Particle Production in Modified Gravity at Structure Formation Epoch

Elena Arbuzova

Dubna University & Novosibirsk State University

Hot Topics in Modern Cosmology Spontaneous Workshop VII 6 - 11 May, 2013, Cargese

Introduction

- Basic Frameworks and Equations
- Solutions
- Gravitational Particle Production
- Estimate of Cosmic Ray Emission
- Conclusions

A large set of independent, different types astronomical data show that the universe today expands with acceleration (antigravity).

- huge theoretical efforts are directed to finding an explanation for its value and for its very existence
- the driving force behind this phenomenon is still unknown

Phenomenological Explanations

Existence of the so called dark energy (DE) with the equation of state:

$\mathbf{P} \approx -\varrho$

P and *Q* are respectively pressure and energy densities.
Modification of the classical action of the general relativity (GR):

$$\mathsf{A}_{\mathsf{grav}} = -\frac{m_{\mathsf{Pl}}^2}{16\pi}\int \mathsf{d}^4x \sqrt{-g}\,\left[\mathsf{R}+\mathsf{F}(\mathsf{R})\right]\,.$$

Non-linear F(R)-function: the modified GR equations have a solution R = const in absence of any matter source.

Gravity Modifications

The pioneering suggestion:

- S. Capozziello, S. Carloni, A. Troisi, Recent Res. Develop. Astron. Astrophys. 1 (2003) 625; astro-ph/0303041.
- S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D70 (2004) 043528, astro-ph/0306438.

$$\mathsf{F}(\mathsf{R}) = -\mu^4/\mathsf{R}$$

where $\mu^2 \sim R_c \sim 1/t_u^2$ is a small parameter with dimension of mass squared.

Strong instabilities in celestial bodies

■ A.D. Dolgov, M. Kawasaki, Phys.Lett. B573 (2003) 1.

Modified modified gravity: free from exponential instability

W.Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).

$$F_{\rm HS}(R) = -\frac{R_{\rm vac}}{2} \frac{c \left(\frac{R}{R_{\rm vac}}\right)^{2n}}{1+c \left(\frac{R}{R_{\rm vac}}\right)^{2n}}, \label{eq:FHS}$$

A.Appleby, R. Battye, Phys. Lett. B 654, 7 (2007).

$$\mathsf{F}_{\mathrm{AB}}(\mathsf{R}) = \frac{\epsilon}{2} \log \left[\frac{\cosh\left(\frac{\mathsf{R}}{\epsilon} - \mathsf{b}\right)}{\cosh \mathsf{b}} \right] - \frac{\mathsf{R}}{2} \,,$$

A.A. Starobinsky, JETP Lett. 86, 157 (2007).

$$F_{\rm S}(R) = \lambda R_0 \left[\left(1 + \frac{R^2}{R_0^2} \right)^{-n} - 1 \right] \, . \label{eq:FS}$$

S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006 (2010) 005. S.Nojiri, S.Odintsov, Phys.Lett.**B657**(2007)238; Phys.Rept.505(2011)59. K. Bamba, S. Capozziello, S. Nojiri. S.D. Odintsov, arXiv: 1205.3421. The suggested modifications, however, may lead to infinite-R singularities in the past cosmological history:

 S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006 (2010) 005.

In the future in astronomical systems with rising energy/matter density:

- A.V. Frolov, Phys. Rev. Lett. 101, 061103 (2008)
- I. Thongkool, M. Sami, R. Gannouji, S. Jhingan, Phys. Rev. D 80 043523 (2009); I. Thongkool, M. Sami, S. Rai Choudhury, Phys. Rev. D 80 127501 (2009).

■ *E.V. Arbuzova, A.D. Dolgov*, Phys.Lett.**B**700, 289(2011). Some properties of such singularities were further studied in:

■ *K. Bamba, S. Nojiri, S.D. Odintsov*, Phys. Lett. **B** 698, 451 (2011).

Additional \mathbb{R}^2 -term in the action: naturally appears as a result of quantum corrections due to matter loops in curved space-time.

- V.Ts. Gurovich, A.A. Starobinsky, Sov. Phys. JETP 50 (1979) 844; [Zh. Eksp. Teor. Fiz. 77 (1979) 1683];
- A.A. Starobinsky, JETP Lett. 30 (1979) 682; [Pisma Zh. Eksp. Teor. Fiz. <u>30</u> (1979) 719]; Phys. Lett. B91, 99 (1980).
- A.A. Starobinsky, "Nonsingular model of the Universe with the quantum-gravitational de Sitter stage and its observational consequences", in *Proc. of the Second Seminar "Quantum Theory of Gravity"* (Moscow, 13-15 Oct. 1981), INR Press, Moscow, 1982, pp. 58-72; reprinted in: Quantum Gravity, eds. M. A. Markov and P. C. West. Plenum Publ. Co., N.Y., 1984, pp. 103-128.

