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How can we explore the very early Universe if
particle accelerators on the Earth cannot do?

Fig. from Baumann arXiv:0907.5424
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How do we test inflation?

Can we answer a simple question:
How were primordial fluctuations generated?
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Power Spectrum

A very successful explanation is:

Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983

m Primordial fluctuations were generated by quantum fluctuations of
the scalar field that drove inflation.
m The prediction: a nearly scale-invariant power spectrum in the
curvature perturbations, (:
o Pe(k)=A/k* " ~ AJK
o where ng ~1and A i§ a norAmaIization.
o Two-point function (((7,k)((7,k')) = (27)363(k + k') P¢ (k)

1. Introduction
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ns < 1 Observed

WMAP 7-year Komatsu et al. 2011
m The latest results from CMB, BAO (SDSS DR7 Percival et al 2010),
and SNe la (SHOES Riess et al 2009):
e ng =0.968 +0.012 (68% CL)

e ng # 1: another line of evidence for inflation
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Beyond Power Spectrum

m All of these are based on fitting the observed power spectrum.

m Is there any information one can obtain, beyond the power spectrum?
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Bispectrum

m Three-point function!
m Be(ki, k2, k3) =
(C(k1)¢(k2)C(k3)) = (amplitude) x (27)36% (kg +ka +k3) b(ki, ko, k3)
—_————

shape of triangle

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 2. NG in the CMB 8 /50



Fig. from Jeong & Komatsu arXiv:0904.0497
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Fig. from Jeong & Komatsu arXiv:0904.0497

(a) squeezed triangle
(k =k, >>k )

Focus on this shape for today's talk.
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Why study bispectrum?

m It probes the — new piece of information that
cannot be probed by the power spectrum.

m But, above all, it provides us with a of the simplest
models of inflation: “are primordial fluctuations Gaussian, or
non-Gaussian?”

m Bispectrum vanishes for Gaussian fluctuations.

m Detection of the bispectrum = detection of non-Gaussian fluctuations
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Gaussian?

Fig. from WMAP 7-year

m Blue spots show directions on the sky where the CMB temperature is
~ 1075 below the mean, Tg = 2.7 K.

m Yellow and red indicate hot (underdense) regions.
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Take one-point distribution function
Fig. from WMAP 3-year Spergel et al. astro-ph/0603451

W band

T/Omes T/Omes T/Omes

m The one-point function of the CMB anisotropy looks pretty Gaussian.
— Left to right: Q (41GHz), V (61GHz), W (94GHz).

m Deviation from Gaussianity is small, if any.
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Inflation likes this result

Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983

m According to inflation, the CMB anisotropy was created from
qguantum fluctuations of a scalar field in Bunch-Davies vacuum
during inflation.

m Successful inflation (with the expansion factor more than €%0)
demands the scalar field be almost interaction-free.

m Quantum vacuum fluctuations are Gaussian!

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 3. NG in single-field inflation 14 / 50



But, not exactly Gaussian

m Of course, there are always corrections to the simplest statement like
this.

m Inflaton field does have interactions. They are simply weak — they are
suppressed by the so-called slow-roll parameter, e ~ 0(0.01), relative
to the free-field action.
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A non-linear correction to temperature anisotropy

m The CMB temperature anisotropy, AT/ T, is given by the curvature
perturbation in the matter-dominated era, ¢.

o On large scales (the Sachs-Wolfe limit), AT/T = —$/3.
m Add a non-linear correction to ¢:
° (D(X) = <I>g(x) + fNL[CDg(X)]z (Komatsu & Spergel 2001)

o fyy was predicted to be small (~ 0.01) for slow-roll inflation.
(Salopek & Bond 1990; Gangui et al. 1994)

Yuki Watanabe (LMU Munich)
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fn: Form of B

m ® is related to the primordial curvature perturbation, (, as

® = (3/5)¢.
m (%) = Cg(x) + (3/5)fulCe(x)]”

m Be(ki, ko, k3) = (6/5)fnr x (2m)303 (kg + ko + k3)
X [Pc(k1)Pe(ka) + Pe(k2) Pe(ks) + Pe(ks)Pe(ku)]
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fnL: Shape of Triangle

m For a scale-invariant spectrum, P.(k) = A/k3,
Bc(k1, ka, k3) = (6A%/5)fy x (27)%6° (k1 + ka + k3)
x[1/(kika)* +1/(koks)® +1/(ksk1)’]
m Let’s order k; such that k3 < ky < ky. For a given ki, one finds the
largest bispectrum when the smallest k, i.e., k3, is very small.
o Be(ki, ko, k3) peaks when k3 < kp ~ k.
e Therefore, the shape of fy; bispectrum is the squeezed triangle!
(Babich et al. 2004)

