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How can we explore the very early Universe if
particle accelerators on the Earth cannot do?

Fig. from Baumann arXiv:0907.5424
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How do we test inflation?

Can we answer a simple question:
How were primordial fluctuations generated?
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Power Spectrum

A very successful explanation is:
Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983

Primordial fluctuations were generated by quantum fluctuations of
the scalar field that drove inflation.

The prediction: a nearly scale-invariant power spectrum in the
curvature perturbations, ζ:

Pζ(k) = A/k4−ns ∼ A/k3

where ns ∼ 1 and A is a normalization.
Two-point function 〈ζ̂(τ, k)ζ̂(τ, k′)〉 = (2π)3δ3(k + k′)Pζ(k)
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ns < 1 Observed

WMAP 7-year Komatsu et al. 2011

The latest results from CMB, BAO (SDSS DR7 Percival et al 2010),
and SNe Ia (SHOES Riess et al 2009):

ns = 0.968± 0.012 (68% CL)
ns 6= 1: another line of evidence for inflation
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Beyond Power Spectrum

All of these are based on fitting the observed power spectrum.

Is there any information one can obtain, beyond the power spectrum?
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Bispectrum

Three-point function!

Bζ(k1, k2, k3) =

〈ζ̂(k1)ζ̂(k2)ζ̂(k3)〉 = (amplitude)×(2π)3δ3(k1+k2+k3) b(k1, k2, k3)︸ ︷︷ ︸
shape of triangle
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Fig. from Jeong & Komatsu arXiv:0904.0497
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Fig. from Jeong & Komatsu arXiv:0904.0497

Focus on this shape for today’s talk.
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Why study bispectrum?

It probes the interactions of fields – new piece of information that
cannot be probed by the power spectrum.

But, above all, it provides us with a critical test of the simplest
models of inflation: “are primordial fluctuations Gaussian, or
non-Gaussian?”

Bispectrum vanishes for Gaussian fluctuations.

Detection of the bispectrum = detection of non-Gaussian fluctuations
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Gaussian?
Fig. from WMAP 7-year

Blue spots show directions on the sky where the CMB temperature is
∼ 10−5 below the mean, T0 = 2.7 K.

Yellow and red indicate hot (underdense) regions.
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Take one-point distribution function
Fig. from WMAP 3-year Spergel et al. astro-ph/0603451

The one-point function of the CMB anisotropy looks pretty Gaussian.
– Left to right: Q (41GHz), V (61GHz), W (94GHz).

Deviation from Gaussianity is small, if any.

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 2. NG in the CMB 13 / 50



Inflation likes this result
Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983

According to inflation, the CMB anisotropy was created from
quantum fluctuations of a scalar field in Bunch-Davies vacuum
during inflation.

Successful inflation (with the expansion factor more than e60)
demands the scalar field be almost interaction-free.

Quantum vacuum fluctuations are Gaussian!
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But, not exactly Gaussian

Of course, there are always corrections to the simplest statement like
this.

Inflaton field does have interactions. They are simply weak – they are
suppressed by the so-called slow-roll parameter, ε ∼ O(0.01), relative
to the free-field action.
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A non-linear correction to temperature anisotropy

The CMB temperature anisotropy, ∆T/T , is given by the curvature
perturbation in the matter-dominated era, Φ.

On large scales (the Sachs-Wolfe limit), ∆T/T = −Φ/3.

Add a non-linear correction to Φ:

Φ(x) = Φg (x) + fNL[Φg (x)]2 (Komatsu & Spergel 2001)

fNL was predicted to be small (∼ 0.01) for slow-roll inflation.
(Salopek & Bond 1990; Gangui et al. 1994)
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fNL: Form of Bζ

Φ is related to the primordial curvature perturbation, ζ, as
Φ = (3/5)ζ.

⇓
ζ(x) = ζg (x) + (3/5)fNL[ζg (x)]2

⇓
Bζ(k1, k2, k3) = (6/5)fNL × (2π)3δ3(k1 + k2 + k3)

×[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]
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fNL: Shape of Triangle

For a scale-invariant spectrum, Pζ(k) = A/k3,
Bζ(k1, k2, k3) = (6A2/5)fNL × (2π)3δ3(k1 + k2 + k3)

×[1/(k1k2)
3 + 1/(k2k3)

3 + 1/(k3k1)
3]

Let’s order ki such that k3 ≤ k2 ≤ k1. For a given k1, one finds the
largest bispectrum when the smallest k, i.e., k3, is very small.