 \mathbf{gR}^2 -term: could terminate the instability with small coefficient \mathbf{g} for sufficiently dense objects with $\rho > 1 \mathrm{g/cm}^3$.

S. Nojiri, S. Odintsov, Phys. Rev. D 68, 123512 (2003)

 R^2 term term may also have dominated in the early universe where it could lead to strong particle production.

- A.A. Starobinsky, Phys. Lett. **B91**, 99 (1980).
- Ya. B. Zeldovich, A.A. Starobinsky, JETP Lett. 26 (1977) 252.
- A. Vilenkin, Phys. Rev. D32, 2511 (1985).

The renewed interest in possible effects of additional ultraviolet terms, $\sim \mathbf{R}^2$, in infrared-modified $\mathbf{F}(\mathbf{R})$ gravity models.

- E.V. Arbuzova, A.D. Dolgov, L. Reverberi, JCAP 02 (2012) 049.
- H. Motohashi, A. Nishizawa, Phys.Rev. **D86** (2012) 083514.

Another mechanism which could eliminate singularities is particle production by the oscillating curvature. If the production rate is sufficiently high, the oscillations of **R** are efficiently damped and the singularity could be avoided.

We consider the version of the modified gravity suggested by Starobinsky:

$$\mathbf{F}(\mathbf{R}) = -\lambda \mathbf{R}_0 \left[1 - \left(1 + \frac{\mathbf{R}^2}{\mathbf{R}_0^2} \right)^{-n} \right] - \frac{\mathbf{R}^2}{\mathbf{6}\mathbf{m}^2}$$

- \blacksquare n is an integer, $\lambda>0,$ $|R_0|\sim 1/t_U^2,$ $t_U\approx 13$ Gyr is the universe age.
- Parameter **m** is bounded by $m \gtrsim 10^5$ GeV to preserve successful predictions of BBN.
- R²-term is included to prevent curvature singularities in the presence of contracting bodies and is relevant at very large curvatures.

The evolution of \mathbf{R} is determined from the trace of the modified Einstein equations:

$$3\mathcal{D}^2 \mathsf{F}_{\mathsf{R}}' - \mathsf{R} + \mathsf{R} \mathsf{F}_{\mathsf{R}}' - 2\mathsf{F} = \mathsf{T}$$

- $\mathcal{D}^2 \equiv \mathcal{D}_\mu \mathcal{D}^\mu$ is the covariant D'Alambertian operator, $\mathbf{F}'_{\mathsf{R}} \equiv \mathbf{dF}/\mathbf{dR}$ • $\mathbf{T} = 8\pi \mathbf{T}^\mu / \mathbf{m}^2$, and \mathbf{T} is the energy-momentum ter
- **T** $\equiv 8\pi T^{\mu}_{\mu}/m^2_{\rm Pl}$, and $T_{\mu\nu}$ is the energy-momentum tensor of matter.

We are interested in the regime $|R_0| \ll |R| \ll m^2$, in which:

$$\mathbf{F}(\mathbf{R})\simeq -\lambda \mathbf{R}_0 \left[1-\left(\frac{\mathbf{R}_0}{\mathbf{R}}\right)^{2n}\right]-\frac{\mathbf{R}^2}{\mathbf{6m}^2}\,.$$

We consider a nearly-homogeneous distribution of pressureless matter, with energy/mass density rising with time but still relatively low (e.g. a gas cloud in the process of galaxy or star formation).

Dimensionless Quantities

We assume that the gravity of matter is not strong and thus the background metric can be considered as flat.

Spatial derivatives can be neglected and equation takes the form:

$$3\partial_t^2 F_R' - R - T = 0$$

Dimensionless quantities:

$$\begin{split} \mathbf{z} &\equiv \frac{\mathsf{T}(\mathsf{t})}{\mathsf{T}(\mathsf{t}_{\mathsf{in}})} \equiv \frac{\mathsf{T}}{\mathsf{T}_0} = \frac{\varrho_\mathsf{m}(\mathsf{t})}{\varrho_{\mathsf{m}0}}, \qquad \mathsf{y} \equiv -\frac{\mathsf{R}}{\mathsf{T}_0}, \\ \mathbf{g} &= \frac{1}{6\lambda\mathsf{n}(\mathsf{mt}_\mathsf{U})^2} \left(\frac{\varrho_\mathsf{m}0}{\varrho_\mathsf{c}}\right)^{2\mathsf{n}+2}, \quad \tau \equiv \mathsf{m}\sqrt{\mathsf{g}}\,\mathsf{t} \end{split}$$

