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Basic features of Einstein’s gravity that make it a
geometrical theory

I The assumption that gravity is not an ordinary force, but
rather a property of space-time geometry.

This is followed by two postulates:

I The principle of equivalence, which in mathematical terms
corresponds to the so-called geodesic postulate.

I The field equations that determine how matter curves
space-time.

In the words of American physicist John Wheeler, ”space tells
matter how to move, and matter tells space how to curve”



However, as we know, these requirements do not determine a
unique theory of gravity. Many other theories share the same
features.

I One example is Brans-Dicke scalar-tensor theory.



Brans-Dicke action

The action in the so-called Jordan frame is

S (BD) =
1

16π

∫
d4x
√
−g
[
φR +

ω

φ
φ,νφ

,ν − V (φ)

]
+ Sm, (1)

where

Sm =

∫
d4x
√
−gLm. (2)

BD scalar field is interpreted as

Geff (φ) =
1

φ
. (3)



Palatini formalism

I Consider the metric and the connection as independent
variables.
The Riemann and the Ricci tensor are constructed with the
independent connnection.

I Assume that matter action does not depend on the
connection.



Field equations

BD action [Brans-Dicke,1961]

SG =

∫
d4x
√
−g(ΦR +

ω

Φ
Φ,αΦ,α). (4)

Performing the variable transformation

Φ = e−φ, (5)

we have

SG =

∫
d4x
√
−ge−φ(R + ωφ,αφ,α). (6)



Variation with respect to the independent connection

Compatibility condition between the metric and the connection

∇αgµν = −φ,αgµν . (7)

It is associated to Weyl integrable geometry.

I Extended Palatini variational method: consider variation of
the action also with respect to the scalar field.



Weyl’s integrable geometry

I The geometry conceived by Weyl can be considered as a
simple generalization of the Riemann geometry.

I Instead Riemannian compatibility condition

∇αgµν = 0, (8)

we consider
∇αgµν = σαgµν , (9)

with σα a one-form field.

I If σ = dφ, φ scalar field, we have an integrable Weyl
geometry.

I From (9), the components of the affine conection

Γαµν =
{
α
µν

}
− 1

2
gαβ (gβµφ,µ + gβνφµ − gµνφβ) (10)



I The set (M, g , φ) is called Weyl frame.

I The particular case (M, ḡ , 0) is named Riemann frame.

I Performing the transformations

ḡµν = e−f gµν , (11)

φ̄ = φ− f ,

the new frame (M, ḡ , φ̄) is reached.

I The geodesic equations remain invariant under Weyl
transformations.

I It is always possible to get a Riemannian frame by choosing
f = φ.



Matter action

Brans-Dicke matter action in Palatini formalism

Sm =

∫
d4x
√
−gLm, (12)

I does not couple to the scalar field,

I does not satisfy the Weak Principle of Equivalence.



Rewriting the compatibility condition

∇α(eφgµν) = 0. (13)

Effective metric is defined

γµν = eφgµν . (14)

We assume minimal coupling to the effective metric,

Sm = κ

∫
d4x
√
−γLm(γµν ,Ψ,∇(γ)Ψ) (15)

= κ

∫
d4x
√
−ge−2φLm(e−φgµν ,Ψ,∇(e−φg)Ψ).



Field equations for the metric g

Rµν −
1

2
gµνR = −κTµν − ω(φ,µφ,ν −

1

2
gµνφ

,αφ,α), (16)

where

Tµν =
1√
−γ

δ(
√
−γLm)

δγµν
, (17)

and
δSm

δgµν
δgµν =

∫
d4x
√
−ge−φTµνδgµν , (18)



Field equation for φ

R + 3ωφ,αφ,α + 2ω�φ = κT , (19)

where T = gµνTµν and

δSm

δφ
δφ = −

∫
d4x
√
−ge−φT δφ. (20)

The trace of (16) with respect to gµν

R + ωφ,αφ,α = κT , (21)

in (19) leads to
�φ+ φ,αφ,α = 0. (22)



Riemann frame picture

Weyl transformation with f = φ leads to (M, γ = eφg , 0).
The transformed BD action

S =

∫
d4x
√
−γ(R̃ + ωφ,αφ,α) + Sm(γ,Ψ,∇γΨ), (23)

and field equations

R̃µν −
1

2
γµνR̃ = −κTµν(γ)− ω(φ,µφ,ν −

1

2
γµνφ

,αφ,α), (24)

�̃φ = 0. (25)

With ϕ =
√

2ωφ, field equations for Einstein’s theory of gravity
minimally coupled with a massless scalar field are obtained.



