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OUTLINE

Stochastic Inflation Formalism (mostly Starobinsky’s work)

e Heuristically and some intuition;

e Motivating a recursive method;

Microphysics justification:

e CPT (in-in) formalism & rederivation of the Langevin eqns

e Perturbative expansion

Application: Hybrid Inflation
e What is hybrid inflation?

e Recursive strategy: how to implement it

 New results: noise amplitude, tilt, and dispersion



SETUP: INFLATION

We work in FLRW spacetime:

ds? = —dt? + a*(t)da® = a?(r) (—dr® + d7?) ;
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Inflation is defined by a phase of accelerated

expansion of the scale factor a(t), meaning:

ERG 0 with 1 < g(f) -l

—> Physical lengths grow quasi-exponentially

(we allow H # 0 but do not perturb the metric for now)



SLOW-ROLL INFLATION

The quasi-exponential expansion of a(t)is driven by the slow
roll of a scalar field  down the slope of a flat potential.
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—> Physical lengths grow quasi-exponentially
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Split: @ =+ 09
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| Classical . |Small quantum
Background (fixed) |

perturbations |

homogeneous =- acceleration <J I—» Structure

Quantum fluctuations: d¢ are created on small scales, are stretched by
the inflating space beyond the Hubble radius where they freeze out

(when k/aH ~ 1), get squeezed and undergo classicalisation. (they later
re-enter the Hubble, and seed the fluctuations of the CMB and the LLS of the Universe)

Is this split true/good?

Idea: we are interested in the classical theory, beyond the Hubble
radius, since these are the range of scales that are observable in the

CMB.
= Write an effective classical theory for these modes,

by coarse-graining, or averaging, over scales ~ H ™+



«Problem»: Modes smaller than the coarse-
graining scale, that is quantum-fluctuating
modes, are constantly escaping the coarse-
grained region and sourcing the classical theory.
From this perspective, they act as a noise for the
classical theory

Stochastic inflation describes how to perform
this averaging, and how quantum fluctuation
give rise to a classical noise term in the effective
coarse-grained classical equation.



WHY DOES THIS EVEN
MATTER?

Shouldn’t the constant contribution of incoming quantum modes into the
coarse grained theory be negligible anyway?

- Matters a lot, e.g. when the classical trajectory in field space is
constrained to small fields values, quantum dispersion may dominates

- Also, in eternal inflation, quantum corrections must dominate over
the classical trajectory

In general,
allows to constantly «renormalise» the background trajectory,
i.e. re-sums the incoming quantum modes in the background.
so e.g. H(t) assumes it physical values at all ¢

— Powerful non-perturbative method



HoOw DOES IT WORK?

(HEURISTICALLY)

Consider a set of 2 quantum fields {i), o } (generalisation to larger
numbers easy)

Split each one into long and short wavelengths at a coarse graining
scale using a Wmdow function

J(I) 90_|_¢>7\Ij X+¢>7

o>, V> correspond to k>H() @)
¢, x correspond to H(t)a(t) >k >0,

Plugging this expansion in the KG equation:

Lo+ mao+ V. ..0(0,x) + [—D¢> +m3ds + Vi (0, X)0> + Vg (o, x)¢>]
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How DOES IT WORK

(HEURISTICALLY) CONTINUED...

To subtract the linearised equation for the small-scale @>, ¥~

from the ¥, X EoMs, expand ¢, ¥~ in creation/annihilation
opts on a time-dept background:
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Wy (k,t) is the time- dependent window function filtering

only the sub-Hubble modes.

Simplest choice: Wy (k,t) = 0(k/eaH — 1)

Also, only choice to make ¢, %> appear as white noise to @, X
= ¥, X become Markovian processes (memoryless)

BUT: not very physical...

Winitzki & Vilenkin, 2000, Matarrese et al. 2004



How DOES IT WORK

(HEURISTICALLY) CONTINUED...

Plug this expansion back in the KG equations, and subtract the
linearised quantum fields EoM. Left with:
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Stochastic equations of motion:

} Do o w=3H£f+éf— |
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These form a system of classical Langevin equations, sourced by random

gaussian noise terms (which are completely determined by their 2-pt functions).
They describe a stochastic process.

