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Dark Energy

As is widely known, the Universe is almost completely dominated by unknown forms of
matter/energy: Dark Matter and Dark Energy.

Theoretically, Dark Energy is quite natural both in QFT (~ vacuum energy) and in
GR (A-term). However,

Coincidence Problem
QA ~ Qi ~0O(1) ?
(dQA /AN )today =~ max?

Smallness Problem

—123 4
Aops ~ 10 mp;

—44 24
~107*Adop

Estimated Composition of Universe
Before Plank After Plank

M Dark Matter W Ordinary Matter M Dark Energy
SOURCE: ESA, PLANCK COLLABORATION

Alternative: Dark Energy is gravitational but dynamical, originated by modifications
of the Einstein-Hilbert action:

Agras ~ 7/d4x\/Tg(R+ 2A) = f/d‘*a:\/fg.f(R)

The modified theory has an additional massive scalar degree of freedom (scalaron).
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f(R) models of Dark Energy

Action  Agray ~ —/d4:c V=9 f(R) = —/d4z V=g [R+ F(R)]
1
Field Egs (14 Fp) Ruv — 5 [R+ F(R)] g + (90 0 = Vi Vo) Fip = Ty

Trace 30F +RF'—2F—-R=T

In order to generate an effective A, one needs constant (non-zero) curvature solutions,
i.e. roots of
RF —2F —R=0

First models proposed:
1
o F~ 7 (Capozziello et al. 2003, Carroll et al. 2004)

Due to the negative power of R, corrections start dominating when R — 0.
However: strong instabilities in the presence of gravitating bodies.

Near R = 0, corrections must be at most ~ A + R? (Olmo, PRL 2005) )
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Recent Proposals

Stability conditions (Amendola et al. 2007, Sawicki and Hu 2007)

e f/>0 (graviton # ghost)
e f” <0 (scalaron # tachyon)

Hu-Sawicki 2007

R. on] —1 R2 -n
Frs = —ARe |14 ( & Fs = —-AR: |1- I+

Starobinsky 2007

@

@ evade Solar System and cosmological tests
e F(0)=0 = vacuum = Minkowski (“disappearing cosmological constant”)

@ at large |R|, |[F/| < 1 and F ~ —AR, so

Aeff =~ _AI;C J (from nowon A=1, R. = —A)
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Contracting Astronomical Objects

Let us consider a cloud under the following conditions:

“high” density: pm, > pe ~ 10729 g cm =3 (|R/Rc| > 1)

low gravity: (g, — | <1 = V=0,

spherical symmetry + homogeneity = no space derivatives
o pressureless dust: 7' = 87p,,/m?, (not necessary but reasonable)

For simplicity, we will assume the contraction law

_ PO
t P29 = 10735 g em=3 >
) = (1 + ) 107 gem
contr tio = contr
1010 years

This should be more or less reliable at least up to ¢t ~ teontr-

Negligible Pressure

|

p_w _ o ,
S~ 3210 O My 72 pg’® < 1 My = 2o

Low Gravity

Taking for definiteness g, — 1y, = diag(0, —1), we have R ~ —34). It can be
explicitly proved that |¢)| < 1 in all cases considered (see later).
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f(R) Dynamics

For |R/Rc| > 1, F ~ 2A and |F’| < 1 so we can recast the trace equation as a
simple time-dependent oscillator equation:

-- . oU
EFRET=—10 = EaF=—==0
¢
Rg 2n+1
o Scalaron: £ = —3F’ = 6n\ o
@ reabsorb A in the definition of T: T' — T + 4A
@ solutions oscillate around the GR solution R = —T', with frequency:
2 2n42
B R LIV
€7 o 6n(2n+ 1A \ R.

