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Introduction

What is the GSG?

Paper by M. Novello, E. Bittencourt, U. Moschella, et al. (2013).

• The gravitational interaction is described by a scalar field
Φ;

• The field Φ satisfies a nonlinear dynamics;
• The theory satisfies the principle of general covariance. In

other words this is not a theory restricted to the realm of
special relativity;

• All kind of matter and energy interact with Φ only through
the pseudo-Riemannian metric qµν = a ηµν + b ∂µΦ ∂νΦ;
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• Test particles follow geodesics relative to the gravitational
metric qµν ;

• Φ is related in a nontrivial way with the Newtonian potential
ΦN ;

• Electromagnetic waves propagate along null geodesics
relative to the metric qµν .
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They have introduced the contravariant metric tensor qµν by the
binomial formula

qµν = αηµν +
β

w
ηµρηνσ∂ρΦ ∂σΦ, (1)

where parameters α and β are dimensionless functions of Φ
and w = ηµν∂µφ∂νφ. The corresponding covariant expression,
defined as the inverse qµν qνλ = δλµ, is also a binomial
expression:

qµν =
1
α
ηµν −

β

α (α + β) w
∂µΦ ∂νΦ. (2)
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The relation between the parameters α and β is given by the
following:

Theorem
Given the Lagrangian L = V (Φ)w with an arbitrary potential
V (Φ), the field theory satisfying equation

1√
−η

∂µ(
√
−η ηµν∂νΦ) +

1
2

V ′

V
w = 0 (3)

in Minkowski spacetime is equivalent to a massless
Klein-Gordon field �Φ = 0 in the metric qµν provided that the
functions α(Φ) and β(Φ) satisfy the condition

α + β = α3 V . (4)
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Thereby one might choose to work either with this
correspondence or directly consider a field theory describe by
the action

S =

∫
(∂φ)2√−q dx . (5)

At last the potential V (Φ) is obtained when analysing the
planetary orbits from GSG, given

V (Φ) =
1
4

(α− 3)2

α3 , (6)

where α(Φ) = e−2Φ.
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The constrains are then reviewed to match with the observed
regime for the solar tests and astonishingly reveal the same line
element as described by the Schwarzschild metric.
Following the steps of general relativity, the dynamic equation
of GSG could be written as

√
V �Φ = −κχ, (7)

where

χ =
1
2

(
α′

2α
(T − E) +

(α + β)′

2(α + β)
E −∇λ Cλ

)
,

and we have defined

T = Tµν qµν , E =
Tµν ∂µΦ ∂νΦ

Ω
, Ω = ∂µ∂νΦqµν , X ′ =

dX
dΦ

,

and
Cλ =

β

αΩ

(
E qλµ − T λµ

)
∂µΦ.
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Spherically symmetric metric of GSG

Let us define the auxiliary Minkowski background metric in
spherical coordinates

ds2
M = dt2 − dR2 − R2 dΩ2. (8)

Changing the radial coordinate to R =
√
α r , where α = α(r) we

get

ds2
M = dt2 − α

(
1

2α
dα
dr

r + 1
)2

dr2 − αr2 dΩ2. (9)
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The gravitational metric (2) takes the form

ds2 =
1
α

dt2 − B dr2 − r2 dΩ2, (10)

where we have defined

B ≡ α

α + β

(
1

2α
dα
dr

r + 1
)2

,

which can be rewritten accordingly with the form for the
potential V (Φ) in equation (6) as

B =
4α

(α− 3)2

(
1

2α
dα
dr

r + 1
)2

.
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If we choose a class of comoving observers as Vµ = 1/
√
α δ0

µ

the equation of motion (7) gives

√
V �Φ = −κ

[
3− 2α
3− α

p − ρ

2

]
(11)

The projector tensor upon the three-space is

hµν = qµν − VµVν . (12)
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Then the projection on the three-space of the conservation
equation of the energy-momentum tensor Tµν for a perfect
fluid, gives

Tµν
;ν hµα = 0

⇒ dp
dr

= −(ρ+ p)
dφ
dr
. (13)
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Equations (11), (13) and equation of state p = p(ρ) complete
the set necessary to find general spherically symmetric
solutions on GSG. It would be usefull to rewritten these
equations in another form. Let us define the parameter α as
function of µ(r):

α(r) =

(
1− 2µ(r)

r

)−1

, (14)

which gives us the following

B = αΣ2, (15)

Σ =

(
1− 3µ

r

)−1(
µ′ − 3µ

r
+ 1
)
, (16)
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V =
(1− rΦ′)2

α3 Σ2 , (17)

Φ =
1
2

ln
(

1− 2µ
r

)
⇒ Φ′ =

α

r2

(
µ− rµ′

)
. (18)

Then we have for the equation of motion (11)√
(1− rΦ′)2

α3 Σ2
1

Σr2

(
r2Φ′

αΣ

)′
= k

(
ρ

2
− 3− 2α

3− α
p
)
. (19)
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Newtonian stars

A Newtonian star is characterized by negligible isotropic
pressure p in comparison with the energy density ρ and the
surround geometry represented by a Minkowski’s metric,
means

p << ρ;

α → 1 and B → 1;

⇒ Σ2 → 1;

⇒ V → 1.
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At this point equation (11) establishs

df (r)

dr
=

k
2
ρr2, (20)

where the function f (r) is define as f (r) ≡ r2 dΦ
dr .