• $\rho_{c} \approx 10^{-29} \ {\rm g/cm^{3}}$ is the cosmological energy density at the present time

• $T_0 = 8\pi \rho_{m0}/m_{Pl}^2$, where ρ_{m0} is the initial value of the mass/energy density of the object under scrutiny

New Notations: Oscillator Equation

With the new scalar field, proportional to F'(R):

$$\xi \equiv \frac{1}{2\lambda n} \left(\frac{\mathsf{T}_0}{\mathsf{R}_0}\right)^{2n+1} \mathsf{F}_\mathsf{R}' = \frac{1}{\mathsf{y}^{2n+1}} - \mathsf{g}\mathsf{y}\,,$$

the equation of motion for ξ takes the simple oscillator form:

$$\xi'' + dU/d\xi = 0$$
, where $dU/d\xi = z - y(\xi)$.

y cannot be expressed through $\boldsymbol{\xi}$ analytically so we have to use different approximate expressions in different ranges of $\boldsymbol{\xi}$. The minimum of the potential $\mathbf{U}(\boldsymbol{\xi})$ is located at $\mathbf{y}(\boldsymbol{\xi}) = \mathbf{z}(\tau)$, so it moves with time:

$$\xi_{\min}(au) = \mathsf{z}(au)^{-(2\mathsf{n}+1)} - \mathsf{g}\mathsf{z}(au).$$

Even if initially ξ takes its GR value $\xi = \xi_{min}$ it would not catch the motion of the minimum and as a result it starts to oscillate around it.

Small Oscillations

Dimensionless frequency of small oscillations is determined by:

$$\Omega^2 = \left. \frac{\partial^2 \mathsf{U}}{\partial \xi^2} \right|_{\mathsf{y}=\mathsf{z}} = \left(\frac{2\mathsf{n}+1}{\mathsf{z}^{2\mathsf{n}+2}} + \mathsf{g} \right)^{-1} \,.$$

• Note that physical frequency is $\omega = \Omega m \sqrt{g}$.

Eq. $\xi'' + z - y = 0$ describes oscillations around the "bottom" of the potential, y = z, which corresponds to the usual GR solution $\mathbf{R} + \mathbf{T} = \mathbf{0}$. For small deviation from the minimum of the potential we can separate solutions into the "average" and oscillatory parts:

$$\xi(\tau) = \left[\frac{1}{z(\tau)^{2n+1}} - gz(\tau)\right] + \alpha(\tau)\sin F(\tau) \equiv \xi_a(\tau) + \xi_1(\tau),$$

$$\mathbf{F}(au) \equiv \int_{ au_0}^{ au} \mathbf{d} au' \,\Omega(au') \,.$$

It is assumed that initially $\xi(au_0)$ sits at the minimum of the potential.

Potential: $U(\xi) = U_+(\xi)\Theta(\xi) + U_-(\xi)\Theta(-\xi)$

- One cannot analytically invert $\xi = 1/y^{2n+1} gy$ to find the exact expression for $U(\xi)$.
- We can find an approximate expression for $gy^{2n+2} \ll 1$, $\xi > 0$, and $gy^{2n+2} \gg 1$, $\xi < 0$.
- The value ξ = 0 separates two very distinct regimes, where Ω has very simple expressions and ξ is dominated by either one of the two terms in ξ = 1/y²ⁿ⁺¹ gy.

For positive and negative $\boldsymbol{\xi}$ the potential can be approximated as:

$$\begin{split} & \mathsf{U}_+(\xi) = \mathsf{z}\xi - \frac{2\mathsf{n}+1}{2\mathsf{n}} \left[\left(\xi + \mathsf{g}^{(2\mathsf{n}+1)/(2\mathsf{n}+2)}\right)^{2\mathsf{n}/(2\mathsf{n}+1)} - \mathsf{g}^{2\mathsf{n}/(2\mathsf{n}+2)} \right] \,, \\ & \mathsf{U}_-(\xi) = \left(\mathsf{z} - \mathsf{g}^{-1/(2\mathsf{n}+2)}\right) \xi + \frac{\xi^2}{2\mathsf{g}} \,. \end{split}$$

By construction **U** and $\partial U/\partial \xi$ are continuous at $\xi = 0$.

Examples of the variation of potential for different values of parameters

- Left panel (n = 2, z = 1.5): solid line: g = 0.02, dashed line: g = 0.01, dotted line: g = 0.002. The part of the potential at $\xi < 0$ is increasingly steeper as g decreases; the bottom of the potential moves.
- *Right panel* (n = 2, g = 0.01): solid line: z = 1.3, dashed line: z = 1.4, dotted line: z = 1.5. The bottom of the potential moves to higher values of U and lower values of ξ as z increases.

