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One of the main motivations to consider theories with massive
gravitons – to explain the cosmic acceleration. If gravitons are
massive with

m ∼ 1/size of the universe

then at very large distances the gravity is screened

Newton→ Yukawa

gravitational attraction is weaker ⇒ expansion is faster.
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Ghost-free bigravity

/Hassan,Rosen 2011/



The ghost-free bigravity

S =
1

2κ2g

∫

R
√−g d4x +

1

2κ2f

∫

R
√
−f d4x − m2

κ2

∫

U√−g d4x

+ Sm[g , g-matter] + Sm[f , f-matter] ,

κg = κ cos η, κf = κ sin η, γµν =
√

gµαfαν

U =
∑

k

bkUk = b0 + b1
∑

A

λA + b2
∑

A<B

λAλB

+ b3
∑

A<B<C

λAλBλC + b4 λ0λ1λ2λ3

g ↔ f , λA ↔
1

λA

,
∑

k

bk Uk
√−g ↔

∑

k

b4−k Uk
√
−f

Flat space is the solution and m is the FP mass if only
b0 = 4c3 + c4 − 6, b1 = 3− 3c3 − c4, b2 = 2c3 + c4 − 1,
b3 = −(c3 + c4), b4 = c4. Propagates 7 degrees of freedom



Field equations

G
ρ
λ = m2cos2 η T ρ

λ + T
[m] ρ

λ , Gρλ = m2sin2 η T ρ
λ + T [m] ρ

λ ,

T
ρ
λ = τρλ − δρλ U , T ρ

λ = −
√−g√
−f

τρλ ,

τρλ = {b1 U0 + b2 U1 + b3 U2 + b4 U3}γµν
− {b2 U0 + b3 U1 + b4 U2}(γ2)µν
+ {b3 U0 + b4 U1}(γ3)µν
− b4 U0 (γ4)µν

(g)

∇µT
µ
ν = 0 ⇒

(f )

∇µT µ
ν = 0

Massive gravity for η → 0 if fµν becomes flat.

gµν = fµν = ηµν → gµν = ηµν + δgµν , fµν = ηµν + δfµν ,

h(mass)
µν = cos ηδgµν + sin ηδfµν , h(0)µν = cos ηδfµν − sin ηδgµν



Relation to higher derivative gravity

One can use the g-equations G ρ
λ = m2cos2 ηT ρ

λ to express fµν in
terms of gµν and Gµν . Inserting back to the action gives

S = c0

∫ {

R + 2Λ +
c2

m2
(RµνR

µν − 1

3
R2) +O(m−4)

}√−gd4x

Truncating the higher order terms gives the R2 gravity of Stelle,
which propagates 2 + 5 DoF of which 5 are ghostlike.

Keeping the whole series gives 2 + 5 healthy DoF.

/Hassan et al ’12/



Proportional backgrounds



fµν = C 2gµν ⇒ γµ
ν = Cδµν

G
ρ
λ + Λg (C )δρλ = T

[m]ρ
λ , Gρλ + Λf (C )δρλ = T [m] ρ

λ .

Λg (C ) = m2 cos2 η
(

b0 + 3b1 C + 3b2 C
2 + b3 C

3
)

,

Λf (C ) = m2 sin
2 η

C 3

(

b1 + 3b2C + 3b3C
2 + b4C

3
)

.

Gνµ = G ν
µ/C

2 ⇒ Λf = Λg/C
2 , T [m]µ

ν = T
[m]µ

ν /C 2 (fine tuning)

0 = C 4 + A3C
3 + A2C

2 + C1C + A0

4 solutions C = {Ck}, 4 values Λg (Ck). C = 1 ⇒ Λg = 0 ⇒ GR.
Λg > 0 – self acceleration. No massive gravity limit.



FLRW cosmologies with non-bidiagonal metrics

(exist both in bigravity and massive gravity)

Koyama, Niz, Tasinato ’11
Chamseddine and M.S.V. ’11

D’Amico et al. ’11
Gumrukcuoglu, Lin, Mukohyama 2011

M.S.V. ’11
Gratia, Hu, Wyman 2012

Kobayashi et al 2012
M.S.V. ’12



Spherical symmetry

ds2g = −Q2dt2 + N2dr2 + R2dΩ2

ds2f = −(aQdt + cNdr)2 + (cQdt − bNdr)2 + u2R2dΩ2 ,

Q,N,R , a, b, c , u depend on t, r ,

γµν =
√

gµαfαν =









a cN/Q 0 0
−cQ/N b 0 0

0 0 u 0
0 0 0 u









,

eigenvalues

λ0,1 =
1

2

(

a + b ±
√

(a − b)2 − 4c2
)

, λ2 = λ3 = u.



No radial flux condition

U1 = a + b + 2u, U2 = u(u + 2a + 2b) + ab + c2 ,

U3 = u (au + bu + 2ab + 2c2), U4 = u2(ab + c2).

