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Embedded String Stability

Goal : To stabilize cosmic string by a thermal bath of photons
Why? : Stabilized embedded defects⇒applications in cosmology.
• Explanation for the origin and coherence of cosmological magnetic fields
on galaxy scale.
• CMB : temperature fluctuations, non-gaussianity.
• can contribute to structure formation.
•may play a role in baryogenesis
•loops can contribute to ultra-high-energy cosmic rays
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Cosmic strings

Topological defects : commonly formed in laboratories and seen in
condensed matter systems during phase transition.
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Strings arise from spontaneous symmetry breaking occurring when a
scalar field, usually called the Higgs field, takes on its vacuum
expectation value.

GOAL Strings can come from fields present in the Standard Model of
particle physics : eg : pion string, electroweak string.



Stability of a string in a thermal bath 6 / 30

Symmetry Breaking

Figure : A simple potential in 3-dimensions, the Mexican-hat potential, can give
rise to strings through symmetry breaking.
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Topological defects correspond to boundaries between regions with
different choices of minima.
In particular, there is a non-trivial winding of the phase around a string .

Figure : Non-trivial winding around strings.
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Thermal field theory

Thermal bath on a system⇒finite-temperature field theory to
compute physical observables.⇒time imaginary and wrapped on itself
with a period β = 1/kbT

Figure : Euclideanized spacetime : cylinder of radius r = 1
2πkbT and of infinite

height.
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The new time variable, τ = it, becomes compactified
As a result, spacetime becomes Euclidean the metric goes from
Minkowski (-, +,+,+ )⇒to Euclidean geometry (+,+,+,+)

t : −∞ →+∞⇒ τ :0→β
The Euclidean action, SE , :

SE =

∫ β

0
dτ

∫
d3x LE .

•thermal bath of photons : temperature T.
• scalar fields : out of equilibrium since we are below the critical
temperature.
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In the imaginary time formalism of thermal field theory, the integration

over four-momenta is carried out in Euclidean space
∫

d4k
(2π)4 → i

∫ d4kE
(2π)4

frequencies take discrete values, namely ωn = 2nπT with n an integer∫
d4kE

(2π)4
→ T

∑
n

∫
d3k

(2π)3

We use this Matsubara mode decomposition for the thermal field

Aµ(τ, x) = T
+∞∑

n=−∞
Ãµ(ωn, x)e iωτ

Fourier transforming

Aµ(τ, x) = T
∑

ωn

1
V

∑
k Ãµ(ωn, k)e iωτ+k.x
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The Pion String

PART 1
The linear sigma model : low energy description of QCD after chiral
symmetry breaking mu = md = 0

Symmetry breaking occurs when the sigma field takes on its vacuum
expectation value

Gives rise to a triplet of massless pions ~π = (π0, π+, π−).

•Lagrangian :

L0 =
1

2
∂µσ∂

µσ +
1

2
∂µ~π∂

µ~π − λ

4
(σ2 + ~π2 − η2)2 ,

⇒ symmetry of the vacuum manifold = O(4)

⇒ vacuum manifold is a 3-sphere : M = S3

⇒ topologically unstable strings since Π1(S3) = 1 .

Effectively reducing the vacuum manifold to S1⇒ strings.
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Effective Lagrangian

Electric charge⇒charged pions fields are coupled to electromagnetism
⇒Lagrangian can be promoted to a Lagrangian with covariant
derivatives.

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ

0∂µπ0 + D+
µ π

+Dµ−π− − 1

4
FµνF

µν + V0 ,

where D+
µ = ∂µ + ieAµ , D−µ = ∂µ − ieAµ .

•2 complex scalar fields : πc = π1 + iπ2 and φ = σ + iπ0 .
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Effective Potential

Veff (Φ, πc ) : defined via the partition function of the system, considering
thermal Aµ
•String configurations : out-of-equilibrium states below TG

•Scalar fields out of thermal equilibrium since M � Tc

STEPS :

Treat the scalar fields as external out-of-equilibrium ones.

Compute the finite temperature functional integral over Aµ

• Partition function of the system, Z[T]

Z [T ] =
∫
DΦDπcDAµe−S[Aµ,Φ,πc ]=

∫
DΦDπce

−S[Φ,πc ]e−
Veff (Φ,πc )V

T

S [Φ, πc ] is the gauge field independent part
V : volume :

∫
dτd3x = V

T .
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Partition function at finite temperature T

The partition function of the system can be written in terms of gauge
fields, Faddeev-Popov ghosts and scalar fields :

Z [T ] =
∫
DΦDπcDcDc̄DAµe−S[Φ,πc ]e−

∫ β
0 dτ

∫
d3x c̄(−∂2 − e2|πc |2)c

×e−
∫ β

0 dτ
∫
d3x 1

2Aµ(∂2 + e2|πc |2)Aµ

Define ω =
√

k2 + m2
eff and meff = e|πc |.