Bζ(k1, k2, k3) peaks when k3 � k2 ∼ k1.
Therefore, the shape of fNL bispectrum is the squeezed triangle!
(Babich et al. 2004)
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Bζ in the Squeezed Limit

In the squeezed limit, the fNL bispectrum becomes:
Bζ(k1, k2, k3) ≈ (12/5)fNL × (2π)3δ3(k1 + k2 + k3)× Pζ(k1)Pζ(k3)

Why is this important?
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Single-field Consistency Relation
Maldacena 2003; Creminelli & Zaldarriaga 2004; Seery & Lidsey 2005

For ANY single-field models*, the bispectrum
in the squeezed limit is given by

Bζ(k1, k2, k3) ≈ (1− ns)× (2π)3δ3(k1 + k2 + k3)× Pζ(k1)Pζ(k3)

Therefore, all single-field models predict fNL ≈ (5/12)(1− ns).

With the current limit ns = 0.968, fNL is predicted to be 0.013.

* for which the single field is solely responsible for driving

inflation and generating observed fluctuations.
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Therefore...

A convincing detection of fNL � O(1) would rule out ALL of the
single-field inflation models, regardless of:

the form of potential (See, however, Chen, Easther & Lim 2007)

the form of kinetic term (or sound speed) (See, e.g., Seery & Lidsey 2005)

the form of gravitational coupling (See, e.g., Germani & Watanabe 2011)

the initial vacuum state (See, however, Agullo & Parker 2011; Ganc 2011)

A convincing detection of fNL would be a breakthrough.
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Measurements

CMB (WMAP 7-year Komatsu et al 2011)

fNL = 32± 42 (95% CL)
Planck’s expected error bar is ∼ 5 (68% CL)!

CMB and LSS (Slosar et al 2008)

fNL = 27± 32 (95% CL)

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 3. NG in single-field inflation 22 / 50



If fNL is detected, in what kind of models?

Detection of fNL = multi-field models

In multi-field inflation models, ζ(k) can evolve outside the horizon.

Curvaton mechanism (Linde & Mukhanov 1997)

Inhomogeneous reheating (Dvali, Gruzinov & Zaldarriaga 2004)

This evolution can give rise to non-Gaussianity; however, causality
demands that the form of non-Gaussianity must be local!

ζ(x) = ζg (x) + (3/5)fNL[ζg (x)]2 + ASg (x) + B[Sg (x)]2 + · · ·
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How to compute 2nd order in ζ?

Cosmological perturbation theory

Very hard because 2nd order
Straightforward

The δN formalism
Starobinsky 1985; Salopek & Bond 1990; Sasaki & Stewart 1996

ζ = δN on super-horizon scales
Very popular in the literature
δN is popular and powerful: it gives the statistics of perturbations
without solving equations for perturbations!! “It’s like a magic.”
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The δN formalism: ζ = δN

N = number of e-folds counted backward in time
(from the end of inflation) ∼ log[expansion]

a(tend)/a(t) = exp [N]⇒N(ϕ) =
∫ tend

t(ϕ)
Hdt = ln [a(ϕend)/a(ϕ)]

log L

log a(t)

L = H-1 ~ t

L = a / k

t = t(!)  t = tend

L = H-1 ~ const

N = N(!)
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The δN formalism: intuitive picture

Difference in log[expansion] is ζ.

Yuki Watanabe, Final Defense, 25 Aug. 2009

!Difference in ln[expansion] is !.

3

     x1                      　　　　　　　　 x2

The "N formalism: Intuitive picture

     more expanded region
            log[a(x2)]            log[a(x1)]
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The δN formalism: more precise definition

ζ = δN from an initial flat time slice to a final uniform density time
slice on super-horizon scales. Yuki Watanabe, Final Defense, 25 Aug. 2009

The !N formalism: More precise definition

4

!" = !N from an initial flat time slice to a final 
uniform density time slice on superhorizon 
scales.Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 4. δN formalism 27 / 50



δN for slow-roll inflation
Sasaki & Tanaka 1998; Lyth & Rodriguez 2005

In slow-roll inflation, the evolution, N, is determined only by the field
value, ϕ.

Non-linear δN for multi-field inflation:

δN = N(ϕI + δϕI )− N(ϕI ) '
∑

I

N,I δϕ
I
∗ +

1

2

∑
I ,J

N,IJδϕ
I
∗δϕ

J
∗,

where derivatives are evaluated at the horizon exit: N,I ≡ ∂N
∂ϕI

∗
.

