

dy M?

y_ M
dx 12x1/3y

Convenient for drawing of the phase portrait. The y-axis
corresponds to inflection points . A curve
reaching the y-axis at the point (0, yo < 0) continues from the
point (0, —yp to the right.

Late-time asymptotic:

2 .
a(t) o t?/3 (1 + e sn M(t — t1)>

Valid in the presence of radiation and dust, too (with a
smaller amplitude of oscillations in the latter case).



Embedding 7(R) gravity in supergravity
F(R) supergravity - first constructed in S. J. Gates, Jr. and
S. Ketov, Phys. Lett. B 674, 59 (2009). The action

( )
S= / d*xd®0 EF(R) + H.c.

in a chiral 4D, N = 1 superspace in terms of a holomorphic
function F(R) of the covariantly-chiral scalar curvature
superfield R and the chiral superspace density

E=\—g (1 — 2ifo )™ + 028)
where the chiral N =1 superfield F(R) has the scalar
curvature R as the field coefficient at its (-term, is the
gravitino and B = S — /P is an auxiliary complex scalar
non-propagating field. It is classically equivalent to the
standard NV = 1 Poincaré supergravity minimally coupled to
the chiral scalar superfield via the supersymmetric
Legendre-Weyl-Kahler transform.



Reduces to f(R) gravity in the particular case:
, B=3X, X=X.
The bosonic Lagrangian
/ R 2
L=2F" |—5 +4X°| +6XF .
The auxiliary field X obeys the algebraic equation of motion
/ " R 2
3F +11F X+ F —§+4X =0
(here F = F(X) and the prime denotes the derivative with
respect to X) and can be excluded leading to L = f(R)/2.
For F(R) = fy + 3R with non-vanishing and complex

coefficients fy and f;, the standard pure N = 1 supergravity
with a negative cosmological term follows.



Embedding (R + R?)-inflation in supergravity

1 1 1
== SHR2— AR+ ..
L=—3AR+5h SHR+

with an anomalously large f3: ;> 1, fi < f7 < fif3.
Cubic equation for X:
— X — X R=0
2013 30 - 3013
where Ry = 21f,/f; > 0.

_ _ . 2\1/3
At the high-curvature regime R > Ry, L > (1(1—2,(3) ;

X3

Ro

R—R fi f
2 0 __1 3 o 2
X = 30 f(R)—3R+—180(R Ro)~.

Inflation occurs for 7 > K,. To fit present observational data
on the primordial spectrum of density perturbations in the

Universe:
fy =~ 6.5 x 10™°(Nj,/50)2.



Present DE models in f(R) gravity

Much more difficult to construct. The original proposal to
make f(R) diverging at R — 0 does not work!

An example of the viable model satisfying the first 5 viability
conditions (A. A. Starobinsky, JETP Lett. 86, 157 (2007)):

F(R) = R+ ARy %—1
(1+5%)
with n > 2. (0) = 0 is put by hand to avoid the appearance
of a cosmological constant in the flat space-time.
Similar models:
1. W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).
2. A. Appleby and R. Battye, Phys. Lett. B 654, 7 (2007).

No good microscopic justification for both the energy scale
and the complicated form of f(R) needed (0 < " < 1).



Recent progress in f(R) models of present DE

1. It was proved that viable models of DE typically exhibit
phantom behaviour of dark energy during the
matter-dominated stage and recent crossing of the phantom
boundary wpr = —1. As a consequence of the anomalous
growth of density perturbations in the cold dark matter +
baryon component at recent redshifts, their growth index
evolves non-monotonically with time and may even become
negative temporarily (H. Motohashi, A. A. Starobinsky and
J. Yokoyama, Progr. Theor. Phys. 123, 887, 2010).
Moreover, if the present mass of the scalaron is sufficiently
large, there will be an infinite number of phantom boundary
crossings during the future evolution of such cosmological
models (H. Motohashi, A. A. Starobinsky and J. Yokoyama,
JCAP 1106, 006, 2011).



2. In such models of present DE, the sum of neutrino masses
may be increased up to ~ 0.5 eV (H. Motohashi,

A. A. Starobinsky and J. Yokoyama, Progr. Theor. Phys. 124,
541 (2010)). Even more interesting, such models easily admit
a 4th sterile neutrino with the mass ~ 1 eV (H. Motohashi,
A. A. Starobinsky and J. Yokoyama, arXiv:1203.6828).