(0) squeezed triangle
(k =k, >>k.)
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B in the Squeezed Limit

m In the squeezed limit, the fy; bispectrum becomes:
Be(k1, k2, k3) ~ (12/5)fy x (2m)303 (k1 + ko + k3) x P (ki) Pe(ks)

Why is this important?
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Single-field Consistency Relation
Maldacena 2003; Creminelli & Zaldarriaga 2004; Seery & Lidsey 2005

For ANY single-field models*, the bispectrum
in the squeezed limit is given by
m Be(kg, ko, k3) ~ x (2m)363 (kg + ko + k3) x
m Therefore, all single-field models predict fy; ~ (5/12)(1 — ns).
m With the current limit ns = 0.968, fy, is predicted to be 0.013.

* for which the single field is solely responsible for driving
inflation and generating observed fluctuations.
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Therefore...

m A convincing detection of fy; > O(1) would rule out ALL of the
single-field inflation models, regardless of:
o the form of potential (See, however, Chen, Easther & Lim 2007)
e the form of kinetic term (or sound speed) (See, e.g., Seery & Lidsey 2005)
o the form of gravitational coupling (See, e.g., Germani & Watanabe 2011)
e the initial vacuum state (See, however, Agullo & Parker 2011; Ganc 2011)

m A convincing detection of fy; would be a breakthrough.
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Measurements

m CMB (WMAP 7-year Komatsu et al 2011)

o fy. =32 +42(95% CL)

o Planck’s expected error bar is ~ 5 (68% CL)!
m CMB and LSS (Slosar et al 2008)

o fyr =27 +32(95% CL)
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If 7y, is detected, in what kind of models?

]
m In multi-field inflation models, ((k) can evolve outside the horizon.

e Curvaton mechanism (Linde & Mukhanov 1997)
e Inhomogeneous reheating (Dvali, Gruzinov & Zaldarriaga 2004)

m This evolution can give rise to non-Gaussianity; however, causality
demands that the form of non-Gaussianity must be local!

o ((x) = Cg(x) + (3/5) fu[Ce (X)) + ASg(x) + B[Sg(x)]> + - - -
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How to compute 2nd order in (?

m Cosmological perturbation theory

e Very hard because 2nd order
e Straightforward

m The N formalism
Starobinsky 1985; Salopek & Bond 1990; Sasaki & Stewart 1996

e ( = JN on super-horizon scales

o Very popular in the literature

e 0N is popular and powerful: it gives the statistics of perturbations
solving equations for perturbations!! “It's like a magic.”
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The N formalism: ( = 0N

m N = number of e-folds counted backward in time
(from the end of inflation) ~ log[expansion|

o a(tend)/a(t) = exp [N]N(p) = [;(7 Hdt = In[a(i0eng) /a(0)]

log L

1
N =N()

/: H-' ~ const

E . log a(t)
t = t(0) = tona
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The ON formalism: intuitive picture
m Difference in log[expansion] is (.

more expanded region
log[a(x1)] log[a(x2)]

X1 X2

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 4. 6N formalism 26 / 50



The 6N formalism: more precise definition

m ¢ = N from an initial flat time slice to a final uniform density time
slice on super-horizon scales.

o pl)moom
N(1,,1;x)
(1) = L.
6Nl p cons

Y()=0

ON = N(t,,1;;X) - No(t,,1,),  Ny(t,,t,) =In [a? ;
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ON for slow-roll inflation
Sasaki & Tanaka 1998; Lyth & Rodriguez 2005

m In slow-roll inflation, the evolution, N, is determined only by the field

value, .

m Non-linear /N for multi-field inflation:
1
ON = N(¢' +0¢) = N(¢') ~ Z Nidpl + 5 ; N dglop;,

where derivatives are evaluated at the horizon exit: N; = g‘gf .

m Non-Gaussianity is given by

3 ZI,J NN N
= Sy
5 2[>°, NN

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 4. 8N formalism
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Linear perturbation theory in multi-field inflation
ds? = —(1 4 2A)dt? + 2aB;dx'dt + a*[(1 — 2¢))6;; + 2E ;j]dx’ dx/

m 5¢''s determine how curvature perturbations, v, evolve.

