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Outline

• Heuristically and some intuition;

• Motivating a recursive method;

Microphysics justification: 
• CPT (in-in) formalism & rederivation of the Langevin eqns

• Perturbative expansion

Stochastic Inflation Formalism (mostly Starobinsky’s work)

Application: Hybrid Inflation
• What is hybrid inflation?

• Recursive strategy: how to implement it

• New results: noise amplitude, tilt, and dispersion



Setup: Inflation
We work in FLRW spacetime:

Inflation is defined by a phase of accelerated 
expansion of the scale factor       , meaning:
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Slow-Roll Inflation
The quasi-exponential expansion of         is driven by the slow 
roll of a scalar field      down the slope of a flat potential.
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Quantum fluctuations:       are created on small scales, are stretched by 
the inflating space beyond the Hubble radius where they freeze out 
(when                  ), get squeezed and undergo classicalisation. (they later 
re-enter the Hubble, and seed the fluctuations of the CMB and the LLS of the Universe)

Write an effective classical theory for these modes,  
by coarse-graining, or averaging, over scales 
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Split:

Small quantum
perturbations

homogeneous       acceleration Structure)

Is this split true/good?
Idea: we are interested in the classical theory, beyond the Hubble 
radius, since these are the range of scales that are observable in the 
CMB.  



«Problem»: Modes smaller than the coarse-
graining scale, that is quantum-fluctuating 
modes, are constantly escaping the coarse-
grained region and sourcing the classical theory.
From this perspective, they act as a noise for the 
classical theory

     

Stochastic inflation describes how to perform 
this averaging, and how quantum fluctuation 
give rise to a classical noise term in the effective 
coarse-grained classical equation.



Why does this even 
matter?

Shouldn’t the constant contribution of incoming quantum modes into the 
coarse grained theory be negligible anyway?

- Matters a lot, e.g. when the classical trajectory in field space is 
constrained to small fields values, quantum dispersion may dominates 

- Also, in eternal inflation, quantum corrections must dominate over 
the classical trajectory 

In general, 
            allows to constantly «renormalise» the background trajectory,
                  re-sums the incoming quantum modes in the background.
                    so                    assumes it physical values at all  e.g. H(t)

i.e.

) Powerful non-perturbative method

t



How does it work? 
(Heuristically)

Consider a set of 2 quantum fields              (generalisation to larger 
numbers easy)
Split each one into long and short wavelengths at a coarse graining 
scale using a window function        

Plugging this expansion in the KG equation:
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How Does it Work 
(Heuristically) continued...

To subtract the linearised equation for the small-scale           
from the          EoMs, expand               in creation/annihilation 
opts on a time-dept background:
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                is the time-dependent window function filtering 
only the sub-Hubble modes.

 Simplest choice: 

WH(k, t)

WH(k, t) = ✓(k/✏aH � 1)

Also, only choice to make               appear as white noise to �>, > ',�
)',� become Markovian processes (memoryless)

BUT: not very physical...
Winitzki & Vilenkin, 2000, Matarrese et al. 2004



How Does it Work 
(Heuristically) continued...

Plug this expansion back in the KG equations, and subtract the 
linearised quantum fields EoM. Left with:
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â†
k

eik·x
i
.

Where:

With:



Stochastic equations of motion:
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These form a system of classical Langevin equations, sourced by random 
gaussian noise terms (which are completely determined by their 2-pt functions). 
They describe a stochastic process. 
BUT: To find the 2-pt functions, we still need the linearised mode functions:

Slow roll-
suppressed



We now have a stochastic process.
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Expectation values of functionals of the stochastic fields, in 
particular their correlation functions, are calculated via:

we are NOT solving for one realisation of         , we must solve 
for their probability distribution over many realisations, 
through a Fokker-Planck equation:
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This is the 1-pt PDF

It’s possible to find an expression (messier) for the 2-pt PDF
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A Recursive Method?