@ energy conservation, modified by the explicit time dependence of U:

ééQ +U¢) - /t dt’ %g(t’) — const

SINGULARITY

R — o0 for =0

Along the GR solution we have & oc T~ (27+1) £ () but oscillations
may allow & = 0!
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Scalaron Potential

@ bottom corresponds to the GR solution
£ o« R—(2n+1) R=-T

@ not symmetric around the position of the
bottom

U

o for increasing T', the bottom rises:
0 Up = —3n\ Rc |R:/T|*™

@ potential is finite for £ =0 <& R — oo

o £ oscillates with frequency w; the potential
changes on a timescale tcontr:

U(&) = T€—3(2n+1)|Re| (i)m o5 tio

6n wot ~ 0.5 —————=
0 lcontr (Qn T l)n)\

“Slow-Roll" Regime: w teontr K 1

Oscillations are slow w.r.t. changes of the potential, so the motion of £ is mainly
driven by changes of U (and initial conditions if &y # 0)

“Fast-Roll” Regime: wtcontr > 1

Oscillations are fast, so they are practically adiabatic. Near a given time ¢, £ oscillates
between two values &,in and &maz with roughly U(&min) = U(Emax)-
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Slow-Roll Regime

Let us first consider the slow-roll regime, that is wo tcontr < 1. The initial “velocity”
of the field dominates over the acceleration due to the potential, so in first
approximation

£(t) = &o + ot }

This can also be understood as follows:

- 3 ou 3 1
~ s R+T=—~ _— 1
6 (2:ont'r - 85 v 5 R+T w? tg‘ontr >

Therefore the trace equation reduces to

E+R+T=E=0 )

R/Ry
30p

Htconr

. . . . e .
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Slow-Roll Regime
Singularity

Initial Conditions

Ro=—-Tp Ro = —(1—8)To

The singularity appears when & = 0, that is at

Singularity — Critical 7" and ¢

tsing . _@ ~ 1 Tsing 14 1
ewmip &o (2n+1)|1 — 4| To (2n+1)|1 — ¢
=13
tsing . .
p29 = 30 = P O(1—0.1)  “Cusp” due to change in sign of At/t.
tip = 1072 corizy Precision is outstanding, given the
Atgn/te relatively large wo teontr >~ 1. Taking
sing/sing
0.500 | n = 3
p29 = 100 9
o1 = teontr = 10
0.050 g = 109 Wwo teontr
6=0
0.010F
0005} yields Atging/tsing ~ 1077,
- But: short contraction timescales
‘ L ‘ L L = (maybe) unphysical.
0.10 0.15 020 0.30 0.50 0.70 1.00 1.50 2.00 |1_6|
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Fast-Roll Regime
Initial Behaviour: Harmonic Oscillations

We expand £ around its “GR value” &,, defined by R(§,) = —T, assuming small
perturbations so that the potential ~ harmonic

E=¢& +8& . R=-T+ R ,
Efa—l—asin/wdt’ E—T—i—ﬁsin/wdt’
Expanding the trace equation at first order in & and using the fast-roll condition, we
obtain .
140?620 = . = o~ w2

Using initial conditions specifying Ro and Ro, and therefore ¢o(Ro, Ro) and

£0(Ro, Ro), we find
la| = 10 = a0l (ﬁ>71/2
wo

wo
Explicit Solutions
Problem: 6 = 0 gives « = 8 = 0.
[6(2n + 1)n]3/2|5||Rc|3”+% _ntl But: we are neglecting terms of
= 5nt3 T(t)” 2 order ~ (wWtcontr) Ll
Ty 2 teontr Oscillations are always excited if
1 T # 0.
\/6n(2n + 1)|5||R ‘n+2 3n+3
ﬂ = wza ~ 5ni3 d T(t) 2
To 2 teontr
v
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Fast-Roll Regime

Harmonic Oscillations — Solutions (n = 3, § = 0.5, p2g = 200, t19 = 10~6)

0.1 02 03 04 Wtcontr

(wo teontr =2 180> 1)
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Fast-Roll Regime
Approaching the Singularity: Anharmonic Oscillations

The singularity should be reached when

Singularity Condition |

amplitude of oscillations = «a(t) =&.(t) =  distance from singular point

However, when o becomes of the order of &, the field starts “feeling” the
anharmonicity of the potential, which results in an asymmetry of the oscillations
around £ = &,. We can define, at each oscillation,

Emin = &a — a— o a_ # oyt (# harm. case)
Emaz = &a + i U(&min) = U(&min)  (still ~ adiabatic!)