3. In order not to destroy any of previous successes of the
early Universe cosmology, viable f(R) models of present DE
should be extended to large values of R with the ~ R?
asymptotic behaviour and to negative R keeping

f'(R) > 0, f"(R) > 0 at least up to the scale of inflation.
Combined description of primordial and present DE using one
f(R) function is possible, but leads to completely different
reheating after inflation during which strongly non-linear
oscillations of R occur (S. A. Appleby, R. A. Battye and

A. A. Starobinsky, JCAP 1006, 005, 2010).



Phantom boundary crossing

Generic feature: phantom behaviour for z > 1,

crossing of the phantom boundary wpe = —1 for z < 1.
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Future evolution

Infinite number of phantom boundary crossings at the stable
future dS asymptote if '(Rys)/f"(Ras) > 25Rys/16.
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Anomalous growth of perturbations

Deeply in the sub-horizon regime:

k2 f
_GlH45F
T3

a2 fr

0+ 2HS — A1 Guogrpd =0, Gegr

1.30 T T
n=2A=1 o
125 H oo e ]
n=2)\=3 4 5
3 120 n=2A=10 o ]
= V4 ;
Z 115 S e -
g / 2
2 110} g P
o s ]
£ . &
S 105 o R
£ s
1.00 gy A0 0 g
0.5 | | | | |
10%  10° 102 100 10 100 10?



Constraints in the parameter space
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Evolution of v(z) and G.¢(z)/G
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Massive standard neutrinos with f(R) gravity

The anomalous growth of perturbations may be partially
compensated by an increase of > m, as compared to the
standard ACDM, up to O(0.5 eV).
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1 massive sterile neutrino with f(R) gravity

Observational data from WMAP7 and SDSS DRY.
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Best fit: m, = 0.860 eV, y2, = 3767.0 with f(R) gravity
versus m, = 0.109 eV, x%; = 3774.1 for the ACDM model.



2 massive sterile neutrinos with f(R) gravity
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About 5% less g compared to the 1 sterile neutrino case.



Structure of corrections to GR
R =R 4+ 6Ring + 6 Rosc |
RO® =8rGT,, xa?®,
0Ring = (RF'(R) — 2F(R) — 3V, V*F'(R))g_ro >
R > Ry, ORipg ~ const = —F(00) = 4\(o0) .

No Dolgov-Kawasaki instability.

MD : OR,e ox t~ G4 gin (a ¢~ (1) 4 o),

RD :  0Rpse ox =3G9/ 4 in (¢ =Crt/2 ¢y |



§a/a is small but §R.s. /R diverges for t — 0.

0 Rysc should be very small just from the beginning — a
problem for those f(R) models which do not let R become
negative due to crossing of the f”(R) = 0 point.

The "scalaron overproduction” problem.



Three new problems

In the early Universe:

» Unlimited growth of ms(R) for t — 0: when m(R)
exceeds Mp;, quantum-gravitational loop corrections
invalidate the use of an effective quasi-classical f(R)
gravity.

» Unlimited growth of the amplitude of §R oscillations for
t — 0 (the "scalaron overproduction” problem).

» "Big Boost” singularity before the Big Bang:

4n+1 9
2n+1 '

a(t) = ap+ai(t—to)+as|t—to[+..., L < k =

if for R — o0, so (o) = 0.



Curing all three problems

S. A. Appleby, R. A. Battye and A. A. Starobinsky,
JCAP 1006, 005 (2010).

Add &, to f(R) with M not less than the scale of inflation.
Then the first and and third problems go away. The second
problem still remains, but (any) inflation can solve it.
However, in all known inflationary models R may be negative
during reheating after inflation (e.g. when V/(¢) = 0).
Necessity of an extension of f(R) to keeping f"(R) > 0.
As a result, a non-zero g-factor (0 < g < 1/2) arises:

f'(R) — f'(=R)
2f'(R)

g = Ry, < R < M? .