We now have two coupled systems of 2 equations each:
the classical stochastic system and the quantum system

In order to solve it consistently, we must solve both to the same 
order of accuracy in the slow-roll parameters

)We use a recursive approach!



Outline of the 
Recursive Approach

1. Solve for the quantum fields               mode functions to zeroth 
order in slow-roll, that is, as if they were free, massless fields in dS 
space. Get the zeroth order noise: 
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2. Use this noise to find the classical fields         to zeroth order in 
slow-roll and their corresponding PDFs. i.e. we need to solve:



Recursive Approach 
continued...

3. Go back to the linearised mode functions for the quantum fields               
and replace all occurrences of the coarse-grained fields by their 
average values, variances, and higher momenta: 

solve the corrected linearised equations for              , this time 
expanding to next-to-leading order in slow-roll.  
                i.e. solve for the full linearised mode functions
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etc...  until the process converges

4. Go back to the coarse-grained         system, and reevaluate the 
PDF with the corrected linearised noise. Keep up to                          
in slow-roll. Can find the spectrum, including the tilt, in a 
consistent manner. 



To understand why this is a sensible thing to do (in particular step 3) 
and in general why the stochastic approach of coarse-graining the full 
quantum EoM makes sense to derive a classical theory, look at the 
microphysics of the process.
This is very similar to quantum Brownian motion       
                   use similar techniques, i.e.
                                   the in-in (or CPT) Schwinger-Keldysh formalism

)

How does it work?
(Actually)

1

1

As opposed to the in-out formalism where:
- one calculates S-matrix elements, 
- for transition amplitudes between in and out asymptotic states,
- with one-particles states defined in the     -distant past and future.

In the in-in formalism:
- one calculates expectation values of operators at a fixed time t0, 

(EEVs for quantum statistical mechanics)
- with one-particles states defined in the     -distant past only.



In-In Formalism

- Split the fields into: - a bath                  (same k-mode exp. as before)
- a system 

- Split each of the bath & system fields into: part           & part 
get:                               & similarly for  

- The in state, at        , is taken to be the Bunch-Davis vacuum,
- Evaluate operators at fixed 
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⇢̂(t = ti) = ⇢̂sys(ti)⇥ ⇢̂bath(ti)

Goal: Integrate out the bath degrees of freedom.

- In the same spirit as Wilsonian renormalisation, we want to get a         
for the system fields once the bath has been integrated out.

-> Similar to quantum Brownian motion!

Veff

- Because assume Bunch-Davis vacuum, the initial density matrix 
factorizes: 

can write the reduced evolution operator for the system fields as a 
functional representation, so the effective action can be written as:
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F ['±,�±]                   is known as the influence functional. In general, it is a non-local, 
non-trivial object: -depends on the time history, mixes the forward and 
backward histories along the CTP in an irreducible manner.



Influence Functional
It can be written as:

where        in the influence action. Using the vector notation:SIA
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-  In flat space, the term linear in                     would be set to zero to 
ensure that                      are indeed solutions to the linearised mode eqn.
(c.f. the tadpole method Weinberg 94, Boyanovsky et al. 94 - to ensure we are 
expanding around the right background) 
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Integrating Out
the Bath DOFs
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-  However, because of the time-dependence of                      , the time 
derivative in the            operators act on the window function, giving a 
non-zero result. This is precisely the effect of the modes leaving the 
quantum theory and joining the coarse-grained theory. 
 (else, system & bath are orthogonal in k-space in                              limit)

-  We can perform this Gaussian integral over                   



Integrating Out
the Bath DOFs (continued)

-  Performing the path integral over the bath fields, we obtain:
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Matarrese et al. 2004



Fluctuation-Dissipation 
Theorem

-  Leading order influence action splits into a real and an imaginary 
part -> they represent dissipation and noise, respectively.
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Morikawa 1986