. K>
5! + 3HS! + (5(,0 +Y Viyde! =-2V,A+ ¢! {A+3¢+ (a E—aB)}

J
H (u} + HA) + I;—j [w T H(2E - aB)] —  _4xGép
v+ HA = —4nGiq
oo = 3 [0 (6~ &1A) + Vb
1
0q;i = -— Z@/&P/,i
I
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Adiabatic and entropic perturbations
Gordon, Wands, Bassett & Maartens 2000

sV = cos B¢ + sinBox 55 = —sin#do + cos 0oy
. 5 )
X background trajectory 56+ SHSG + ( iﬁ v 92> So
. -
Ss = 2V A+o [A + 3+ E(GQE — (IB):|

S V, .o
entropic = orthogonal -+ 2(0ds)" — 2—03s,
5o adiabatic = para:I'IeI o 12 N 0
0s+3Hdos + a_2+V”+39 08 = —
o v

6 2rGa?
& = (cos )¢ + (sinf)x )=—=

o
e Gauge-invariant curvature perturb. is sourced only by entropy
perturb. If the trajectory is curved, it can change on large scales.
5 c HE 2H .
—C=UdHE = (=l 0
P
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Adiabatic and entropic perturbations
Gordon, Wands, Bassett & Maartens 2000

oo = cos 09 + sin oy , 55 = —sin 03¢ + cos Aoy
. 2 )
X background trajectory 56 + 3HS6 + @4_ Voo — 92> o
g o k? 2
Ss =2V, A+6 |A+ 30+ a—Q(a‘ —aB)

S V, .
entropic = orthogonal +2(00s)" —2—00s.
5o adiabatic = parallel

.. . ‘2 . ) ‘K
55+3H§5+G2Z+ Vss+392> 5,9:2 -0
(I) a 6 27Ga

& = (cosf)p+ (sinf)y -

[2
e (Gauge-invariant curvature perturb. is sourced only by entropy
perturb. If the trajectory is curved, it can change on large scales.

5p : H k2 2H .
(=v+H G 75U+ —0ds
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Two approaches to non-linear ¢

m Covariant formalism (valid on all scales) [Hawking 1966; Ellis, Hwang & Bruni
1989; Langlois & Vernizzi 2005]

: N p )
= L= (a.,p-Po
i i p+P<“p pomr

N 1
G = 8MN—E({3M/), Nzg/dT@

m JN formalism (valid on large scales) [Starobinsky 1985; Salopek & Bond 1990;
Stewart & Sasaki 1996; Lyth, Malik & Sasaki 2005]

o N/
C:(SN—/ ﬂ,dp
p P

Are they equivalent on large scales?
If yes, which approach has more advantages?
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2nd order ( in two-field inflation

* Covariant formalism (Rigopoulos et al 2004; Langlois & Vernizzi 2007)
. 2H . H . H :
¢ = = Z20(65 ) + 552)) 4 1 (Vi + 462)550° — 2V, 550 65"
g ag ag
s+ 3H8s + (Vys + 36%)0s =

) . 2 /. . . . 1
s 2 (6+9§ - §H9) 55sWos™ — (V - ev;s —9% ) (35>
o o o 2 2

C(t,%) = Co(x) + 05 ()T (8, %) + 052 ()T (¢, %)
0s(t,x) = 05, (X) T, (1, %) + 052(x) T, (¢, %)

* ON formalism (Sasaki & Tanaka 1998' Lyth & Rodriguez 2005)

(=0N= ZNI5<PI* + = ZN1J5901*590J*
1.7
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far in two-field inflation

» Covariant formalism

transfer horizon _,
+ INL

®)
%

5
3T

fnr =

12 [100) 72 )
2 2
{1 + 2, (Té”(t)) }
(). [TO0)] + 3y Fnon T + (e -
2
{1 +26, (77(1)) }
* ON formalism (Lyth & Rodriguez 2005)

