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Outline

@ Introduction : Goal and Motivation
What are cosmic strings?

Q Effects of a Thermal Bath of Photons on Stability
Q Bounce and instanton computations
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Embedded String Stability

. To stabilize cosmic string by a
: Stabilized embedded defects
e Explanation for the and

° . temperature fluctuations, non-gaussianity.
e can contribute to

emay play a role in

eloops can contribute to
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Cosmic strings

@ Topological defects : commonly formed in laboratories and seen in
condensed matter systems during phase transition.
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@ Strings arise from when a
scalar field, usually called the , takes on its vacuum
expectation value.

° Strings can come from fields present in the of
particle physics : eg : pion string, electroweak string.
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Symmetry Breaking

Re(t)

Figure : A simple potential in 3-dimensions, the , can give
rise to strings through
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Topological defects correspond to boundaries between regions with
different choices of minima.
In particular, there is a of the phase around a string .

strings

</
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Thermal field theory

Thermal bath on a system finite-temperature field theory to
compute physical observables. and wrapped on itself
with a period = 1/k, T

4d spacetime in 4d spacetime in
Minkowski space T,V euclidean space

T=it
x’ — >

t

>

Figure : Euclideanized spacetime : cylinder of radius r = ﬁ and of infinite
height.
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The new time variable, , becomes compactified

As a result, spacetime becomes Euclidean the metric goes from

Minkowski (-, +,+,+ ) to Euclidean geometry (+,+,+,+)
t: —o0 =240 7 :0—=p

The Euclidean action, Sg, :

B8
SE:/ dr/d3xLE.
JO .

. temperature T.
° : out of equilibrium since we are below the
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In the of thermal field theory, the integration

over four-momenta is carried out in [ A (27r 4 —if %
frequencies take discrete values, namely with n an integer

/dkE Z/d3/<

We use this for the thermal field

+00 . )
A, x) =T D Au(wn, x)e™7

Au(r,x) =T Y, &3 Aulwn, k)elwmthx
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The Pion String

. low energy description of QCD after chiral
symmetry breaking m, = my =0
@ Symmetry breaking occurs when the sigma field takes on its vacuum
expectation value

e Gives rise to a triplet of massless pions # = (7%, 7+, 77).
[ ]
1 1 A
Lo = 0,00 0 + -0,TO'T — Z(o? + 72 —n?)?,
2 2 4
° symmetry of the vacuum manifold = O(4)
° vacuum manifold is a 3-sphere : M = S3
° topologically unstable strings since M1(S3) =1 .
o Effectively reducing the vacuum manifold to S* strings.
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Effective Lagrangian

Electric charge fields are
Lagrangian can be promoted to a Lagrangian with

1 1 1
L = iaug(()ﬂ(f + 50;171_08/170 + - ZF,LLVFW/ + VO,

where D = 0, + ieA, , D, = 0, — ieA, .
e2 complex scalar fields : and
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Effective Potential

Ver (P, 7c) : defined via the partition function of the system, considering
thermal A,

eString configurations : out-of-equilibrium states below Tg¢

eScalar fields out of thermal equilibrium since M > T,

@ Treat the scalar fields as external out-of-equilibrium ones.
e Compute the finite temperature functional integral over A,

Z[T] = [ DODr DAte SN = [ DODr e 5P mele™ 7 —

S[®, 7] is the gauge field independent part
V :volume : [drd®x=Y¥.
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Partition function at finite temperature T

The partition function of the system can be written in terms of
: and

B 13, =(_ 92 2 2
Z[T] = [ DODr.DcDeDA,e SOl Jo AT [ d°x &(=0° — e*|mc[)c
-3 : 02 2|
xefJO dr | d3x %A/,(()j + €2 /&C\Q)AN

Define and

Here the summation of A,A,, is in Euclidean space since
over the gauge field and the ghost fields.

Z[T] - /Dq)Dﬂ'CeS[q)Jrc]
o 2 TrIN(W? + K2 + m2g)] 4 2 TrIn(w? + k2 + m2g)]
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Effective potential : Result

One can deduce the from the

T 2 2 )
Ver(®.7c, T) = Vo + lim > In(wj +w?) + st

n€eZ
A a3k w _w
= 9P+ ImeP PP +2 [ S5+ Tin(1 =)

, We can truncate the series above and get

2714 2 C2T2
Verr(@, 7, T) = 302 + |2 —o2)? — =" 4 <l
S PT etmel [In (e\wc\e“’b') - 3}
: z

or 167 AT

The is now reduced :
M=S! stable string.
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Quantum tunneling

: Computation of the decay of a metastable cosmic string
Vacuum seems metastable but this depends on the value of A and 7.

quantum tunneling
classical motion

T<T,

N

o [Memss| [ Teminl I7el

Figure : Finite temperature effective potential in the core of the string.
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Quantum tunneling

eTake a metastable string with 2 complex fields
oStudy decay within its core
eProblem with QCD string : first order not reliable from perturbation
theory
eExpansion parameter ~ Z‘—E which is big for realistic value of Agcp

in fact second order phase transition
eflectroweak string : other problem of stability for realistic values of
parameters
e However it may still be useful to see how this work , see for example
Landau Ginzburg superconducting strings. In the high-temperature

expansion, |7;‘5| <1
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Instanton computations

