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Content:

sources of high energy gravitational
waves (GW) in the early universe;
resonance graviton-to-photon transfor-
mation in cosmic magnetic fields;
possible observable effects.
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Based on 3 papers with Damian Ejlli:
1. Relic gravitational waves from light
primordial black holes. Phys. Rev.
D84 (2011) 024028; arXiv:1105.2303.
2. Conversion of relic gravitational
waves into photons in cosmological mag-
netic fields. JCAP 1212 (2012) 003;
arXiv:1211.0500.
3. Resonant high energy graviton to
photon conversion at post recombina-
tion epoch. Phys. Rev. D (to be
published); e-Print: arXiv:1303.1556.
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Generation of GWs in the early uni-
verse. FRW metric is conformally flat
and thus conformally invariant mass-
less particles are not produced by cos-
mological gravitational field (Parker,
1968; Bronnikov and Tagirov, 1969?).
Gravitons are not conformally invari-
ant (Grischuk, 1975), so they can be
created in cosmology (as well as scalars).
GWs can be efficiently produced at
DS (inflationary) stage (Starobinsky,
1979).
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Here a different mechanism of GW
creation in the early universe is con-
sidered: by dominant non-relativistic
PBHs. AD, P.D. Naselsky, I.D. Novikov,
astro-ph/0009407; paper 1 (AD+DE).
Modification of the cosmological ther-
mal history: dilution of all previous
relics; an early period of structure
formation at very small scales.
Universe heating by PBH evaporation,
2nd RD stage, “return to normality”.
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An elimination of the earlier produced
GWs (e.g. at inflation) and instead
possibly observable very high frequency
GWs induced by PBH interactions,
i.e. by PBH scattering, their bina-
ries, and PBH evaporation.
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To avoid conflict with BBN we need:

τBH < 0.01sec < tBBN ∼ 1 s,

where

τBH ≈
5 · 211π

Neff

M3

m4
Pl

,

(grey factor is neglected).
Here Neff ∼ 100 is the number of

species withm< TBH = m2
Pl/(8πM).

Correspondingly MBH < 2 · 108 g.
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Cosmological story of PBH.
PBHs are formed if the density con-
trast at horizon scale is of the order of
unity, δρ/ρ ∼ 1. Hence PBHs formed
at cosmological time tp, have masses:

M = tpm
2
Pl , tp = rg/2 ,

where rg = 2M/m2
Pl and

mPl = 1.22× 1019GeV ≈ 2.18× 10−5g.
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Mass spectrum of PBHs.
1. Flat, inflationary perturbations lead
to a power law spectrum.
2. Modified Afleck-Dine baryogene-
sis, leads to log-normal spectrum (AD
and J. Silk):

dN

dM
= C exp [(M −M0)2)/M2

1 ] .

and possibly to a larger cosmological
mass fraction of PBH.
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Relative cosmological energy density
of BHs at production is

ΩBH(tp) ≡ Ωp,

model dependent parameter.
Normally Ωp� Ωtot ≈ ΩR ≈ 1, thus
the universe was at RD stage before
and after production of BH with
ρ = 3m2

Pl/
(
32πt2

)
, till BH started to

dominate, if they lived long enough,
then ρ = m2

Pl/(6πt
2).
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At RD stage ΩBH ∼ a(t) ∼ t1/2,
until ΩBH rises up to unity at
t = teq = M/(m2

PlΩ
2
p).

teq is the onset of BH dominance.
Condition of PBH dominance,
τBH > teq, demands:

M > 5.6 · 10−2
(
Neff

100

)1/2mPl

Ωp
.
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After evaporation
ΩBH → 0, while Ωtot = 1 remains
and the 2nd RD stage begins.
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Rise of density perturbations.
At MD stage primordial density per-
turbations rise as ∆ ≡ δρ/ρ ∼ a(t).
For sufficiently long MD stage, ∆ would
reach unity and after that quickly rises
to ∆� 1.
High density clusters of PBHs would
be formed where GW emission could
be strongly amplified.
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The regions with high nBH would emit
GW much more efficiently than in the
homogeneous case. The emission of
GW at PBH collisions (GW brems-
strahlung) is proportional to vn2