Field equations solution

The static, spherically symmetric and asymptotically flat solution
(Fisher, 1948)

ds2 = W (r)Sdt2 −W (r)−Sdr2 − r2W (r)1−SdΩ, (26)

φ =
1√
2ω

Σ

η
ln |W (r)| (27)

W (r) = 1− r0
r

(28)

where S = M
η , r0 = 2η, η =

√
M2 + Σ2 and M > 0 is the body’s

mass in the center of coordinates.



The post-Newtonian approximation

I Fisher space-time predicts the same effects on solar-system
experiments as the Schwarzschild one does.[J. B. Formiga,
2011]

I Invariance of geodesic equations assure the same results in
Weyl frame.



Simple cosmological model

Robertson-Walker metric

ds2 = −dt2 + A2(t)

(
dr2

1− kr2
+ r2dθ2 + r2sin2θdψ2

)
. (29)

Fields equations in the Riemann frame

3
Ȧ2 + k

A2
= κTtt(γ) +

ω

2
φ̇2, (30)

2AÄ + Ȧ2 + k

A2
γjj = −κTjj (γ)− ω

2
φ̇2γjj , (31)

,

φ̈ = −3
Ȧ

A
φ̇. (32)



For vacumm and k = 0,

2
Ȧ2

A2
= − Ä

A
, (33)

with solution
A(t) = A0(3H0t + 1)

1
3 , (34)

φ±(t) = φ0 ±
√

2

3ω
ln(3H0t + 1), (35)

where ω > 0, A0 and φ0 are integration constants and H0 is the
Hubble’s parameter.



Applying the Weyl transformations, the solutions in the Weyl
frame are obtained.

Ã±(τ) = A0e
φ0/2

{
3H0e

−φ0/2 1±
√

6ω√
6ω

τ + 1

} (6ω,+3)±2
√

6ω

6
√
6ω±3(6ω+1)

(36)

φ±(τ) = φ0 +
2√

1± 6ω
ln

{
3H0e

−φ0/2 1±
√

6ω√
6ω

τ + 1

}
, (37)

where τ is the proper time in the Weyl frame.



Field equations for the RW metric in Weyl frame

3
Ã′2

Ã2
− 3

Ã′

Ã
φ′ +

1

2

(
3

2
− ω

)
φ′2 + 3

k

Ã2
= κTττ , (38)[

2
Ã′′

Ã
+

Ã′2

Ã2
+

k

Ã2
− 2

Ã′

Ã
φ′ +

1

2

(
ω +

1

2

)
φ′2 − φ′′

]
gjj = −κTjj ,

(39)

−φ′′ − 3
Ã′

Ã
φ′ + φ′2 = 0, (40)

For vacuum and k = 0:

3

2

Ã′2

Ã2
− 3

Ã′′

Ã
=

1

4

(
5ω − 3

2

)
φ′2 − 3

2
φ′′. (41)



Comparing with the solutions of Brans-Dicke theory in the
metric formalism

Vacuum solution, with V (φ) = 0 is the O’Hanlon-Tupper solution

A(t) = A0

(
t

t0

)q±
, (42)

φ(t) = φ0

(
t

t0

)s∓
, (43)

where

q± =
1

3ω + 4

[
ω + 1±

√
2ω + 3

3

]
, (44)

s∓ =
1∓

√
3(2ω + 3)

3ω + 4
, (45)

with ω > −3/2, ω 6= 0,−4/3 and 3q + s = 1.



I Solution has as a valid range ω > 0.

I Ã±(τ) and Φ± = e−φ tend to a constant value as τ → 0.

I When ω → +∞, Ã±(τ) ∝ τ±1/3 and Φ± = const. This
solution does not reproduce the corresponding general
relativistic solution which is Minkowsky space.

I At early times, Φ decreases as τ increases for ω > 0, which
implies an increasing Geff .



I O’Hanlon-Tupper solution for ω = −4/3 approaches the de
Sitter space

A(t) = A0e
Ht , (46)

Φ(t) = Φ0e
−3Ht . (47)

The present theory reproduces this result for Ã− in the limit
ω = 1/6.
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