Inflation after the Planck and other recent
observational data

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS,
Moscow, Russia

Spontaneous Workshop on Cosmology VII
"Hot topics in Modern Cosmology”

IESC Cargese - France, 07.05.2013



Inflationary spectral predictions and observations
f(R) gravity and R + R? inflationary model

Relation to the Higgs inflation in scalar-tensor gravity
Generality of inflation in the most favoured models

Conclusions



Spectral predictions of the one-field inflationary

scenario in GR

One minimally coupled scalar field with a potential V().
Slow-roll regime:

M_ 2 ~ 8rGV(9)
3H 3 '
. Scalar (adiabatic) perturbations:
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where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation

for each spatial Fourier mode k = a(t,)H(t,).
The spectral slope
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Tensor perturbations (gravitational waves) (AS, 1979):

2 7\ 2
by = WO (g dPelk) 1 (vk)

(== T e V.

The consistency relation:

Tensor perturbations are always suppressed by at least the
factor ~ 8/N compared to scalar ones where N = (50 — 60) is
the number of e-folds between the first Hubble radius crossing
during inflation of the present Hubble scale and the end of
inflation.



Combined results from Planck and other

experiments
P. A. R. Ade et al., arXiv:1303.5082
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Table 4. Constraints on the primordial perturbation parame!ers in the ACDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k. = 0.002 Mpc™".
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Fig. 1. Marginalized joint 68% and 95% CL regions for 1, and 10 from Planck in combination with other data sets compared to
the ictions of selected inflati models.




Remaining models

. Disfavoured at 95% and more CL.

1. Scale-free (or, the Harrison-Zeldovich) spectrum n; = 1.
2. Power-law inflation (exponential V/(¢)).
3. Power-law V/(¢) o< ¢" with n > 2.

Il. Lying between 68% and 95% CL.

1. Other monomial potentials.

2. New inflation (or, the hill-top model with
V(g) = Vo — 25°).

3. Natural inflation.



l1Il. Most favoured: models with n, — 1 = £ ~ 0.04 and

r < 8|ns — 1.

1. R+ R? model (AS, 1980).

2. A scalar field model with V(¢) = 200 at large ¢ and strong
non-minimal coupling to gravity fR(bz Wlth £<0, [£]>1,
including the Higgs inflationary model.

3. Minimally coupled (GR) models with a very flat V/(¢): if
ns—1= % and r < 8|ns, — 1| for all V, then:

V(o) = Vo + Viexp(—akrg), kK = V8rG

with < not very small.

All these models have r ~ 1O/N2 namely r = 35 ~ 0.4% for
the models 1 and 2, and r = 2/v2 for the third modeI



f(R) gravity

The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.
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- 167G

/ f(R)y/—g d*x + Sm
f(R)=R+F(R), R=R\.

One-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) m, ~ const.



Field equations
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where G = Gy = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

1 ) i .
87GT,, pgy = F'(R) R;;—§ F(R)o;;+(v,,,v" — o,’;va,V/) F'(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

Rf'(R) = 2£(R) .



Degrees of freedom

[. In quantum language: particle content.

1. Graviton — spin 2, massless, transverse traceless.

2. Scalaron — spin 0, massive, mass - R-dependent:

m2(R) = 3f+(R) in the WKB-regime.

[I. Equivalently, in classical language: number of free functions
of spatial coordinates at an initial Cauchy hypersurface.

Six, instead of four for GR — two additional functions describe
massive scalar waves.

Thus, 7(R) gravity is a non-perturbative generalization of GR.
It is equivalent to scalar-tensor gravity with wgp = 0 (if

F(R) % 0).



Background FRW equations in f(R) gravity

ds® = dt* — a°(t) (dx® + dy® + dz°)

H R = 6(H + 2H?)

U | W

The trace equation (4th order)
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The 0-0 equation (3d order)
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Most favoured inflationary models in (R) gravity
1. The simplest one (Starobinsky, 1980):

with small one-loop quantum gravitational corrections
producing the scalaron decay via the effect of
particle-antiparticle creation by gravitational field (so all
present matter is created in this way). _

During inflation (H > M): H = (¢, —t), |H| < H?,

The only parameter M is fixed by observations — by the
primordial amplitude of adiabatic (density) perturbations in
the gravitationally clustered matter component:

M = 3.0 x 1076MP/ (50//\/) ,
where N ~ (50 — 55), Mp; = /G ~ 10 GeV.
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2. Generic f(R) inflationary model having n, =1 — % r ~ 15.
For large R,
R? 2-a/3/2
F(R) = REoV
Ry =gzt €

. Less natural, has one more free parameter, but still possible.



One viable microphysical model leading to such
form of f(R)

A non-minimally coupled scalar field with a large negative
coupling & (for this choice of signs, £.onr = %):

R _€R¢2+1
- 167G 2 2

¢ — V(p), £<0, []>1.

Leads to ' > 1.
Recent development: the Higgs inflationary model

(F. Bezrukov and M. Shaposhnikov, 2008). In the limit

2 2)2
& > 1, the Higgs scalar tree level potential V(¢) = M
just produces f(R) = 1o (R + {5, ) with M? = \/24767G

and ¢* = |£|R/\ (for this model, |£|Gg3 < 1).



SM loop corrections to the tree potential leads to A = A(¢),
then the same expression for f(R) follows with

> A¢(R)) dIn A(¢(R))
M _m<1+o<w> >

The approximate shift invariance ¢ — ¢ + ¢, ¢ = const
permitting slow-roll inflation for a minimally coupled inflaton
scalar field transforms here to the approximate scale
(dilatation) invariance

¢ — cp, R— c*R, x* — x"/c, n=0,..3

in the physical (Jordan) frame. Of course, this symmetry
needs not be fundamental, i.e. existing in some more
microscopic model at the level of its action.



Generality of inflation

Theorem. In these models, there exists an open set of classical
solutions with a non-zero measure in the space of initial
conditions at curvatures much exceeding those during inflation
which have a metastable inflationary stage with a given
number of e-folds.

For the GR inflationary model this follows from the generic
late-time asymptotic solution for GR with a cosmological
constant found in A. A. Starobinsky, JETP Lett. 37, 55
(1983). For the R + R? model, this was proved in

A. A. Starobinsky and H.-J. Schmidt, Class. Quant. 4, 695
(1987).
Generic initial conditions near a curvature singularity in these
models: anisotropic, inhomogeneous (though
quasi-homogeneous locally), with R? < R,5R*" in the R + R?
model and with negligible potential in the GR model with a
very flat potential. Spatial gradients may become important
for some period before the becinnine of inflation.



Conclusions

>

There exists a class of inflationary models having
ns—1= % and r ~ % which is most favoured by the
Planck and other recent observational data.

This class includes the one-parametric pioneer R + R?
and Higgs inflationary models in modified (scalar-tensor)
gravity, and more general two-parametric models

including a GR model with a very flat inflaton potential.

» Inflation is generic in this models.
» Non-Gaussianity of primordial perturbations is small, as in

all one-field slow-roll inflationary models.

The most critical observational test for these models is
small, but not too small value of r.

Non-perturbative effects due to stochastic evolution in
the regime of large perturbations ("eternal inflation”) in
these models are larger than in monomial inflationary
models, but have not been correctly calculated yet.
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