-  The kernels                            are the dissipation kernels. i.e. their non-
symmetric part add a non-local extra term in the classical fields EoM, 
proportional to                              friction, or dissipation.
                        Slow-roll      negligible compared to H-friction
                        Not negligible      e.g. warm inflation  Berera et al. 2009

-  The kernels                           each give an imaginary part to the 
effective action. Interpret them as a result of a weighted average over 
configurations of stochastic noise terms, representing the «coupling» 
btw                   and                        reintroduce these noises w/ right PDF
-   Fluctuation-dissipation thm: they are linked since they come from 
the same underlying dofs       real and imaginary part of same kernel! 



-  To interpret the imaginary part as noise, introduce two real classical 
random fields per field in the system                              , each obeying 
the Gaussian pdf: Stratonovich 1957, Hubbard 1959
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-  To take the classical limit of the action: rescale                              and 
expand in powers of    .  EoM in the classical limit are given by:
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We obtain:

These are the same as in the heuristic approach, provided we perform a 
simple redefinition of ⇠�, 2

⇠�2 ! �p�(t)⇠
�
1 � ⇠�2

The noise correlations are found by solving the 
linearised mode functions:
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These are indeed two coupled systems 



Perturbative Expansion
-  Easy to extend this formalism to include non-trivial interacting 
potential;

J+ and J�

e.g. �2
>'

2 Vpert � �4

)To solve for the noise variance using the full linearised mode function EoM, 
we obtain 2 coupled system, which justifies a recursive approach

-  Introduce a current per branch of the CPT contour,                      and 
define a diagrammatic expansion of V, integrate order by order the 
bath fields, and derive a similar influence action; 
                                                                          Morikawa 1986, Hu et al. 1993, Boyanovsky 1995

-  Quadratic terms in the bath fields are considered as part of the free 
bath propagator,                     coming from 

-  For every loop correction, we obtain an extra noise term, dissipation 
term (real and imaginary part of the same kernel), and mass-
renormalisation term



Hybrid Inflation

 Two scalar fields inflation, the inflaton φ and the waterfall field ψ
 Inflation takes place when φ is slowly rolling for φ > φc

 The energy density is dominated by the mass of ψ
 For φ < φc, the ψ → −ψ symmetry is broken and ψ develop a tachyonic 

instability, which trigger its rapid rolling toward a true ground state



Dynamics and Steps 1-2
-  Potential:
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-  Step 2: Zeroth order stochastic equations:

3H2 d'

dN
= �m2'

✓
1 +

g2�2

m2

◆
+ 3H⇠� (N) ,

3H2 d�

dN
= ��v2�

✓
'2 � �2

c

�2
c

+
�2

v2

◆
+ 3H⇠ (N)

Recursive Solution:
-  Step 1: Free, massless dS noise:



-  Step 2 (continued): Zeroth order stochastic solutions:   Martin & Vennin 2011   
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Zeroth order dispersions:  



Step 3
Linearised quantum perturbations on a stochastically shifted background: 
- Replace coarse-grained quantities with their stochastic mean:

F
h
'(0),�(0)

i
!

D
F
h
'(0),�(0)

iE
.

- We work in the spatially flat gauge;
- The EoM & solution  for the canonically normalised field,                       :
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Step 3 (continued...)

Similarly, for � (1)
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Solution in terms of Airy functions, but not very enlightening to 
write down...



Step 4: Results
Under the quasi-static approximation, i.e. the relaxation time for the ! 
distribution is very small, and it swiftly acquires its “stationary” local 
dispersion. 
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For the inflaton:
-  Noise amplitude

-  Classical perturbations 

with:



Conclusion 

• Reviewed stochastic inflation starting from the 
EoM

• Proposed a recursive approach

• Showed how this is motivated from the 
microphysics of stochastic inflation

• Applied the recursive to derive new results in 
Hybrid inflation (tilt, dispersion of the 
waterfall field...)