Singularity Condition Il

U(fa) + AU = U(gsing) =0

Comparing the system to a classical oscillator, we have

1. 1 max. kinetic energy near given ¢
AU = = €2 ~ =~ a2w? = M erey &
(within one oscillation)
max
Here, a, w = as in the harmonic region! AU comes into play in energy conservation,
which does not care about harmonic/anharmonic oscillations!
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Fast-Roll Regime

Anharmonic Features — Solutions (n = 3, § = 0.5, p2g = 200, t10 =5 - 10_7)
Expanding U near the singularity £ = 0 and imposing the condition
1
U(a —a_)=U(&) + > (a2w2)

harm

yields the solution

e =sn(-2)"
U(€a)—AU}%2L;t1 ’ ‘T

@— = &La—6n {3(27@ T 1)R.

18[(2n + 1)n]262|Re|4n+2 T !
TR 2

contr

AU =

(§=¢)/%0

0.010

0.005 ﬂ
0.000

-0.005 v

, v . 1/t
1.04 1.06 108 T Wtcontr ftcontr
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Fast-Roll Regime

Anharmonic Features — Solutions (n = 3, § = 0.5, p2g = 200, t10 =5 - 10_7)

Expanding U near the singularity £ = 0 and imposing the condition

U(fu. — a_) = U(éa) + % (a2w2)harm

yields the solution

2n
R
2n+41 U(€a) = 3Rc ( )
U(¢a) — AU] 2n r

@— =&a—6n |:3(2n T 1R

18[(2n + 1)n)?262| R[4 +2 Tn+1

AU = Tg"+3 2

contr

il |
-

tconr
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Fast-Roll Regime — Singularity

Collecting all results, the singularity condition U(£.) + AU = 0 (or equivalently
a— = &q) gives the critical T' at which the singularity appears:

Singularity — Critical 7" and ¢

1
Tsing _ T3n+2 tgontr et
T |6n2(n+ D2 6% RJPHT toing _ Toing _
2n+2 t2 3nl+1 teontr TO
~ P29 Y10
n2(2n + 1)2 62

AT ing/ Tsing

01008 Relative errors tend to constant value

00501 ~ 2-1073 (maybe numerical feature?).
“Cusp” due to change in sign of AT/T.
Precision is nevertheless satisfactory.
Computational time proportional to total
number of oscillations:

0.020

0010

0.005

0.002

taing Snts
0.001 |- Nose ~ / wdt o (pggjl t10> n+
L L L L L L 106&-,,”,—
=3 ’ . * * " Large pa9 = expect better agreement, but
- t . et .
p2o = 102 = Sn9 L O(1) difficult to test numerically.
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Fast-Roll Regime

t.ving/ Leontr
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Fast-Roll Regime — Results (n =

tsing/ Leontr

— pn=10

4
10 — pp=10°
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Fast-Roll Regime

tsing/ Leontr
10t — pn=10
— pp=10°
— 10
1000 p25=10
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— —105
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10+
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About the Low-Gravity Approximation

Let us take for definiteness the line element

ds? = dt? — (14 ) dx? [y <1
so that ..
R~ —3v
Therefore, using R = —T + Rose,
1 :.ng tsing
~ = dt' T ~ 0.28 t? 1 =
wmaz 3 / / P29 t10 T < + 3) v tcont?'

Slow-Roll

We always have = < 1, so

(2n+1)

P ~ pag th T ~ (UJO tcontr)2p2 rL1

Fast-Roll

]
| »

@ z < 1: the condition = < 1 gives
pae P SO() = p~ptiy <1
e z = 1: imposing ¢ < 1 yields pag t10 x% < 10, or

Pt H80T8 < 41037 [n(2n + 1)5]°

One can check that this is fulfilled for all presented results.
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Summary and Conclusions

o Dark Energy is a central problem in modern physics. Answer: particle physics?
gravitation?
o there exist f(R) models capable of generating an effective DE which survive
cosmological and Solar System tests
@ in such models, the additional scalaron field £ moves in a potential in which the
singular point £(R — o0) is in principle accessible
@ in contracting systems, the increasing energy/mass density excites oscillations of
& which may push the field towards the singularity
o the interplay between the oscillation frequency w and the typical contraction time
of the system tcontr determines two regimes:
o Slow Roll: the singularity is reached rapidly, with tging/tcontr at most of
order unity
o Fast Roll: depending on parameters, the singularity can be reached with
tsing/tcont'r 5 lor>1

o “Naive” approach: constrain models using real observational data

o large R = high-curvature corrections: evaluate their contribution (particle
production — see talk by E. Arbuzova, etc.)
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