BH
and, both the BH velocity in dense
regions and nBH would be larger by
several orders of magnitude than those
in the homogeneous universe.
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Perturbations could become large if
τBH > t1, where t1 is the moment
when δρ/ρ ∼ 1. To this end PBM
mass should be bounded from below:

M > 103g
10−6

Ωp

(
10−4

∆in

)3/4(
Neff

100

)1/2

.

After ∆ reached unity, rapid struc-
ture formation would take place:
violent relaxation with non-dissipating
dark matter.

15



The size of the cluster at t = τBH:

Rcl = 2teq

(
τBH

teq

)2/3

∆
−1/3
cl ,

where ∆cl = ρcl/ρcosm and ρcosm and
ρcl are the average cosmological en-
ergy density and the density of BHs
in the cluster. Thus:

Rcl =
0.2Ω

−2
3

p

mPl

(
M

mPl

)7
3

(
100

Neff

)2
3
(

106

∆cl

)1
3

.
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Such high density clusters of PBH would
have mass:

Mcl =
16

9
m2
Plteq =

M

Ω2
p

,

i.e. the mass inside horizon at t = teq.
The virial velocity inside the clusters
would be

v =

√
2Mb

m2
PlRb

≈
∆

1
6
cl

3

(
mPl

ΩpM

)2
3 (Neff

100

)1
3
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Maximum velocity in the cluster is
limited by the condition of sufficiently
large M to reach ∆ ≡ δρ/ρ ≥ 1
and reads:

vmax ≈ 0.01∆
1/6
cl

(
∆in

10−4

)−1/3

and with ∆cl as large as 106 BHs can
be moderately relativistic.
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The density contrast ∆cl ∼ 106 is as-
sumed to be similar to that of the con-
temporary galaxies.
There is another effect (absent for galax-
ies) of increase of ∆cl by several or-
ders of magnitude due to the cosmo-
logical decrease of ρcosm ∼ 1/t2:

∆cl ∼ (τBH/t1)2 .
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Two main sources of GW production
by PBH in the early universe:
1. In high density clusters PBH bi-
naries could be formed and efficiently
produced GWs in inspiral regime. Spec-
trum is cut-off at fmax = 1014− 1015

Hz, while fmin is quite low, It may
be interesting for low frequency de-
tectors, LIGO, LISA, DECIGO.
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2. High energy gravitons, coming from
PBH evaporation.

TBH =
m2
Pl

8πM
≈ 1013GeV/Mg.

where Mg is the BH mass in grams.
Average graviton energy at evapora-
tion:

E
(evap)
GW ≈ 3TBH ≈ 3 · 1013 GeV/Mg.
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Reheating by PBH evaporation and
thermalization.

τBH ≈ 3 · 102M3/m4
Pl.

Instant decay approximation:

ρ =
m2
Pl

6πτ2
BH

=
10−5m10

Pl

6πM6
=
π2g∗T 4

reh

30
.

So Treh ≈ 3 · 109M
−3/2
g GeV.
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Cosmological redshift down to recom-
bination: zreh = Treh/0.2. Average
graviton energy at recombination:

E
(rec)
GW =

E
(evap)
GW

zreh
≈ 2M

1/2
g keV.