Non-Gaussianity is given by

3

5
fNL =

∑
I ,J N,IN,JN,IJ

2[
∑

I N,IN,I ]2
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Linear perturbation theory in multi-field inflation

ds2 = −(1 + 2A)dt2 + 2aB,idx idt + a2[(1− 2ψ)δij + 2E,ij ]dx idx j

δϕI ’s determine how curvature perturbations, ψ, evolve.

¨δϕI + 3H ˙δϕI +
k2

a2
δϕI +

X
J

V,IJδϕ
J = −2V,IA + ϕ̇I

»
Ȧ + 3ψ̇ +

k2

a2
(a2Ė − aB)

–

3H
“
ψ̇ + HA

”
+

k2

a2

h
ψ + H(a2Ė − aB)

i
= −4πGδρ

ψ̇ + HA = −4πGδq

δρ =
X

I

h
ϕ̇I

“
˙δϕI − ϕ̇IA

”
+ VϕI δϕI

i
δq,i = −

X
I

ϕ̇I δϕI ,i
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Adiabatic and entropic perturbations
Gordon, Wands, Bassett & Maartens 2000

Yuki Watanabe, Final Defense, 25 Aug. 2009

$GLDEDWLF�DQG�HQWURSLF�SHUWXUEDWLRQV��*RUGRQ�HW�DO������

background trajectory

s

HQWURSLF�� �RUWKRJRQDO
DGLDEDWLF� �SDUDOOHO�S

Gauge-invariant curvature perturb. is sourced only by entropy 
b f h j i d i h l lperturb. If the trajectory is curved, it can change on large scales.
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Adiabatic and entropic perturbations
Gordon, Wands, Bassett & Maartens 2000

Yuki Watanabe, Final Defense, 25 Aug. 2009

$GLDEDWLF�DQG�HQWURSLF�SHUWXUEDWLRQV�DIWHU�WKH�KRUL]RQ�H[LW

background trajectory

s

HQWURSLF�� �RUWKRJRQDO
DGLDEDWLF� �SDUDOOHO�S

Gauge-invariant curvature perturb. is sourced only by entropy 
b f h j i d i h l lperturb. If the trajectory is curved, it can change on large scales.
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Two approaches to non-linear ζ

Covariant formalism (valid on all scales) [Hawking 1966; Ellis, Hwang & Bruni

1989; Langlois & Vernizzi 2005]

ζ̇µ ≡ Luζµ = − Ṅ

ρ+ p

(
∂µp −

ṗ

ρ̇
∂µρ

)
ζµ ≡ ∂µN − Ṅ

ρ̇
∂µρ, N ≡ 1

3

∫
dτΘ

δN formalism (valid on large scales) [Starobinsky 1985; Salopek & Bond 1990;

Stewart & Sasaki 1996; Lyth, Malik & Sasaki 2005]

ζ = δN −
∫ ρ

ρ̄

N ′

ρ′
dρ

Are they equivalent on large scales?
If yes, which approach has more advantages?
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2nd order ζ in two-field inflationYuki Watanabe, COSMO, Tokyo, 27 Sep. 2010 

•  Covariant formalism (Rigopoulos et al 2004; Langlois & Vernizzi 2007) 

•  "N formalism (Sasaki & Tanaka 1998; Lyth & Rodriguez 2005)

fNL: 2
nd order ! during multi-field inflation

δ̈s + 3Hδ̇s + (Vss + 3θ̇2)δs =

− θ̇
σ̇

(δ̇s
(1)

)2 − 2
σ̇

�
θ̈ + θ̇

Vσ

σ̇
− 3

2
Hθ̇

�
δs(1)δ̇s

(1) −
�

1
2
Vsss − 5

θ̇

σ̇
Vss − 9

θ̇3

σ̇

�
(δs(1))2

ζ̇ = −2H

σ̇
θ̇(δs(1) + δs(2)) +

H

σ̇2
(Vss + 4θ̇2)δs(1)2 − H

σ̇3
Vσδs

(1)δ̇s
(1)

ζ(t,x) = ζ∗(x) + δs∗(x)T (1)
ζ (t,x) + δs2

∗(x)T (2)
ζ (t,x)

δs(t,x) = δs∗(x)T (1)
δs (t,x) + δs2

∗(x)T (2)
δs (t,x)