Energy Evolution Law

There is a kind of the conservation law for the energy of field $\boldsymbol{\xi}$:

$$\frac{1}{2}\xi'^2 + \mathsf{U}(\xi) - \int_{\tau_0}^{\tau} \mathrm{d}\tau' \frac{\partial \mathsf{U}}{\partial \tau'} = \frac{1}{2}\xi'^2 + \mathsf{U}(\xi) - \int_{\tau_0}^{\tau} \mathrm{d}\tau' \frac{\partial \mathsf{z}}{\partial \tau'}\xi(\tau') = \text{ const}$$

If $\partial z / \partial \tau$ is positive, which is the case for a contracting body, the value of $U(\xi)$ would in general grow with time.

- This is true for positive ξ.
- When ξ is negative, it rapidly oscillates and the last term is integrated away.

We approximate the energy density as

$$egin{aligned} \mathsf{z}(au) &= 1 + \kappa(au - au_0) \ arrho(\mathsf{t}) &= arrho_0 \left[1 + \mathsf{m}\sqrt{\mathsf{g}}\,\kappa\,(\mathsf{t} - \mathsf{t}_0)
ight] \equiv arrho_0 \left(1 + rac{\mathsf{t} - \mathsf{t}_0}{\mathsf{t}_{\mathsf{contr}}}
ight) \end{aligned}$$

Here, κ^{-1} and t_{contr} are respectively the dimensionless and physical timescales of the contraction of the system.

Equation of motion for small oscillations ξ_1 can be rewritten as:

$$\xi_1''+\Omega^2\xi_1=-\xi_{\mathsf{a}}''$$

- Term ξ_a'' is proportional to κ^2 , which is usually assumed small, so in first approximation it can be neglected.
- Analytic solution for constant Ω or in the limit of large Ω can be obtained with this term as well.

In the first approximation we obtain:

$$\alpha \simeq \alpha_0 \sqrt{\frac{\Omega_0}{\Omega}} = \alpha_0 \left(\frac{1}{\mathsf{z}^{2\mathsf{n}+2}} + \frac{\mathsf{g}}{2\mathsf{n}+1}\right)^{1/4} \left(1 + \frac{\mathsf{g}}{2\mathsf{n}+1}\right)^{-1/4}$$

 sub-0 means that the corresponding quantity is taken at initial moment τ = τ₀.

Initial Conditions

We impose the following initial conditions

$$\begin{cases} y(\tau = \tau_0) = z(\tau = \tau_0) = 1, \\ y'(\tau = \tau_0) = y'_0, \end{cases}$$

the first of which corresponds to GR solution at the initial moment.

- In terms of ξ it means that $\xi_1(\tau_0) = 0$.
- The initial value of the derivative $\xi'_1(\tau_0)$ can be expressed through y'_0 , which we keep as a free parameter.

We find:

$$egin{split} lpha_0 &= (\kappa - {f y}_0')(2{f n} + 1 + {f g})^{3/2}\,, \ &|lpha(au)| &= |{f y}_0' - \kappa|(2{f n} + 1 + {f g})^{5/4} \left(rac{2{f n} + 1}{z^{2{f n} + 2}} + {f g}
ight)^{1/4}\,. \end{split}$$

Under our assumptions we expect this result to hold when $|\mathbf{y}_0' - \kappa| \sim \kappa$ or slightly less. In this regime the numerical results are in excellent agreement with the analytical estimate.

Small Oscillations: Numerical results

To keep ξ_1 small the initial value of the derivative y'_0 should be also small. In this case the numerical results are in remarkable agreement with analytical estimate.

Oscillations of $\xi_1(\tau)$ in the case n = 2, $\kappa = 0.01$, g = 0.01 and initial conditions $y_0 = 1$, $y'_0 = \kappa/2$.

The agreement improves for larger g and/or smaller κ, while for small g and "large" κ it may become significantly worse.