BUT: To find the 2-pt functions, we still need the linearised mode functions:
2

¢k' —I_ 3H¢k _|_ (? —I_ m%{) —I_ perta ) ¢k 5o _‘/;)ertaq)\p wk

k2
Vi + 3Hy + ( +my + V..o )?,Dk =

_‘/;)ert 7\11(1) ¢k



We now have a stochastic process.

—we are NOT solving for one realisation of ¢, X, we must solve
for their probability distribution over many realisations, p(t, ©, X)
through a Fokker-Planck equation:

ot Oy <3Hp> Ag 195% (3]{'0) L 2 H? (Gt o (&1 &1 )P
This is the 1-pt PDF
pilt, p(x1,t), x(x1, )]
It’s possible to find an expression (messier) for the 2-pt PDF

P2 [tv 90(X17 t)a X(X17 t)? SD(X27 t)v X(X27 t)]

Expectation values of functionals of the stochastic fields, in
particular their correlation functions, are calculated via:

(Flo(t, %), x(t,X)]) = / DyDxolt.o. ) Flie

eg. Pt x)={p(t,x)) = / / DypDxp(t, v, x)®

(p(t,x1)p(t,x2)) = /DsoleDmDszz(t, p(x1), X(X1), p(x2), x(X2)) P12



A RECURSIVE METHOD?

We now have two coupled systems of 2 equations each:
the classical stochastic system and the quantum system

In order to solve it consistently, we must solve both to the same
order of accuracy in the slow-roll parameters

=> We use a recursive approach!



OUTLINE OF THE
RECURSIVE APPROACH

1. Solve for the quantum fields ¢>, X> mode functions to zeroth
order in slow-roll, that is, as if they were free, massless fields in dS

space. Get the zeroth order noise:

H?3 si H
o e

A2 eaHr

6(t —t')

2. Use this noise to find the classical fields ¢, X to zeroth order in
slow-roll and their corresponding PDFs. i.e. we need to solve:

do S
Hie = = —
dx 3H?
e -
S gy ()

where we changed the time variable to the e-fold number: N = In(a/a;)



RECURSIVE APPROACH

CONTINUED...

3. Go back to the linearised mode functions for the quantum fields
and replace all occurrences of the coarse-grained fields by their
average values, variances, and higher momenta:

©, X = (©), (X)),
e ~ (o8 1l
(ko —5 (o

solve the corrected linearised equations for @>, X>, this time
expanding to next-to-leading order in slow-roll.

1.e. solve for the full linearised mode functions
4. Go back to the coarse-grained ¢, X system, and reevaluate the
PDF with the corrected linearised noise. Keep up to O (\/ (€03 €0 >>

in slow-roll. Can find the spectrum, including the tilt, in a
consistent manner.

etc... until the process converges



HoOw DOES IT WORK?

(ACTUALLY)

To understand why this is a sensible thing to do (in particular step 3)
and in general why the stochastic approach of coarse-graining the full
quantum EoM makes sense to derive a classical theory, look at the
microphysics of the process.
This is very similar to quantum Brownian motion
—>use similar techniques, i.e.
the in-in (or CPT) Schwinger-Keldysh formalism

As opposed to the in-out formalism where:

- one calculates S-matrix elements,

- for transition amplitudes between in and out asymptotic states,

- with one-particles states defined in the oo-distant past and future.
In the in-in formalism:

- one calculates expectation values of operators at a fixed time t,
(EEVs for quantum statistical mechanics)

- with one-particles states defined in the co-distant past only:.



IN-IN FORMALISM

- Split the fields into: - a bath ¢>, ¢> (same k-mode exp. as before)
-asystem p =® =@, x =V — s
- Split each of the bath & system fields into: part € CT & part € C~
get: ol 0n 0L 0% & similarly for W
- The in state, at —oo, is taken to be the Bunch-Davis vacuum,
- Evaluate operators at fixed ¢



Goal: Integrate out the bath degrees of freedom.

- In the same spirit as Wilsonian renormalisation, we want to geta Ve ¢ ¢
for the system fields once the bath has been integrated out.
-> Similar to quantum Brownian motion!