Differently from general relativity equation (20) is valid only for
some solutions of GSG. A distribution of matter which obey this
equation is a particular case or, perhaps, a class of solutions,
therefore there is not generality on it.
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Using this auxiliary function equation (13) sets

dp
dr

= −ρ f (r)

r2 , (21)

which is kind the Chandrasekhar equation for hydrostatic. Note
that f(r) is not the gravitational mass unless we are in the low
energy regime.
Later we will explore a little more of this constraint and prove
that is not imposed by hand but a natural consequence of GSG.
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The Tolman-Oppenheimer-Volkoff equation on GSG

Once again we will rewrite equation (19) now using the
auxiliary function f (r)

f
d
dr

ln
[
f
(

1− f
r

)(
1− 3µ

r

)]
=

= −(−1)n k
r2

2

(
1− 3µ

r

)−4(
1− 2µ

r

)1/2
[

[(
1− 6µ

r

)
p −

(
1− 3µ

r

)
ρ

]
,

(22)

where n = 1 if 2µ < r < 3µ and n = 2 if r > 3µ.
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We can write the equations (22) and (13) in even more
convenient way. In do it so we have the three equations of the
dynamical system responsible for describing the spherically
symmetric solution of a perfect fluid on GSG:

(
1− 3

2
σ

){[
1
2
σ′′r2 + σ′r +

1
2
σ′

2r2 (1− σ)−1
]
−

−1
4
σ′

2r2
(

1− σ +
1
2
σ′r
)}

+
3
4
σ′

2r2 =

−(−1)nk
r2

2

(
1− 3

2
σ

)−3

(1− σ)3/2

[
[

(1− 3σ) p −
(

1− 3
2
σ

)
ρ

]
,

(23)
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dp
dr

=
1
2

(ρ+ p)(1− σ)−1 dσ
dr

, (24)

p = p(ρ), (25)

where σ is defined as σ(r) ≡ 2µ/r .
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On the other hand, we have the set of equations from general
relativity:

dσ
dr

= rρ− σ

r
, (26)

dp
dr

= −(ρ+ p)(1− σ)−1
(

pr +
σ

2r

)
, (27)

p = p(ρ). (28)

Where the equation (27) is the original TOV equation.
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Taking equation (24) in order to write σ′ and σ′′ as functions of
p and ρ we obtain a new formulation for eq. (23)

2
r

1
ρ+ p

dp
dr

+ (1− σ)

(
1

ρ+ p
dp
dr

)2 [
[

2(1− σ)−1 − (1− σ)

(
1 +

r
ρ+ p

dp
dr

)
+ 3

(
1− 3

2
σ

)−1
]

+

+

[(
1

ρ+ p
dp
dr

)′
− 2

(
1

ρ+ p
dp
dr

)2
]

=

−(−1)n k
2

(
1− 3

2
σ

)−4

(1− σ)1/2

[
[

(1− 3σ) p −
(

1− 3
2
σ

)
ρ

]
,

(29)
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The empty space

Let us go back to the equation (11):

√
V �Φ = −κ

[
3− 2α
3− α

p − ρ

2

]
.

If we want to calculate the solution for empty space, we must
have p = ρ = 0, which implies �Φ = 0. The solution is

ε
√
α +

1
α

+
a
r

= 1, (30)

where ε and a are constants.
Defining x ≡

√
α we have

x2
[
εx +

a
r
− 1
]

= −1. (31)
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Since x must be positive otherwise the metric will change
signature, we work with two inequalities

1
ε

(a
r
− 1
)
< 0; (32)

x <
1
ε

(
1− a

r

)
. (33)
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After exhaustive analysis, we find two possible solutions

(I) If a < 0 and ε = 0⇒ 0 < r < +∞ ⇒ α(r) =
(

1− a
r

)−1
;

(II) If a > 0 and ε = 0⇒ a < r < +∞ ⇒ α(r) =
(

1− a
r

)−1
.

Imposing the Newtonian regime when r → +∞, we have
a = 2MG.
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Then the (II) solution is the only one possible and corresponds
to the Schwarzschild metric

ds2 =

(
1− 2MG

r

)
dt2−

(
1− 2MG

r

)−1

dr2−r2(dθ2+sin2 θdφ2).

Birkhoff’s theorem holds for GSG.
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At last the interpretation for the function f (r) = r2dΦ/dr .
In the empty space f (r) is written as

f (r) = GM
(

1− 2GM
r

)−1

. (34)

For the Newtonian limit r → +∞, f → GM.

We have then the completeness of Chandrasekhar’s equation
(35)

dp
dr

= −ρGM
r2 , (35)

as expectated.
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Conclusions

What is next?
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Merci!
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