Oscillations of y

Our primary goal is to determine the amplitude and shape of the oscillations of \mathbf{y} . Expanding \mathbf{y} as it was done for $\boldsymbol{\xi}$

$$\mathbf{y}(\tau) = \mathbf{z}(\tau) + \beta(\tau) \, \sin \mathbf{F}(\tau) = \mathbf{y}_{\mathbf{a}}(\tau) + \beta(\tau) \, \sin \left(\int_{\tau_0}^{\tau} \mathrm{d}\tau' \, \Omega(\tau') \right)$$

we find for $|\beta/z| < 1$:

$$|\beta| = |\alpha| \left(\frac{2\mathsf{n}+1}{\mathsf{z}^{2\mathsf{n}+2}} + \mathsf{g}\right)^{-1} = |\alpha|\Omega^2.$$

Accordingly, β evolves as:

$$eta(au) \simeq \left| {{ extsf{y}}_{0}^{\prime} - \kappa }
ight| \left({2 extsf{n} + 1 + extsf{g}}
ight)^{5/4} \left({rac{{2 extsf{n} + 1}}{{ extsf{z}^{2 extsf{n} + 2}} + extsf{g}}
ight)^{-3/4} \,.$$

This is in reasonable agreement with numerical results, especially in both limiting cases $gz^{2n+2}\ll 1$ and $gz^{2n+2}\gg 1$, as expected.

Intermediate case $\mathbf{g}\mathbf{y}^{2n+2} \simeq 1$ but $\mathbf{g}\mathbf{z}^{2n+2} < 1$:

When ξ approaches and even crosses zero but ξ_a does not, we have the largest deviations from harmonic, symmetric oscillations around $\mathbf{y} = \mathbf{z}$. The reason for this behaviour:

Intermediate case $gy^{2n+2} \simeq 1$ but $gz^{2n+2} < 1$:

When ξ approaches and even crosses zero but ξ_a does not, we have the largest deviations from harmonic, symmetric oscillations around y = z.

The reason for this behaviour:

• when $\xi < \xi_a$ the potential becomes increasingly steep, reducing the time spent in that region.

Intermediate case $gy^{2n+2} \simeq 1$ but $gz^{2n+2} < 1$:

When ξ approaches and even crosses zero but ξ_a does not, we have the largest deviations from harmonic, symmetric oscillations around y = z.

The reason for this behaviour:

- when \$\xi < \$\xi_a\$ the potential becomes increasingly steep, reducing the time spent in that region.</p>
- A given variation $\delta \xi$ in this region corresponds to a large variation of **y**. Thus there appear high, narrow "spikes" in **y**.

Intermediate case $gy^{2n+2} \simeq 1$ but $gz^{2n+2} < 1$:

When ξ approaches and even crosses zero but ξ_a does not, we have the largest deviations from harmonic, symmetric oscillations around y = z.

The reason for this behaviour:

- when ξ < ξ_a the potential becomes increasingly steep, reducing the time spent in that region.
- A given variation $\delta \xi$ in this region corresponds to a large variation of **y**. Thus there appear high, narrow "spikes" in **y**.
- On the other hand, for ξ > ξ_a the potential is much less steep, and the oscillation in that region lasts longer, yielding slow "valleys" between the spikes of y.

In contrast to ξ the oscillations of y are strongly unharmonic. For negative and even very small $|\xi|$ the amplitude of y may be very large because $y \approx -\xi/g$, according to $\xi = 1/y^{2n+1} - gy$.

"Spikes" in the solutions. n = 2, g = 0.001, $\kappa = 0.04$, $y'_0 = \kappa/2$. Note the asymmetry of the oscillations of **y** around **y** = **z** and their anharmonicity.

Estimate of the Amplitude

Energy evolution law:

$$\frac{1}{2}\xi'^2 + \mathsf{U}(\xi) - \int_{\tau_0}^{\tau} \mathsf{d}\tau' \frac{\partial \mathsf{z}}{\partial \tau'} \,\xi(\tau') = \text{ const}$$

At the moment au_1 when the maximum value of $m{\xi}$ reaches zero:

•
$$\xi = 0$$
 but $\xi_a > 0$ or equivalently $\mathbf{g}\mathbf{z}^{2\mathsf{n}+2} < 1$

Neglecting the oscillating part of $\boldsymbol{\xi}$ under the integral, the maximum absolute value of negative $\boldsymbol{\xi}$ is determined by the equation:

$$\begin{split} \mathsf{U}_{-}(\xi_{\text{max}}) &= \kappa \int_{\tau_{1}}^{\tau} \mathsf{d}\tau' \, \xi_{\mathsf{a}}(\tau') = \kappa \int_{\tau_{1}}^{\tau} \mathsf{d}\tau' \left[\mathsf{z}^{-(2\mathsf{n}+1)} - \mathsf{g}\mathsf{z} \right] \\ &= \frac{1}{2\mathsf{n}} \left[\left(\frac{1}{\mathsf{z}(\tau_{1})} \right)^{2\mathsf{n}} - \left(\frac{1}{\mathsf{z}(\tau)} \right)^{2\mathsf{n}} \right] + \frac{1}{2}\mathsf{g} \left[\mathsf{z}^{2}(\tau_{1}) - \mathsf{z}^{2}(\tau) \right] \end{split}$$