Quantum tunneling

e Potential Vg :
2 2y 2 3,2 4
V(me, T)=D(T 7TO)W67ET7TC+Z7TC

where the coefficients are given by

Figure : Bubble. Action
has O(4) symmetry



Stability of a string in a thermal bath

Instanton computations

String ansatzt at T=0

t: +oo — 0

(¢i,7ei) = (96, Teb) (1)

att=20
[Coleman:1977] Nielsen and
Olesen static string at t = +00

(61, 7ei) = (nf(p)e™,0) (2)
Figure : string breaking
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Instanton computations

6, = nf(p)e for z#0and z=0,p > po
e 0 forz=0and p < po

fi

1} | n forz=0, p < po
| ﬂ- -
i b O0forz#0and z=0, p> po

! F:’l 0
Figure : Profile function ind 5
for string for n = 1. P(Ty P52, 0) = nf(p)e™[g1(p) + /1 — g1(p)*&2(s)]
me(T, p,2,0) —77\/1 gi(p \/1 g2(s)?
es=1\z2+72 two O(2) symmetries of

the bounce solution
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Instanton computations

g (p gﬂ[S)

e General to get a bounce :
Or(¢(7), 7c(7))r=0 = Or(db, mep) = (0,0) )
lim (6, 7¢) = (61, 7c1) C T
. for g1(p) and g2(s): !
£1(0) = gi(p < po) =0 ,81(p > po) =1 ,£(0) =0 Po+So
£(0) =0, g(+0) =1,g5(0) =0

Figure : Profile function
for g1(p) and for ga(s)
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Instanton computations

Quantum tunneling and no Thermal effects

A
V(re, T) = D(T2—T§)w§—ET7r§+Z7r§

where the coefficients are given by

e’ e3 B 61

Figure : Spherical
symmetric instanton
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Instanton computations

Quantum tunneling Vs Thermal effects

Figure : wiggly cylinder

Figure : Cylindrical instanton
with O(3) symmetry in 3 spatial
dimensions
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Thin-wall approximation

Thermal photons + out of eq. scalar fields

e Assume ¢ = 0 — we study the

. : almost degenerated V/(m¢) ~ Vp(m¢)
d’*7. 1ldn. V’( ) = d?7. V'( ) V! ()
— = T = T ~ 7T
dx? = x dx c dx? ‘ bite
where Vp(7m¢) is the potential in the where the

0

S5 = / dX[l(Oﬂ'c) + \/(71-6)] = /D dﬂ‘C[2VD(7TC)]

X T

N
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Thin-wall approximation

with the

A A
V(re) = Sma(me —md)? — Semdme (3)

4 2

ET 1 T2-T2T
where = 1= c U 4
“TVAD Jr2_ T2 T2 =75 Te ()
D D 2
and w (T)=2 X(Tz_To) (5)
51( ) 3\[)\ [D(T2 - T02)]3/2 - 18\f)\ [( T2 TOZ)]3/2

51 has mass dimension 3 since it is the one-dimensional action.
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Thin-wall approximation

° between the two minima

AV = V(omin) = %6(7TE)4 (6)

AV =8(ET —VAD\/ T2 — T)[R(T% - T2)|3

Here, contrary to the Mexican hat potential case with a linear term
[Coleman:1977], AV # ¢

T=——T  and¢(T)= 37@71 = 1

1- 2 et T2
372\ (e+1)2 T
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Thin-wall approximation

d?m. 3 drme
dr? r dr

= V'(mc) vec | 7

7Tc=0

(p+0
o Sophere =2 [ r3dr[L(%<)? + V(me)]

%R“AV +2m2R3S; « ~
eExtremizing Sophere: (3)5—5 =0 vaC L

R(T) =35 = \/> \/772 Figure : Bubble
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Thin-wall approximation

. [ sphere 2 1
. | B~ Pyexp[—m |
%
8 A(\/%ﬂ%ig_l)a
° , bubble radially expands at
_dix] _ VIXP - R?
Codt |X|
(v ~c) but slows down this expansion.
[}
. 1
Evan = 4W‘X|2(5{rc)(1 —v?)

which finally reduces to

_ 7‘)?‘364(7_2 o TO2)2

25T 27e
Ewall - 47T|X|3% - 27\
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Thin-wall approximation

String Stability from thermal effects

Thermal bath of photons can make string stable.
Instantons productions quantify the stability of strings against breaking.

4

lift the potential in direction of the charged pion
fields.

This lead to an effective vacuum manifold which admits

, the pion strings.
Our arguments are general and apply to many theories beyond the
Standard Model.

of the full theory with the
property that they are for the right
values of the parameters.

For realistic values of QCD parameters, the string is stabilized and is
not metastable
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Conclusion

Summary

° . eg superconducting strings can
decay into 2 strings.

@ We found the and of a
string into two strings
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