3 21,0 NINyNi;
5 2[>°; NNy

§ ftransfer —

=
NI

N
~
*

§ fhorizon ~
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“Large” NG in two-field inflation

2

V(¢ )—mi¢2+@2 <my < H (1)
y X) = 2 2X7 my my *

fN[_ ~ O(]. — 10) for ml/m2 = 1/9 [Rigopoulos et al 2005]

fur ~ O(0.01) [Vernizzi & Wands 2006; Rigopoulos et al 2006; S. Yokoyama et al
2007]
m o g
V(p,x) = 5 X e (2)

m Large negative fy; [Byrnes et al 2008; Mulryne et al 2009

V(¢,x) = a2x® + bo — ba¢® + bagp® (3)

Large fnL [Tzavara & van Tent 2011]
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Numerical estimate: f; in two-field inflation

2 2
m m
1 42 2 .2
O
y - - g
. 0.2 1NL (frans) -----ee- 3
8 F m,fm,=1/9 I B 015 1
7k 2 :
8 x is the 1stinflaton. 0.1 1
o 005 ]
x 4 F
3F T T
2 19 fa(BN)Fyy (trans) E
o ¢ is the 2n inflaton. o 108 ;
) 8 1 SR
oF 095 F E
1 L L L 09 " " L L L
-2 o 2 4 6 8 o 12 u 10 15 20 25 30 35 40
0
N
® A peak in NG shows up at the turn. It is sourced by entropy modes.
e The plateau contribution of NG is from the horizon exit ~O(g) ~0.01.
@ O8N and covariant formalisms match within ~ 1%.
® Slow-roll approx. has been used only for the initial condition (at horizon

exit).
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How did a peak in fy; show up at the turn?

40 . . . : ,
my/mo=1/9 &I smamassmasas e e
30 [ 1112 ]
H total
20 ¢ H intrinsic 2nd order, 8s(®) - ee-
i s times 3s(") -
10 | 55" times dos/dt - ]
S ;
o
0
-10 | 1
2or ]
-30 1 L L L L
10 15 20 25 p p 0

e Each term in 2" order perturbations becomes large but almost
cancels out!

e The difference in growths of terms makes the peak shape. Only
small net effect remains because of symmetry of the potential.
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Relation between /N and perturbations

C-A C C+A
l =~ 2—_H«95S
J 7
e 06s < 0

e A trajectory of C is “kicked” by an entropy mode.
e ( is sourced at the turn.
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Numerical estimate: f; in two-field inflation

2 2
m m
1 2 2 2
V(g.x) = > ¢+ 5 X \
6 b myim,=1/20 fN:(I\‘?;{::; ]
w0f 4 3
myfmy=1/20 2k 4
8 Zo0 ‘(4’"
. . 2F 3
. ¥ is the 1stinflaton.
<F E
x 6 1
af — et
T S W P e
2t is the 2nd inflaton. o 105F 7 1
(]) i é 1 ﬁ‘-v-l-‘Tl
0 < v 4 095 | 1
: : 09 L U . S
0 2 4 & 8 10 20 22 24 26 28 30 32 34
° N

® A few large peaks in NG show up at the turn.

® The plateau contribution of NG is from the horizon exit ~O(e) ~0.01.
® ON and covariant formalisms match within ~1% except at peaks.
°

Discrepancy is from inaccuracies of data—sampling at peaks and the initial
condition.
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Numerical estimate: fy; in two-field inflation

m2

RY,
V(6 x) = Txxze AP

[Byrnes et al 2008; Mulryne et al 2009]

m Large negative NG shows up during the turn. But fy; ~ —2.1 after
inflaiton.

fae
@
T

2=0.05, m =1 L oN)
E fyL(trans) --o-oo-
-30 t t t t t t

Ratio
S

- o

T

|

0.95 0Ny trans)

07 25 30 35 40 45 50 55 60
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Numerical estimate: fy; in two-field inflation

V(¢,x) = ax? + bo — ba¢* + bagp*

[Tzavara & van Tent 2011]