Amplitude and Frequency of Oscillations

Value of $z(\tau_1) \equiv z_1$ is found from the condition $|\alpha(\tau_1)| = |\xi_a(\tau_1)|$:

$$\mathsf{z}_1^{-(2\mathsf{n}+1)} - \mathsf{g}\mathsf{z}_1 = |\kappa - \mathsf{y}_0'| \left(\mathsf{g} + 2\mathsf{n} + 1
ight)^{5/4} \left(rac{2\mathsf{n}+1}{\mathsf{z}_1^{2\mathsf{n}+2}} + \mathsf{g}
ight)^{1/2}$$

In the limit of small $g,\,g<1/z_1^{2n+2},$ we find the amplitude of the spikes:

$${
m y}_{
m max}\simeq rac{1}{\sqrt{
m ng}}\left[|{
m y}_0'-\kappa|(2{
m n}+1)^{3/2}
ight]^{2{
m n}/(3{
m n}+1)}$$

It can be shown that the calculated amplitude of \mathbf{y}_{max} becomes noticeably larger with rising

$$\mathbf{z} = \varrho(\mathbf{t})/\varrho_0 = 1 + \kappa \tau$$
, $\kappa = (\mathrm{mt_{contr}}\sqrt{\mathrm{g}})^{-1}$.

For negative ξ potential behaves as $U \approx \xi^2/(2g)$, so the characteristic frequency of oscillations in the region of negative ξ :

 $\Omega \sim 1/\sqrt{g}$ in dimensionless time or $\omega \approx m$ in physical time.

Evidently frequency of oscillations of \mathbf{y} in this region is the same.

Harmonic oscillations of curvature with frequency ω and amplitude R_{max} transfer energy to massless particles with the rate (per unit time and volume):

$$\dot{arrho}_{\mathsf{PP}}\simeq \mathsf{R}^2_{\mathsf{max}}\,\omega/(1152\pi)$$

The life-time of such oscillations: $\tau_{\rm R} = 48 \, {\rm m}_{\rm Pl}^2 / \omega^3$.

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, JCAP 02 (2012) 049.

This result is valid when the oscillations of \mathbf{R} are perfectly harmonic or when \mathbf{R} can be separated in a slowly-varying and an oscillating part with constant frequency.

In the regular case, $gz^{2n+2}\ll 1$ and $gz^{2n+2}\gg 1,$ the oscillations of R are almost harmonic and we can use

$$\mathbf{R}_{\max} = \beta \mathbf{T}_{\mathbf{0}},$$

$$eta(au) \simeq |{f y}_0' - \kappa| \left(2{f n} + 1 + {f g}
ight)^{5/4} \left(rac{2{f n} + 1}{z^{2{f n}+2}} + {f g}
ight)^{-3/4}$$

It is useful to express physical parameters such as m, the initial energy density ρ_{m0} , etc., in terms of their respective "typical" values:

$$\varrho_{29} \equiv \frac{\varrho_{m0}}{\varrho_c} \,, \ \ m_5 \equiv \frac{m}{10^5 \text{ GeV}} \,, \ \ t_{10} \equiv \frac{t_{\text{contr}}}{10^{10} \text{ years}}$$

In terms of these quantities:

C

$$\frac{\dot{\varrho}_{\mathsf{PP, reg}}}{\mathsf{GeV\,s}^{-1}\mathsf{m}^{-3}} \simeq 3.6 \times 10^{-141} \, \frac{\mathsf{C}_1(\mathsf{n},\mathsf{g},\mathsf{z}) \, \mathsf{z}^{2\mathsf{n}+4}}{\varrho_{29}^{\mathsf{n}-1} \mathsf{t}_{10}^2} \simeq 2.5 \times 10^{47} \, \frac{\mathsf{C}_2(\mathsf{n},\mathsf{g},\mathsf{z}) \, \mathsf{m}_5^2}{\varrho_{29}^{5\mathsf{n}+3} \mathsf{t}_{10}^2}$$

The coefficients C_1 and C_2 are convenient to use when $gz^{2n+2}\ll 1$ and $gz^{2n+2}\gg 1,$ respectively:

$$C_{1} = \sqrt{n(2n+1+g)} \left(1 + \frac{gz^{2n+2}}{2n+1}\right)^{-2} \approx \sqrt{n(2n+1)}$$
$$C_{2} = \left[n(2n+1+g)^{5/2} \left(1 + \frac{2n+1}{2n+2}\right)^{-2} \approx \left[n(2n+1)+g\right]^{5/2}$$