Here the summation of AµAµ is in Euclidean space since A0 → iA0.
Gaussian integration over the gauge field and the ghost fields.

Z [T ] =

∫
DΦDπce

−S[Φ,πc ]

×e2 1
2Tr [ln(ω2

n + k2 + m2
eff )]e−4 1

2Tr [ln(ω2
n + k2 + m2

eff )]

Z [T ] =

∫
DΦDπce

−S[Φ,πc ]e−Tr [ln(ω2
n + ω2)]
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Effective potential : Result

One can deduce the effective potential from the partition function :

Veff (Φ, πc ,T ) = V0 + lim
V→∞

T

V

∑
n∈Z

ln(ω2
n + ω2) + cst

=
λ

4
(|Φ|2 + |πc |2 − η2)2 + 2

∫
d3k

(2π)3
[
ω

2
+ T ln(1− e−

ω
T )]

At high-temperature, we can truncate the series above and get

Veff (Φ, πc ,T ) = λ
4 (|Φ|2 + |πc |2 − η2)2 − π2T 4

45 + e2|πc |2T 2

12

− e3|πc |3T
6π − e4|πc |4

16π2

[
ln
(

e|πc |eγE

4πT

)
− 3

4

]
The effective vacuum manifold is now reduced :
M=S1⇒ stable string.
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Quantum tunneling

PART 2 : Computation of the decay of a metastable cosmic string
Vacuum seems metastable but this depends on the value of λ and η.

Figure : Finite temperature effective potential in the core of the string.



Stability of a string in a thermal bath 17 / 30

Quantum tunneling

•Take a metastable string with 2 complex fields
•Study decay within its core
•Problem with QCD string : first order not reliable from perturbation
theory
•Expansion parameter ∼ λ2

e4 which is big for realistic value of λQCD⇒in fact second order phase transition
•Electroweak string : other problem of stability for realistic values of
parameters
• However it may still be useful to see how this work , see for example
Landau Ginzburg superconducting strings. In the high-temperature
expansion, |πc |

T � 1

Veff (φ, πc ,T ) ' λ

4
(|φ|2 + |πc |2 − η2)2 +

e2|πc |2

12
T 2 − e3|πc |3

6π
T (0)
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Instanton computations

Quantum tunneling

• Potential Veff :

V (πc ,T ) = D(T 2−T 2
o )π2

c−ETπ3
c +

λ

4
π4

c

where the coefficients are given by

D =
e2

12
E =

e3

6π
T 2

o =
6λη2

e2

Figure : Bubble. Action
has O(4) symmetry
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Instanton computations

String ansatzt at T=0

Figure : string breaking

t : ±∞→ 0

(φi , πci )→ (φb, πcb) (1)

⇒bounces at t = 0
[Coleman:1977] Nielsen and
Olesen static string at t = ±∞
= initial configuration :

(φi , πci ) = (ηf (ρ)e inθ, 0) (2)
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Instanton computations

Figure : Profile function
for string for n = 1.

Configuration at bouncing point :

φb =

{
ηf (ρ)e inθ for z 6= 0 and z = 0, ρ ≥ ρ0

0 for z = 0 and ρ < ρ0

πcb =

{
η for z = 0, ρ < ρ0

0 for z 6= 0 and z = 0, ρ > ρ0

Full function for neutral string

φ(τ, ρ, z , θ) = ηf (ρ)e inθ[g1(ρ) +
√

1− g1(ρ)2g2(s)]

πc (τ, ρ, z , θ) = η
√

1− g1(ρ)2

√
1− g2(s)2

• s =
√
z2 + τ2⇒two O(2) symmetries of

the bounce solution
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Instanton computations

• General boundary conditions to get a bounce :

∂τ (φ(τ), πc(τ))τ=0 = ∂τ (φb, πcb) = (0, 0)

lim
τ→±∞

(φ, πc ) = (φi , πci )

• Boundary conditions for g1(ρ) and g2(s):

g1(0) = g1(ρ ≤ ρ0) = 0 , g1(ρ > ρ0) = 1 , g ′1(0) = 0

g2(0) = 0 , g2(±∞) = 1 , g ′2(0) = 0

Figure : Profile function
for g1(ρ) and for g2(s)
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Instanton computations

Quantum tunneling and no Thermal effects

• Potential Veff :