- Because assume Bunch-Davis vacuum, the initial density matrix

factorizes: ¥ ¥ X
Bl = — ., () o)

can write the reduced evolution operator for the system fields as a
functional representation, so the effective action can be written as:

/ Dso/ D eXP{;Seff[SﬁiaXi]}
/ DsO/ Dx™* eXp< (5o et Ssys[so_,x_]})F[soi,xi],

Flo*, x*is known as the influence functional. In general, it is a non-local,
non-trivial object: -depends on the time history, mixes the forward and
backward histories along the CTP in an irreducible manner.



INFLUENCE FUNCTIONAL

It can be written as:

e e o ¢if L I¢if A
o, ] = doT diZ dos . dys. Do B
o0 —CO >i >7L

1

eXp (ﬁ {(Sl())ath)+ i (Sl())ath)_ o S;_ert FR Sp_ert}> ﬁbath(¢:§i7¢:>|:i>

1
= exp [ﬁS]A[gpi, Xi]] :

where S;4 in the influence action. Using the vector notation:

AN Ao (o) e s ey e Ay 1] 2 E S Al
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A¢ == —a3(t) l@? SR 3H(9t e a2—(t) -l-mé] 3 A¢ = —CLS(t) [8? +3H8t == CLQ—(t) +m?1,‘| A

it can be written explicitly in the bilinear form when Vpers =0

o0 ¢ »3 ;
/ d¢l—fdw—|>_f/ f DQg/ f Dibi[eﬁfd4x[(%¢£A¢¢>+¢TA¢¢>)+(%¢§Aw¢>+xTA¢¢>)]
— 0



INTEGRATING OUT
THE BATH DOFS

- In flat space, the term linear in §5> or @Z> would be set to zero to
ensure that ¢; and vy, are indeed solutions to the linearised mode eqn.
(c.f. the tadpole method weinberg 94, Boyanovsky et al. 94- tO ensure we are
expanding around the right background)

- However, because of the time-dependence of Wy (k/eaH), the time
derivative in the Ay . operators act on the window function, giving a
non-zero result. This is precisely the effect of the modes leaving the
quantum theory and joining the coarse-grained theory.
(else, system & bath are orthogonal in k-space in Wy — 6(

— 1) limit)
€ea

- We can perform this Gaussian integral over ¢~ , ¥~



INTEGRATING OUT
THE BATH DOFS (coNTINUED)

- Performing the path integral over the bath fields, we obtain:

1 2
S = o7 [ diadis e @Re Moo ) po(a)—; [ d'zd'a/8(t= ol Mo, )] e

? e i +(x & 9)

i | 1 Morikawa 1990,
P Imaginary ” Real | Matarrese et al. 2004

term g term

- Where: : : - '
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P [WH(t) 4 3HW(t) + 2WH(t)at} ;
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Y

& defined the quantum and classical fields, rotating to the Keldysh basis:
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FLUCTUATION-DISSIPATION
THEOREM

- Leading order influence action splits into a real and an imaginary
part -> they represent dissipation and noise, respectively.

- The kernels Im [I1, ,(z, z')] are the dissipation kernels. i.e. their non-
symmetric part add a non-local extra term in the classical fields EoM,
proportional to ¢, and x. = friction, or dissipation.

Slow-roll = negligible compared to H-friction

Not negligible = e.g. warm inflation Berera et al. 2009

- The kernels Re [I1 ., (z, z")] each give an imaginary part to the
effective action. Interpret them as a result of a weighted average over
configurations of stochastic noise terms, representing the «coupling»

btw ¢ and ¢~ and x and ¥ = reintroduce these noises w/ right PkDF
Morikawa 1986

- Fluctuation-dissipation thm: they are linked since they come from
the same underlying dofs = real and imaginary part of same kernel!



- To interpret the imaginary part as noise, introduce two real classical
random fields per field in the system &P, 2 and &7, £, each obeying

the Gaussian pdf Stratonovich 1957, Hubbard 1959
b ¢ [ 1) Ly e
e }—exp dtzd'e/[60¥ (o), 5T ()] AT A ,

JY(T)

/Wl 93931 S( )
g’(?: o 2/ ?’i‘% WH ]{?7' a]m- WH (kT) H2( )

T g T
1o B R (?2‘2,(%3‘1 soqi[ﬁgi))ffd flﬂ g%r f Dy (t) w"‘fz} Xqﬁfb}) ]

- To take the classical limit of the action: rescale ©¥q, Xq — A¥q, ixq and

H(r")