In the region with "spikes" oscillations are far from harmonic and we have to make Fourier expansion of the spiky function $\mathbf{y}(\tau)$. In terms of the Fourier transform of **R** defined by:

$$\mathsf{R}(\mathsf{t})\equiv rac{1}{2\pi}\int\mathsf{d}\omega\, ilde{\mathcal{R}}(\omega)\,\mathsf{e}^{-\mathsf{i}\omega\mathsf{t}}$$

At first order in perturbation theory the amplitude for the creation of two particles of 4-momenta $\mathbf{p_1}$ and $\mathbf{p_2}$ is equal to:

$$\mathsf{A}(\mathsf{p}_1,\mathsf{p}_2)\simeq rac{(2\pi)^3}{3\sqrt{2}}\; \delta^{(3)}(\mathsf{p}_1+\mathsf{p}_2)\, ilde{\mathcal{R}}(\mathsf{E}_1+\mathsf{E}_2)$$

The number of particles produced per unit time and unit volume:

$$\dot{\mathbf{n}}_{\mathrm{PP}}\simeqrac{1}{288\pi^{2}\Delta t}\int\mathrm{d}\omega\left|\tilde{\mathcal{R}}(\omega)
ight|^{2}$$

and because each particle is produced with energy ${\sf E}=\omega/2$:

$$\dot{\varrho}_{\mathsf{PP}} \simeq \frac{1}{576\pi^2 \Delta t} \int \mathrm{d}\omega \,\omega \left| \tilde{\mathcal{R}}(\omega) \right|^2$$

Particle Production: Spike Region

Approximation of the "spike-like" solution:

$$\mathsf{R}(\mathsf{t}) = \mathsf{A}(\mathsf{t}) + \mathsf{B}(\mathsf{t}) \sum_{j=1}^{N} \exp\left[-rac{(\mathsf{t}-\mathsf{j}\mathsf{t}_1)^2}{2\sigma^2}
ight]$$

• We assume: $\sigma \ll \mathsf{t}_1$.

The Fourier transform gives:

$$\left|\tilde{\mathcal{R}}(\omega)\right|^2 \simeq \frac{4\pi^2 B^2 \sigma^2 e^{-\omega^2 \sigma^2} \Delta t}{t_1^2} \sum_j \delta\left(\omega - \frac{2\pi j}{t_1}\right)$$

Integrating over frequencies and identifying B with $R_{max}=y_{max}\mathsf{T}_0,$ we get the gravitational particle production rate:

$$\dot{\varrho}_{\mathsf{PP}} = \frac{\pi \mathsf{B}^2 \sigma^2}{72 \, \mathsf{t}_1^3} \sum_j \mathsf{j} \exp\left[-\left(\frac{2\pi \mathsf{j} \, \sigma}{\mathsf{t}_1}\right)^2\right] \simeq \frac{\mathsf{B}^2}{576\pi \, \mathsf{t}_1} = \frac{\mathsf{y}_{\mathsf{max}}^2 \mathsf{T}_0^2}{576\pi \, \mathsf{t}_1}$$

Time interval t_1 is approximately equal to:

$${
m t}_1pprox 2\pi/\omega_{
m slow}=2\pi/(\Omega_{
m slow}{
m m}\sqrt{
m g})$$
 ,

where

$$\Omega_{\mathsf{slow}} = \left(rac{2\mathsf{n}+1}{\mathsf{z}^{2\mathsf{n}+2}}+\mathsf{g}
ight)^{-1/2}$$

Taking all the factors together we finally obtain:

$$\dot{\varrho}_{PP} = C_n \frac{\varrho_0^2 (m t_U)^2 \, z^{n+1}}{m_{Pl}^4 t_{contr}} \left(\frac{t_U}{t_{contr}}\right)^{\frac{n-1}{3n+1}} \left(\frac{\varrho_c}{\varrho_0}\right)^{\frac{(n+1)(7n+1)}{3n+1}},$$

$${\sf C_n} = ({2{\sf n}} + 1)^{rac{9{\sf n} - 1}{2(3{\sf n} + 1)}} \left({6\lambda {\sf n}}
ight)^{rac{7{\sf n} + 1}{2(3{\sf n} + 1)}} / ({18{\sf n}})$$

It is convenient to present numerical values: $\rho_c/m_{Pl}^4 \approx 2 \cdot 10^{-123} \text{ and } (mt_{11})^2 \approx 3.6 \cdot 10^{93} m_e^2$

where

$$\varrho_{c}\approx 10^{-29} {\rm g/cm^{3}}$$
 and $m_{5}=m/10^{5}$ GeV.