V (πc ,T ) = D(T 2−T 2
o )π2

c−ETπ3
c +

λ

4
π4

c

where the coefficients are given by

D =
e2

12
E =

e3

6π
T 2

o =
6λη2

e2

Figure : Spherical
symmetric instanton
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Instanton computations

Quantum tunneling Vs Thermal effects

Figure : wiggly cylinder

Figure : Cylindrical instanton
with O(3) symmetry in 3 spatial
dimensions
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Thin-wall approximation

Thermal photons + out of eq. scalar fields

• Assume φ = 0 → we study the core of the neutral string
• Thin-wall approximation: almost degenerated V (πc ) ∼ VD(πc)

d2πc

dx2
+

1

x

dπc

dx
= V ′(πc)→ d2πc

dx2
= V ′(πc) ' V ′D(πc )

where VD(πc) is the potential in the limit where the potential has an
exact degeneracy
• One-dimensional Euclidean action :

S1 =

∫
dx [

1

2
(
∂πc

∂x
)2 + V (πc)] =

∫ 0

πD
c

dπc [2VD(πc )]
1
2 =

(πD
c )3
√
λ

6
√

2
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Thin-wall approximation

⇒with the thin-wall parameter ε

V (πc ) =
λ

4
π2

c (πc − πD
c )2 − λ

2
επD

c π
3
c (3)

where ε =
ET√
λD

1√
T 2 − T 2

0

−1=

√
T 2

c − T 2
0

T 2 − T 2
0

T

Tc
−1 (4)

and πD
c (T ) = 2

√
D

λ
(T 2 − T 2

0 ) (5)

⇒T-dependant Action :

S1(T ) = 4
3
√

2λ
[D(T 2 − T 2

0 )]3/2 = e3

18
√

6λ
[(T 2 − T 2

0 )]3/2

S1 has mass dimension 3 since it is the one-dimensional action.
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Thin-wall approximation

• Potential energy density difference between the two minima

∆V = V (πcmin) =
λ

2
ε(πD

c )4 (6)

∆V = 8(ET −
√
λD
√
T 2 − T 2

0 )[ D
λ (T 2 − T 2

0 )]
3
2

Here, contrary to the Mexican hat potential case with a linear term
[Coleman:1977], ∆V 6= ε
• T-dependant Thin-wall parameter

T= T0√
1− e4

3π2λ(ε+1)2

and ε(T )=
√

e4

3π2λ
1

1−
T 2

0
T 2

− 1



Stability of a string in a thermal bath 27 / 30

Thin-wall approximation

• Equation of motion for r ∼ R :

d2πc

dr2
+

3

r

dπc

dr
= V ′(πc )

• Ssphere = π2
∫
r3dr [ 1

2 (∂πc
∂r

)2 + V (πc )]

= −π2

2 R4∆V + 2π2R3S1

•Extremizing Ssphere :
∂SE
∂R

= 0

R(T ) = 3S1
∆V =

√
3

2e
1

ε
√

T 2−T 2
0

Figure : Bubble
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Thin-wall approximation

• T dependent decay rate:
Γsphere

V ∼ P4 exp[−π2 1

48 λ(

√
e4

3π2λ
T 2

T 2−T 2
0
−1)3

]

• After tunneling in vacuum, bubble radially expands at

v =
d |~x |
dt

=

√
|~x |2 − R2

|~x |
(v ∼ c) but plasma pressure slows down this expansion.
• Energy of the bubble wall :

Ewall = 4π|~x |2(Sπc
1 )(1− v2)−

1
2

which finally reduces to

Ewall = 4π|~x |3
Sπc

1

R
=

2πε

27λ
|~x |3e4(T 2 − T 2

0 )2
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Thin-wall approximation

String Stability from thermal effects

Thermal bath of photons can make string stable.
Instantons productions quantify the stability of strings against breaking.
PART 1

The plasma effects lift the potential in direction of the charged pion
fields.

This lead to an effective vacuum manifold which admits cosmic string
solutions, the pion strings.

Our arguments are general and apply to many theories beyond the
Standard Model.

Topological defects embedded defects of the full theory with the
property that they are stabilized in the early Universe for the right
values of the parameters.

For realistic values of QCD parameters, the string is stabilized and is
not metastable
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Conclusion

Summary

PART 2

1st order phase transition for strings : eg superconducting strings can
decay into 2 strings.

We found the temperature dependent radius andthe decay rate of a
string into two strings

Effects of a Thermal Bath of Photons on Embedded String Stability :
Topologically unstable defects can become stable in a thermal bath of
photons
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