1
L

Re [MZ)] (kT, kT/)} :

expand in powers of /. EoM in the classical limit are given by:

(1) (1)
5L, sl
5S0q pq=0 5Xq =




We obtain:

T ; 3 o T D T e
BT )0+ Via(ee xe) = ps(0)E0 + €5 + & + 3HE -

| 2 ’
,> 00+ m2 )X + Vo (@6, xo) = pu(t)EY + €2 + £ + 3HED

The noise correlations are found by solving the
lihearised mode functions:

2 . ¢k — 0

e
These are indeed two coupled systems

These are the same as in the heuristic approach, provided we perform a
simple redefinition of =i

&5 — —po(t)ef — &



PERTURBATIVE EXPANSION

- Easy to extend this formalism to include non-trivial interacting
potential;

- Introduce a current per branch of the CPT contour, J* and J~ and
define a diagrammatic expansion of V, integrate order by order the
bath fields, and derive a similar influence action;

Morikawa 1986, Hu et al. 1993, Boyanovsky 1995
- Quadratic terms in the bath fields are considered as part of the free
bath propagator, e.g. gb2> p* coming from Vpert D o4

—> To solve for the noise variance using the full linearised mode function EoM,
we obtain 2 coupled system, which justifies a recursive approach

- For every loop correction, we obtain an extra noise term, dissipation
term (real and imaginary part of the same kernel), and mass-
renormalisation term



HYBRID INFLATION

Two scalar fields inflation, the inflaton ¢ and the waterfall field ¥
Inflation takes place when ¢ is slowly rolling for ¢ > &,

The energy density is dominated by the mass of {

For & < &, the { — — symmetry is broken and { develop a tachyonic
instability, which trigger its rapid rolling toward a true ground state



DYNAMICS AND STEPS 1-2

- Potential:

Lo DN 242 92 2 1.2
V(<I>,\If):§m<I) +Z(\If — v*) +§<I>\If

Recursive Solution:

- Step 1: Free, massless dS noise:
H? sin(eaHr)

b, ¢> (U Seyoph
(687 (0,0), 0% (. 1)) = g T oD — 1)
- Step 2: Zeroth order stochastic equations
2 dSO &
SH T m2yp ( ) Vel

dx L
i e = — vy ( —2) +3HEy (N



- Step 2 (continued): Zeroth order stochastic solutions: Martin & Vennin 2011

Av2
( 2> 0 (miet ) P r Av? )\v2x
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vt

9
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v
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(N o Nm):|

» = exp [—4

Zeroth order dispersions:
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~



STEP 3

Linearised quantum perturbations on a stochastically shifted background:
- Replace coarse-grained quantities with their stochastic mean:

o [¢<o>,x<0>} o < I [¢<0>7X<0>}> _

- We work in the spatially flat gauge;
- The EoM & solution for the canonically normalised field, Spy) =a i

R = e B 4 ey

2
s )

Vk =

1/
e
k T

( 7_)—1/-|—1/2

e =
ey .i v G Q<32
(L2 In(= k7 D=0

i = ke —|—ga>2<)/H2 + 9¢;



STEP 3 (CONTINUED...)

Similarly, for 5%&1) —a Uy

7 2 2 2 A, 2—mi/[—[2
s el (1) w =0, mi(r)= 5
1 Ao2  12M2 (0
= 5 (241561 =3 o e ( 2 - |

Solution in terms of Airy functions, but not very enlightening to
write down...



STEP 4: RESULTS

Under the quasi-static approximation, i.e. the relaxation time for the x
distribution is very small, and it swiftly acquires its “stationary” local
dispersion.
U)2</ Oi‘massless = <€@2b>/<€12p>massless e |5¢(1)‘2/|5¢(1)|?nassless
2
1
e M

7 O-X = H4/(47T2) O-X‘massless
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- —  massive with backreaction : -
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For the inflaton:

- Noise amplitude ;
H
(€6 (V) &p (N')) = 58 (N — ')

- Classical perturbations

S ————

—
% % (In 2e4+v—2)




CONCLUSION

Reviewed stochastic inflation starting from the
EoM

Proposed a recursive approach

Showed how this is motivated from the
microphysics of stochastic inflation

Applied the recursive to derive new results in
Hybrid inflation (tilt, dispersion of the
waterfall field...)