Assuming that the particle production lasts during $\mathbf{t} \approx \mathbf{t}_{contr}$ and taking $\varrho_0 = \varrho_c$, we find the energy flux of cosmic rays produced by oscillating curvature:

$$\varrho_{CR} \approx 10^{-24} m_5^2 \, z^{n+1} \, \text{GeV} \, \text{s}^{-1} \, \text{cm}^{-2}.$$

- This result is a lower limit of the flux of the produced particles.
- With larger z when the minimum of the potential shifts deep into the negative ξ region the production probability significantly rises.

For $m=10^{10}~\mbox{GeV}$ the predicted flux of cosmic rays with energy around $10^{19}~\mbox{eV}$ is close or even higher than the observed flux.

Due to particle production each mode oscillating with frequency ω should exponentially decay as $\exp[-\Gamma(\omega)t]$, where

$$\Gamma(\omega) = \omega^3/(48m_{\rm Pl}^2).$$

However, this can be true only if the energy influx which stimulates the oscillations is negligible.

- In the case under consideration the energy is delivered to the oscillation of R by the gravitational compression of matter.
- We have to estimate what is larger the energy influx from this source or the loss of energy due to particle production.

According to our calculations the probability of particle production:

 $\Gamma=\omega^3/(48m_{\rm Pl}^2)$

On the other hand, as we calculated:

$$\dot{arrho}_{\omega}=rac{\mathsf{R}_{\omega}^{2}\omega}{1152\pi}$$

R $_{\omega}$ is the Fourier component of **R**(t) with frequency ω

• ρ_{ω} is the spectral amplitude of the energy density with frequency ω Since by definition $\dot{\varrho}_{\omega} = -\gamma \rho_{\omega}$, we find $\rho \sim 1/\omega^2$.

Damping depends upon the frequency, so different parts of the spectrum decay in different ways and the initial spectrum is strongly distorted.

If $\omega = \omega_{\max} \simeq m = 10^5 {
m Gev}$ then $t(\omega) \sim 1/(\Gamma(\omega)) = 1 \, {
m sec}$

On the other hand $\omega \sim 100~{
m Mev}$ corresponds to

 $t(\omega) \sim 10^{18} {
m sec} > t_{
m U}$

- Naively we would expect that spikes disappear at t ~ 1 sec and particle production is not efficient.
- However, low frequency oscillations are long-lived and they have continuous energy supply from $U(\xi, \tau)$.
- Due to nonlinear character of oscillations or, what is the same, due to non harmonic nature of the potential, low ω oscillations are transformed to high ω ones.

In other words, the spikes are always rebuilt obtaining energy from low frequency oscillations.

We have shown:

 In contracting astrophysical systems with rising energy density powerful oscillations of curvature scalar, R, are induced.

- In contracting astrophysical systems with rising energy density powerful oscillations of curvature scalar, R, are induced.
- Initially harmonic, these oscillations evolve to strongly unharmonic ones with high frequency and large amplitude, which could be much larger than the value of curvature in the standard GR.

- In contracting astrophysical systems with rising energy density powerful oscillations of curvature scalar, R, are induced.
- Initially harmonic, these oscillations evolve to strongly unharmonic ones with high frequency and large amplitude, which could be much larger than the value of curvature in the standard GR.
- Such oscillations result in efficient particle production in wide energy range, from a hundred MeV up to the scalaron mass, m, which could be as large as 10¹⁰ GeV (and maybe even larger).

- In contracting astrophysical systems with rising energy density powerful oscillations of curvature scalar, R, are induced.
- Initially harmonic, these oscillations evolve to strongly unharmonic ones with high frequency and large amplitude, which could be much larger than the value of curvature in the standard GR.
- Such oscillations result in efficient particle production in wide energy range, from a hundred MeV up to the scalaron mass, m, which could be as large as 10¹⁰ GeV (and maybe even larger).
- Such high frequency oscillations could be a source of ultra high energy cosmic rays with $\mathsf{E}\sim 10^{19}-10^{20}$ eV.

- In contracting astrophysical systems with rising energy density powerful oscillations of curvature scalar, R, are induced.
- Initially harmonic, these oscillations evolve to strongly unharmonic ones with high frequency and large amplitude, which could be much larger than the value of curvature in the standard GR.
- Such oscillations result in efficient particle production in wide energy range, from a hundred MeV up to the scalaron mass, m, which could be as large as 10¹⁰ GeV (and maybe even larger).
- Such high frequency oscillations could be a source of ultra high energy cosmic rays with $\mathsf{E}\sim 10^{19}-10^{20}$ eV.
- The efficiency of the particle production strongly depends upon the system under scrutiny, the values of the parameters of the theory, and maybe upon the concrete form of the function **F**(**R**).

THE END

THANK YOU FOR THE ATTENTION!

E. Arbuzova Particle Production ...