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Basic features of Einstein's gravity that make it a
geometrical theory

» The assumption that gravity is not an ordinary force, but
rather a property of space-time geometry.
This is followed by two postulates:

» The principle of equivalence, which in mathematical terms
corresponds to the so-called geodesic postulate.

» The field equations that determine how matter curves
space-time.

In the words of American physicist John Wheeler, " space tells
matter how to move, and matter tells space how to curve”



However, as we know, these requirements do not determine a
unique theory of gravity. Many other theories share the same
features.

» One example is Brans-Dicke scalar-tensor theory.



Brans-Dicke action

The action in the so-called Jordan frame is

1
T / d*xv-g [(bR +

w

¢¢,u¢”’ = V()| + Sm,

where
Sm = / d*x/=gLm.
BD scalar field is interpreted as

Gerr(¢) = ;



Palatini formalism

» Consider the metric and the connection as independent
variables.
The Riemann and the Ricci tensor are constructed with the
independent connnection.

> Assume that matter action does not depend on the
connection.



Field equations

BD action [Brans-Dicke, 1961]

w

S¢c = /d4x\/—g(¢R+ ¢

Performing the variable transformation
$ = e’¢,

we have

Sc;:/d4x —gefd)(R—i—wgé’ad)’a).
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Variation with respect to the independent connection

Compatibility condition between the metric and the connection

Vag" = —¢.8". (7)
It is associated to Weyl integrable geometry.

» Extended Palatini variational method: consider variation of
the action also with respect to the scalar field.



Weyl's integrable geometry

» The geometry conceived by Weyl can be considered as a
simple generalization of the Riemann geometry.

> Instead Riemannian compatibility condition

Vaguw =0, (8)
we consider
Vo€ = Couv 9)
with o, a one-form field.

> If 0 = d¢, ¢ scalar field, we have an integrable Weyl
geometry.

» From (9), the components of the affine conection

= {uu} - g5u¢ wt 8oy — Budp) (10)



The set (M, g, ¢) is called Weyl frame.
The particular case (M, g,0) is named Riemann frame.

Performing the transformations

guw = eifg;w, (11)
Q_S = ¢ - fa
the new frame (M, g, ¢) is reached.

The geodesic equations remain invariant under Weyl
transformations.

It is always possible to get a Riemannian frame by choosing

f=g.



Matter action

Brans-Dicke matter action in Palatini formalism
Sn = /d4x\/—g£m,

» does not couple to the scalar field,

> does not satisfy the Weak Principle of Equivalence.

(12)



Rewriting the compatibility condition
Va(e?g™) = 0. (13)
Effective metric is defined
A = ePghv. (14)
We assume minimal coupling to the effective metric,
Sm = K / d*xv/ =L (Y, W, VOO (15)

= K;/d4x\/—ge_2¢Lm(e_¢gW,\U,V(e_¢g)W).



Field equations for the metric g

1 1 a
Ryuw — Eg;wR = —6Tw —w(Pudy — Eg#’/¢7 9.a),
where
F o1 0/ lm)
W=y ey
and
oS,

(Sg’ﬁ(sguy :/d4X —ge7¢Tuy5g‘w,

(16)

(17)

(18)



Field equation for ¢

R+ 3wp P o+ 2wl = KT,
where T = g"”T,,, and
0Sm

The trace of (16) with respect to g,
R+ w¢,o¢¢7a =kT,

n (19) leads to
Oé + ¢“¢.a = 0.

—&z)_ / d*x/—ge *T5¢.

(21)

(22)



Riemann frame picture

Weyl transformation with f = ¢ leads to (M, = e?g,0).
The transformed BD action

S— / &3y AR+ w%ha) + Sml(r, W, VW), (23)

and field equations

1 . 1
R/—Ll/ B 57/.11,1[\) = _K:T/Jl/(ﬁy) - (J)(Qﬁ"ugb,y o Efylu’g#agb’a)’ (24)

Clp = 0. (25)

With ¢ = v/2w¢, field equations for Einstein’s theory of gravity
minimally coupled with a massless scalar field are obtained.



Field equations solution

The static, spherically symmetric and asymptotically flat solution
(Fisher, 1948)

ds> = W(r)°dt®> — W(r)=3dr® — PW(r)'=°dQ,  (26)

1 X

¢= Taon In [W(r)| (27)
W(r) =1 J70 (28)

where S = %, ro=2n1=+vM2+%2and M > 0 is the body's
mass in the center of coordinates.



The post-Newtonian approximation

» Fisher space-time predicts the same effects on solar-system
experiments as the Schwarzschild one does.[J. B. Formiga,

2011]
» Invariance of geodesic equations assure the same results in
Weyl frame.



Simple cosmological model

Robertson-Walker metric

2
1 — kr?

ds? = —dt? + A?(t) < +r?do? + rzsin2«9d¢2) . (29)

Fields equations in the Riemann frame

A2 4 k

w .
37 = rTu(y) + §¢2, (30)
2AA + A2 + k W -
e = —kTj(v) = §¢271j7 (31)
' i} A.
é=—324 (32)

A



For vacumm and k = 0,

2 A
with solution )
A(t) = Ao(3Hoi‘ + 1)5, (34)
| 2
¢i(t) = (;50:|: 37w|n(3H0t+1)7 (35)

where w > 0, Ag and ¢g are integration constants and Hy is the
Hubble's parameter.



Applying the Weyl transformations, the solutions in the Weyl
frame are obtained.

(6w, +3)+2v6w
- 1++6 6v/6w+3(6w+1)
Ap(r) = Age?/? {3Hoe_¢°/2f6w “rtl

2 1+ 6w
_ s —¢o/2 - = V¥
qbi(r) b0 + T 6, In {3/‘/06 \/67&) T+1},

where 7 is the proper time in the Weyl frame.

(36)

(37)



Field equations for the RW metric in Weyl frame

A2 A, 1/3 o .k
A2 —3j¢ +2<2—w>¢ +3E_KT’TT7 (38)
A// A/2 k A/ 1 1
2ot s = 2= 5 (w+2> ¢’2—¢”] gj = —rTj,
(39)
/2\/
_¢// - 3T¢/ + ¢/2 — 0’ (40)

A
For vacuum and k = 0:

1 3 3
2 — (5w —=2 /2_7//. 41
. SHCSH L (a1)



Comparing with the solutions of Brans-Dicke theory in the
metric formalism

Vacuum solution, with V/(¢) = 0 is the O'Hanlon-Tupper solution

£\ 9~
A(t) = A (to) : (42)
t\°F
o0 =cn () (43)
0
where
1 2w+ 3
qi:3w+4 w+1+ 3 , (44)
17,320 +3)
o= 3w+ 4 ’ (45)

with w > —3/2, w #0,—4/3 and 3¢ + s = 1.



Solution has as a valid range w > 0.
AL (7) and & = e ? tend to a constant value as 7 — 0.
When w — 400, AL(7) o< 753 and &4 = const. This

solution does not reproduce the corresponding general
relativistic solution which is Minkowsky space.

At early times, ¢ decreases as 7 increases for w > 0, which
implies an increasing Gesr.



» O'Hanlon-Tupper solution for w = —4/3 approaches the de

Sitter space
A(t) = Aoth7 (46)

O(t) = boe 3. (47)

The present theory reproduces this result for A_ in the limit
w=1/6.
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