For M = 108 g the graviton energy
could be about 20 MeV. For Neff >
100 the allowed by BBN mass of PBH
could be larger than 108 g thus allow-
ing for larger EGW .
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If instant decay approximation is aban-
doned and redshift of the decay prod-
uct is accounted for, the graviton en-
ergy could be by factor a few larger
because gravitons are not thermalized,
while other particles do. Grey factor
corrections increase τBH and dimin-
ish zrec, enlarging EGW . Such GWs
cannot be registered by the standard
technique, but may be observed through
their transformation to photons.
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Graviton-photon transformation in ex-
ternal magnetic field; Gertsenshtein
(1961) - photon-to-graviton transition.
Beginning of 70s, GW-to-gamma:
Mitskevich, (1970, book); Boccaletti,
De Sabbata, Fortini, Gualdi (1970);
Dubrovich (1972); Zel’dovich (1973).
Stodolsky, Raffelt, 1987, technique used
in what follows.
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Action:

S = Sg + Sem,

where

Sg =
1

κ2

∫
d4x

√
−gR,

where κ2 = 16π/m2
Pl. The amplitude

of gravitational wave hµν is:

gµν = ηµν + κhµν(x, t).
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Electromagnetic part of action is:

Sem = −
1

4

∫
d4x

√
−g FµνFµν+

α2

90m4
e

∫
d4x

√
−g

[
(FF )2 +

7

4
(F̃ F )2

]
,

where α = 1/137 and me is electron
mass. The last term is the Heisenberg-
Euler effective action. In external field
it is valid for ω�me.
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In high frequency limit mixed (g−γ)
system is described by the first order
matrix equation:

{(ω + i∂x)I+[
ω(n− 1)λ BT/mPl
BT/mPl 0

]} [
Aλ(~x)
hλ(~x)

]
= 0 ,

where I is unit matrix, ~x is the prop-
agation direction, n is the refraction
index, ω is the frequnecy, BT is the
transverse component of the external
magnetic field, and λ is helicity index.
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Refraction index includes contributions
from the Heisenberg-Euler term and
the usual plasma term, see below.
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Such system is analogous to oscillat-
ing active (photon) and sterile (gravi-
ton) neutrinos. The only difference
is that in neutrino case initial state is
fully populated by active neutrinos,
while here it is another way around:
initial state is the graviton, while high
energy photons are practically absent.
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Photon scattering in the medium breaks
coherence, so the wave function ap-
proximation is invalid and density ma-
trix equation should be used (similar
to neutrino oscillations in the early
universe or in supernova):

i
dρ̂

dt
= Ĥρ̂− ρ̂Ĥ†.

The system is open due to photon non-
forward scattering and absorption and
thus the Hamiltonian is not hermi-
tian: Ĥ = M̂ + iΓ̂.
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The coherence breaking or damping
term Γ is diagonal in graviton-photon
space and has zero entry for graviton,
Γgg = 0.
The hermitian part of the Hamilto-
nian contains off-diagonal terms and
can be parametrized as:

M =

[
mλ mgγ

mgγ 0

]
where mλ = ω(n− 1)λ
and mgγ = BT/mPl.
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In expanding FRW universe time deriva-
tive can be written as ∂t = Ha∂a and:

ρ′γγ = −
2mgγI + Γγ ργγ

Ha
,

ρ′gg =
2mgγI

Ha
,

R′ =
mI − ΓγR/2

Ha
,

I′ = −
mR+ ΓγI/2 +mgγ(ρgg − ργγ)

Ha
,

where ρ∗gγ = ρgγ = R+ iI.
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Evolution of ’mass’ matrix from re-
combination (in cm−1):

mγg(a) ≈ 8 · 10−26
[
Bi

1G

] [
ai

a

]2

,

mλ(a) ≈ 10−27
(
Bi

1G

)2( ωi

1eV

)(
ai

a

)5

−10−14Xe(a)

(
1eV

ωi

)(
ai

a

)2

,

whereXe(a) is the ionization fraction.
MSW-type resonance at mλ(a) = 0.
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Ionization fraction is determined by:

X′e = −
C1

Ha

[
1 +

β

Γ2s + C2(1−Xe)

]−1

(
SX2

e +Xe − 1

S

)
,

where Γ2s = 8.22458 s−1 is the two-
photon decay rate of 2s hydrogen state,
λα = 1215.682 · 10−8 cm is the wave-
length of the Lyman-α photons.
Equation is solved numerically.
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Other coefficients;
C1 = α(a)nB, C2 = 8π/[λ3