10 T T T
2 a,=1, b,=7/20, b, = 1110, by =b,?/(4by)
: : : : : :
18 F | ay=1, by=7/20, by = 1110, by =b,2/(4by) E 5t
16 | E|
14 F E z 0
12 B E|
10 f E 5[
= T (ON) ——
8 E| [
6k ] -10 : : — :
. 11k [N (AN)NNL(tranﬁS — ]
o 105F ‘ JL 3
2F E| & 1
oF E 095 F Hr H 3
2 b . . . . . . . 09 . . . .
0 0.2 0.4 0.6 0.8 1 1.2 14 16 80 81 82 83 84 85
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Fate of fy;

m It is difficult to have large fy; in two-field inflation. The asymptotic
values are model-dependent.

m After all entropy modes decay, the inflationary trajectory approaches
to in which ( is conserved and one can make
predictions for observations.

m In this case, there are two regimes:

o Initially, entropy modes are light and source (.
o Eventually, they get heavy and damps away.

How fast fj, approaches to its final value?
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Analytic estimate: fy; in the adiabatic limit

V2H T(3/2)

aH
]9 392
v = (7 (e )
In order to answer the fate of fy;, we solve the
super-Hubble evolution of { in three cases:

m (A) Overdamped (light) ds ~ a="s: 1e < 3/4 and (0/H)? < 3/4
m (B) Underdamped (heavy) ds ~ a=3/2: 55 > 3/4 and (0/H)? < 3/4
m (C) Underdamped (heavy) ds ~ a=3/2: 55 > 3/4 and (8/H)? > 3/4
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Analytic estimate: fy; in the adiabatic limit

In order to answer the fate of fy;, we solve the
super-Hubble evolution of ( in three cases:

m (A) Overdamped (light): slow-roll & slow-turn ~ constant

1

—Ilss _2 SS
Coly o ””5\[51<a>77 Ngs 52 <a> !
UES al €7)ss ai

m (B) Underdamped (heavy): slow-roll & slow-turn
m (C) Underdamped (heavy): fast-turn
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Analytic estimate: fy; in the adiabatic limit

In order to answer the fate of fy;, we solve the
super-Hubble evolution of { in three cases:

m (A) Overdamped (light): slow-roll & slow-turn
m (B) Underdamped (heavy): slow-roll & slow-turn 8/H ~ 1y ~ a~ s

”7051(7755/3 + 1) 2 ( a )_7755—3/2
T T (ne+3/2) 1

¢ = (nss +3/2) € g ;1

_7755 — 3/2(552< d >_3 o ngsl(nss/?) + ]‘)25 2 ( a )_27755_3

— S JE—
2e \a (nss +3/2)e 1\ a

m (C) Underdamped (heavy): fast-turn
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Analytic estimate: fy; in the adiabatic limit

In order to answer the fate of fy;, we solve the
super-Hubble evolution of ¢ in three cases:

m (A) Overdamped (light): slow-roll & slow-turn
m (B) Underdamped (heavy): slow-roll & slow-turn
m (C) Underdamped (heavy): fast-turn §/H ~ a=3/2

-3
(G- ?\/5551 <a>
€ a1

_M(gg 9 _3_(‘;92552 4 N
2¢ 1 ai 3e ! al
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Analytic estimate: fy; in the adiabatic limit

10 prrrrrre L TrrrrrrrT TrrrrrrITT T  BARERERRE: I aREaa —
IfNL-fNL(asymp)3|
m,y/my=1/4 ad
o Ngs |
° - T Nos
Q femmmmrmmmemeasasananiimg R -

LogglfnL-fnL(@symp)l
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Analytic estimate: fy; in the adiabatic limit

15

T T
IfNL-fNL(asymp)SI
m4/my=1/20 ane

LogglfnL-fnL(@symp)l
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Fully non-linear equivalence between /N and
covariant formalisms
Suyama, YW and Yamaguchi 2012
N : e P
Co =N — —0,p, Co=——|0,P—0up
H H P Iz H 3(p+P) H 5 o

|} setting the ADM metric with 3; = O(e = k/aH) and on ¥,
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Conclusions

m We have re-examined the super-Hubble evolution of the primordial
NG in two-field inflation by taking two approaches: the N and the
covariant perturbative formalisms.

m The results agree within 1% accuracy in two-field inflation models.

m The peak feature appears on fy; at the turn in the field space, which
can be understood as the precise cancellation between terms in the
perturbed equation.

m It is difficult to have persistently large NG in two-field inflation.
m NG decays no faster than a3 in the adiabatic limit.

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 9. Conclusions 50 / 50



	Outline