ζ = δN =
�

I

NIδϕI∗ +
1
2

�

I,J

NIJδϕI∗δϕJ∗
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fNL in two-field inflation
Yuki Watanabe, COSMO, Tokyo, 27 Sep. 2010 

•  Covariant formalism 

•  "N formalism (Lyth & Rodriguez 2005)

fNL: 2
nd order ! during multi-field inflation

3
5
f transfer

NL =
4�2∗
�
T (1)

ζ (t)
�2
T (2)

ζ (t)
�
1 + 2�∗

�
T (1)

ζ (t)
�2
�2

3
5
fhorizon

NL �
− (�ηss)∗

�
T (1)

ζ (t)
�2

+ 3
�

�∗
2 ησs∗T (1)

ζ (t) +
�
�− ησσ

2

�
∗

�
1 + 2�∗

�
T (1)

ζ (t)
�2
�2

3
5
fNL =

�
I,J NINJNIJ

2[
�

I NINI ]2

fNL = f transfer
NL + fhorizon

NL ∼ 5
3

T (2)
ζ�

T (1)
ζ

�2
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“Large” NG in two-field inflation

V (φ, χ) =
m2

1

2
φ2 +

m2
2

2
χ2, m1 < m2 � H∗ (1)

fNL ∼ O(1− 10) for m1/m2 = 1/9 [Rigopoulos et al 2005]

fNL ∼ O(0.01) [Vernizzi & Wands 2006; Rigopoulos et al 2006; S. Yokoyama et al

2007]

V (φ, χ) =
m2
χ

2
χ2e−λφ

2
(2)

Large negative fNL [Byrnes et al 2008; Mulryne et al 2009]

V (φ, χ) = a2χ
2 + b0 − b2φ

2 + b4φ
4 (3)

Large fNL [Tzavara & van Tent 2011]
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Numerical estimate: fNL in two-field inflation
Yuki Watanabe, COSMO, Tokyo, 27 Sep. 2010 

! 

V (",#) =
m1
2

2
" 2 +

m2
2

2
#2

# is the 1st inflaton.

$ is the 2nd inflaton.

!  A peak in NG shows up at the turn. It is sourced by entropy modes.

!  The plateau contribution of NG is from the horizon exit ̃O(!) ̃0.01.
!  "N and covariant formalisms match within ̃ 1%.
!  Slow-roll approx. has been used only for the initial condition (at horizon 
exit).
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How did a peak in fNL show up at the turn?Yuki Watanabe, COSMO, Tokyo, 27 Sep. 2010 

Why did the peak in NG show up? 

!  Each term in 2nd order perturbations becomes large but almost 
cancels out! 

!  The difference in growths of terms makes the peak shape. Only 
small net effect remains because of symmetry of the potential. 

9/47
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Relation between δN and perturbations

Yuki Watanabe, Final Defense, 25 Aug. 2009

2H2 sH

$ WUDMHFWRU\ RI LV ಯNLFNHGರ E\ DQ HQWURS\ PRGH
0s

$�WUDMHFWRU\�RI� LV� NLFNHG �E\�DQ�HQWURS\�PRGH��
LV�VRXUFHG�DW�WKH�WXUQ�
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Numerical estimate: fNL in two-field inflation
Yuki Watanabe, COSMO, Tokyo, 27 Sep. 2010 

! 

V (",#) =
m1
2

2
" 2 +

m2
2

2
#2

# is the 1st inflaton.

$ is the 2nd inflaton.

!  A few large peaks in NG show up at the turn.

!  The plateau contribution of NG is from the horizon exit ̃O(!) ̃0.01.
!  "N and covariant formalisms match within ̃ 1% except at peaks.
!  Discrepancy is from inaccuracies of data-sampling at peaks and the initial 
condition.  
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Numerical estimate: fNL in two-field inflation

V (φ, χ) =
m2
χ

2
χ2e−λφ

2

[Byrnes et al 2008; Mulryne et al 2009]

Large negative NG shows up during the turn. But fNL ∼ −2.1 after
inflaiton.
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Numerical estimate: fNL in two-field inflation

V (φ, χ) = a2χ
2 + b0 − b2φ

2 + b4φ
4

[Tzavara & van Tent 2011]

fNL ∼ 1.2
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Fate of fNL

It is difficult to have large fNL in two-field inflation. The asymptotic
values are model-dependent.

After all entropy modes decay, the inflationary trajectory approaches
to the adiabatic limit in which ζ is conserved and one can make
predictions for observations.