αnB]

α(a) =
1.038 · 10−12a0.6166

1 + 0.352a−0.53
;

S(a) = 6.221 · 10−19e53.158aa−3/2;

β(a) = 3.9 · 1020a−3/2e−13.289aα(a).
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Damping.
Above hydrogen recombination i.e. at
z > 1090, matter is almost completely
ionized and damping effects are deter-
mined by the Compton scattering

σC =
3

4
σT

[
2 + x(1 + x)(8 + x)

x2(1 + 2x)2
+

(x2 − 2x− 2) log(1 + 2x)

2x3

]
≡

3

4
σTF

(
xi

a

)
,

where x = ω/me and the Thomson
cross section is σT = 6.65 ·10−25 cm2.
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The Compton damping term scatter-
ing is (in cm−1):

ΓCγ (a) = 1.6 · 10−22Xe(a)F

(
ωi

a

)[
ai

a

]3

,

At high frequencies, when the pho-
ton wave length is smaller than the
atomic size, photons equally well in-
teract with free electrons and elec-
trons bound in atoms. So for such
energy range we should take Xe = 1.
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However, the plasma effects in refrac-
tion index are sensitive to the the num-
ber density of free electrons and in
post recombination epoch Xe � 1,
taken from the numerical solution of
the equation presented above. Asymp-
totically Xe tends to 10−5 till reion-
ization at z ∼ 10.
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Pair production. The cross section for
photon energies in the range
1� x� 1/αZ1/3 is

σpp ≈
αZ(Z + 1)

π
σT

[
7

6
ln (2x)− 3

]
.

The corresponding damping factor is
(in cm−1):

Γ
pp
γ ' 10−24

(
1 +

3

4

Yp

Yp − 1

)
[
7

6
ln (2x)− 3

] [
ai

a

]3

.
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109 eV; ΓCγ (blue) and Γ
pp
γ (blue dashed)
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Photoionization plays an important role
after recombination for low photon en-
ergies in eV up to keV range. In-
teresting for us are photon energies
above the atomic binding energy, ω >
I = α2me/2 = 13.6 eV. For low en-
ergy, ω < me, the cross-section is

σ =
28π

3
αa2

(
I

ω

)7/2

,

where a = 1/(meα) ≈ 0.53 · 10−8 cm
is the Bohr radius.
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For larger photon energy, ω > me,
the cross-section would be

σ =
2πα6

meω
.

At the intermediate region, ω ≈ me,
both expressions are quite close to each
other numerically. In the initial en-
ergy range above 1 MeV the photoion-
ization is subdominant.
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The resonance frequency is

ωres(a) = 2.9X
1/2
e (a)

(
1G

Bi

)
a3/2 MeV.

Resonance is generally reached early
after the recombination epoch and in
some cases it is crossed twice, e.g. for
ωi = 107 eV and Bi = 3 · 10−3 G.
The upper bounds on the present day
large scale magnetic field:
B(t0) ... 3 · 10−9 G (CMB);
B(t0) ... 6·10−8−2·10−6 G (Faraday).
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Energy flux, Fγ, of photons produced
by gravitons as a function of photon
energy at the present day for
Bi ' 3 · 10−3 G and Bi ' 2.37 G for
MBH = 108 g and Ωp = 10−3.
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Flux of extragalactic X-ray background.
Most of the energy is concentrated in
10-100 keV with a peak at 30 keV
with F ∼ 40 keV/cm2/s.
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The produced photons could make an
essential contribution to extragalactic
background light (EBL) and to CXB.
For Mg ∼ 108 and Bi ∼ G, these pho-
tons could be the dominant compo-
nent of CXB for energies 0.1-10 keV.
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For lighter PBHs, Mg ' 105 − 107 ,
the spectrum is shifted to a lower part
of CXB and to the ultraviolet but the
production probability in that energy
range is small in comparison with the
resonant case.
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THE END
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