An example satisfying all 6 viability conditions: the g-extended
R2-corrected AB model

cosh (R /e — b)] R?

f(R):(l—g)R—i-gelog[ p—s 2

ms ~ M = const for pp, > 102" g/cm® —
no "chameleon” behaviour in laboratory and Solar system
experiments.

The same can be done for HSS-type models (H. Motohashi,
A. A. Starobinsky and J. Yokoyama, in preparation).



Combined models of primordial and present DE

Construction of a viable model of present dark energy in f(R)
gravity naturally leads to combined models of primordial and
present DE.

However, to take f(R) simply as some function for which the
equation has 2 roots is greatly insufficient!
What should be achieved in addition:

1) metastability of inflation;

2) sufficiently fast decay of the scalaron into matter quanta
after inflation (thus, these models are not classical vacuum
f(R) models);

3) validity of the stability conditions ' > 0, ” > 0 during all
stages from inflation up to the present time.

If M ~ 3 x 10~°Mp,, the scalaron can play the role of an
inflaton, too. Then the inflationary predictions are formally the
same as for the pure R + R?/6/M? inflationary model which
does not describe the present DE:



2 12
ns:1—N, r:m.

However, N is different, N ~ 70 for the unified model (versus
N ~ (50 — 55) for the purely inflationary one) because the
stage if reheating after inflation becomes completely different:
it consists of unequal periods with a ~ const and a o t1/2,
Duration of the periods in terms of

—In(1—2g) and —2In (1 — 2g) respectively.

So, a(t) o< t/3 on average for a long time after the end of
inflation, in contrast to

for the pure inflationary f(R) = R + R?/6M? model.

Observable prediction which is, however, degenerate with other
inflationary models in f(R) gravity.
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Reheating — due to gravitational particle creation which occurs
mainly at the end of inflation. Less efficient than in the pure
inflationary (R) = R + R?/6M? model,

t=ten ~ M™*M3 ~ 1078 5 .
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Conclusions

» The simplest pioneer inflationary f(R) model with small
one-loop quantum gravitational corrections producing the
scalaron decay via the effect of particle-antiparticle
creation by gravitational field remains viable. (Note that
it is not a classical vacuum f(R) model!) The critical
test: the low value for the tensor-to-scalar ratio of
primordial metric perturbations r ~ 1/N? ~ 0.4%. This
model describes the gravitational sector of the Higgs
inflation, too. It can be embedded in supergravity.

» Other possible viable inflationary models in f(R)) gravity
are functionally close to this model over the range of R
for which inflation occurs. To have a graceful exit to the
radiation-dominated FRW stage after scalaron decay and
heating of matter, the function f(R) should be analytic
and satisfy the stability conditions f'(R) > 0, f"(R) > 0
for all |R| less than the scale of inflation including R = 0.



» Much more problems with models of present DE. Still a
narrow class among all f(R) models of present DE
remains viable: it is possible to construct predictive
models satisfying all existing cosmological, Solar system
and laboratory data, and distinguishable from ACDM.
However, these models require a complicated structure of
f(R) at low R for which no simple microscopic
explanation is known at present.

» The most critical test for all f(R) models of present dark
energy: anomalous growth of density perturbations in the
matter component at recent redshifts z ~ 1 —3. A
number of different ways to check it in the linear and
non-linear regimes.

» In these models, a 4th sterile neutrino with the mass
~ 1 eV is permitted and produces even a slightly better
fit to existing observational data as compared to the
standard ACDM model, without lowering the best fit
value for os.



» In order not to destroy all previous successes of the early
Universe cosmology, these viable f(R) models of present
DE should be extended to large R with the ~ R?
asymptotic behaviour and to negative R keeping
f'(R) >0, f"(R) > 0 at least up to the scale of inflation.
This results in a constant scalaron mass for laboratory
and higher values of R — natural range for choosing a
normalization point for one-loop quantum corrections.

» This naturally (though not inevitably) leads to combined
models of primordial and present DE for the specific
choice of M: M ~ 3 x 10 °Mp,.

» Combined inflationary — DE f(R) models with one-loop
quantum-gravitational corrections have a significantly
different reheating stage after inflation as compared to
pure inflationary f(R) models, with strongly non-linear
oscillations of the scale factor a(t). The ultimate reason
for this: different values of Geg for R > 0 and R < 0 due
to f"(R) > 0.
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