In this case, there are two regimes:

Initially, entropy modes are light and source ζ.
Eventually, they get heavy and damps away.

⇓
How fast fNL approaches to its final value?
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Analytic estimate: fNL in the adiabatic limit

|δs(1)| ≈ 2Re(ν)−3/2

√
2H

|Γ(ν)|
Γ(3/2)

a−3/2

(
k

aH

)−Re(ν)

ν =

√
9

4
−
(
3ηss +

3θ̇2

H2

)
In order to answer the fate of fNL, we solve the

super-Hubble evolution of ζ in three cases:

(A) Overdamped (light) δs ∼ a−ηss : ηss � 3/4 and (θ̇/H)2 � 3/4

(B) Underdamped (heavy) δs ∼ a−3/2: ηss � 3/4 and (θ̇/H)2 � 3/4

(C) Underdamped (heavy) δs ∼ a−3/2: ηss � 3/4 and (θ̇/H)2 � 3/4
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Analytic estimate: fNL in the adiabatic limit

In order to answer the fate of fNL, we solve the
super-Hubble evolution of ζ in three cases:

(A) Overdamped (light): slow-roll & slow-turn ∼ constant

ζ ' ζ1 −
ησs

ηss

√
2

ε
δs1

(
a

a1

)−ηss

− η2
σs

εηss
δs2

1

(
a

a1

)−2ηss

(B) Underdamped (heavy): slow-roll & slow-turn

(C) Underdamped (heavy): fast-turn

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 7. NG in the adiabatic limit 44 / 50



Analytic estimate: fNL in the adiabatic limit

In order to answer the fate of fNL, we solve the
super-Hubble evolution of ζ in three cases:

(A) Overdamped (light): slow-roll & slow-turn

(B) Underdamped (heavy): slow-roll & slow-turn θ̇/H ∼ ησs ∼ a−ηss

ζ ' ζ1 −
ησs1(ηss/3 + 1)

(ηss + 3/2)

√
2

ε
δs1

(
a

a1

)−ηss−3/2

−ηss − 3/2

2ε
δs2

1

(
a

a1

)−3

− η2
σs1(ηss/3 + 1)2

(ηss + 3/2)ε
δs2

1

(
a

a1

)−2ηss−3

(C) Underdamped (heavy): fast-turn
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Analytic estimate: fNL in the adiabatic limit

In order to answer the fate of fNL, we solve the
super-Hubble evolution of ζ in three cases:

(A) Overdamped (light): slow-roll & slow-turn

(B) Underdamped (heavy): slow-roll & slow-turn

(C) Underdamped (heavy): fast-turn θ̇/H ∼ a−3/2

ζ ' ζ1 −
Cθ
3

√
2

ε
δs1

(
a

a1

)−3

−ηss − 3/2

2ε
δs2

1

(
a

a1

)−3

−
C 2
θ

3ε
δs2

1

(
a

a1

)−6
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Analytic estimate: fNL in the adiabatic limit
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Analytic estimate: fNL in the adiabatic limit
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Fully non-linear equivalence between δN and
covariant formalisms

Suyama, YW and Yamaguchi 2012

ζµ = ∂µN − Ṅ

ρ̇
∂µρ, ζ̇µ = − Θ

3(ρ+ P)

(
∂µP −

Ṗ

ρ̇
∂µρ

)

⇓ setting the ADM metric with βi = O(ε = k/aH) and on Σρ

ds2 = −N 2dt2 + a2e2ψ(eh)ij(dx i + βidt)(dx j + βjdt)

ζ̇i =
1

N
∂iψ

′ +O(ε3), − Θ

3(ρ+ P)

(
∂iP −

Ṗ

ρ̇
∂iρ

)
= − H̃

ρ̄+ P
∂iP +O(ε3)

⇓ integrating over x i and choosing an integration constant

ψ′ = − ρ′

3(ρ+ P)
− a′

a
+O(ε2)
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Conclusions

We have re-examined the super-Hubble evolution of the primordial
NG in two-field inflation by taking two approaches: the δN and the
covariant perturbative formalisms.

The results agree within 1% accuracy in two-field inflation models.

The peak feature appears on fNL at the turn in the field space, which
can be understood as the precise cancellation between terms in the
perturbed equation.

It is difficult to have persistently large NG in two-field inflation.

NG decays no faster than a−3 in the adiabatic limit.

Yuki Watanabe (LMU Munich) Non-Gaussianity and non-linear formalisms 9. Conclusions 50 / 50


	Outline