⇒ one gets Tµ
ν and T µ

ν ;

T 0
r =

cN

Q
[b1 + 2b2u + b3u

2] = 0 ⇒ u =
1

b3

(

−b2 ±
√

b22 − b1b3

)

T 0
0 = T r

r = const., T 0
0 = T r

r = const. ⇒

(g)

∇µ Tµ
ν ∼ T r

r − T θ
θ = (b2 + b3u)[(u − a)(u − b) + c2] = 0,

if this is fulfilled ⇒ Tµ
ν = const.× δµν , T µ

ν = const.× δµν



Equations

(A) Gµ
ν + Λgδ

µ
ν = T [m]µ

ν

(B) Gµν + Λf δ
µ
ν = T [m]µ

ν

(C ) (b2 + b3u)[(u − a)(u − b) + c2] = 0

with the Lambda-terms

Λg = m2 cos2 η (b0 + 2b1u + b2u
2),

Λf = m2 sin2 η
b2 + 2b3u + b4u

2

u2
.

T [m]µ
ν = diag[−ρ(t),P(t),P(t),P(t)], T [m]µ

ν = 0.

Equations (A) decouple from (B), up to the constraint (C ).
Many people observed (A)+ (B).



(A)+ (B)

ds2g = −dt2 + a2(t)

(

dr2

1− kr2
+ r2dΩ2

)

,

ds2f = −∆(U) dT 2 +
dU2

∆(U)
+ U2dΩ2 . (⋆)

where

ȧ2 − a2

3
(Λ + ρ) = −k , ∆(U) = 1− Λf

3
U2

One has dT = Ṫ dt + T ′dr , dU = U̇dt + U ′dr . Inserting to (⋆)
and comparing with

ds2f = −(aQdt + cNdr)2 + (cQdt − bNdr)2 + u2R2dΩ2 .

gives U(t, r) = u a(t) r and a, b, c in terms of Ṫ , U̇, T ′, U ′.



(C)

Inserting a, b, c into the constraint [(u − a)(u − b) + c2] = 0 gives

a
√

1− kr2 (U̇T ′ − ṪU ′)− u2a2 + ua

√

A+A−
∆

= 0 (†)

A± = a (∆Ṫ ± U̇) +
√
1− kr2(U ′ ±∆T ′), ∆ = 1− Λf

3 U2,
U = ura. Exact solutions of (†) are found in the massive gravity
limit, when η = Λf = 0, ∆ = 1,

k = 0 : T (t, r) = q

∫ t dt

ȧ
+

(

u2

4q
+ Cr2

)

a ,

k = ±1 : T (t, r) =
√

q2 + ku2
∫ t

√

ȧ2 + k dt + qa
√

1− kr2

⇒ T (t, r),U(t, r) are found, constraint is fulfilled. One obtains
two parameter family of solutions labeled by q, k , it contains all
known FLRW cosmologies in the massive gravity theory



Properties of the solutions

For each spatial type (k = 0,±1) solutions comprise a
one-parameter family labeled by q.

g-metric is FLRW.Matter-dominated at early times,
Λ-dominated at late time ⇒ self-acceleration.

f-metric is AdS. When η → 0, Λf ∼ sin2η → 0 ⇒ fµν is flat,
massive gravity is recovered.

Are sometimes called ‘inhomogeneous’, since the fluctuations
are expected to contain a non-FLRW part proportional to m2.

If k = −1 and q = u then T = ua(t)
√
1 + r2, also U = ua(t)r ⇒

f-metric is diagonal both in the T ,U and t, r coordinates,

ds2f = −dT 2+dU2+U2dΩ2 = u2a2
(

− ȧ2

a2
dt2 +

dr2

1 + r2
+ r2dΩ2

)

,

/Gumrukcuoglu, Lin, Mukohyama ’11/



FLRW cosmologies with diagonal metrics

M.S.V. ’11
von Strauss et al. ’11
Cristosomi et al. ’11



Diagonal metrics

ds2g = −dt2 + e2Ω
(

dr2

1− kr2
+ r2dΩ2

)

, k = 0,±1

ds2f = −A2dt2 + e2W
(

dr2

1− kr2
+ r2dΩ2

)

.

Equations (here Λg (ξ),Λf (ξ) are polynomials in ξ = eW−Ω)

Ω̇2 =
Λg (ξ) + ρg

3
−k

4
e−2Ω ,

Ẇ2

A2
=

Λf (ξ) + ρf
3

−k

4
e−2W , (•)

and the conservation condition
[

(

eW
)· −A

(

eΩ
)·](

b1 + 2b2ξ + b3ξ
2
)

= 0.



Generic solutions

[

(

eW
)· −A

(

eΩ
)·]

= 0 ⇒ Ẇξ = Ω̇A ⇒

equations reduce to a Friedmann equation

ȧ2 +U(a) = −k

where a = 2eΩ and U(a) is determined by roots of an algebraic
equations. There are several roots ⇒ several types of U(a), and
several different type of solutions.



Physical and exotic cosmologies
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physical: ρ≫ m2T 0
0 for small a, ρ≪ m2T 0

0 for large a

exotic: ρ≪ m2T 0
0 for any a.

fµν is not flat for η → 0 ⇒ no massive gravity limit

Solutions are stable



Special solutions

b1 + 2b2ξ + b3ξ
2 = 0 ⇒ ξ = eW−Ω = const.

a = 2eΩ fulfills

ȧ2 − (a2/3)(Λg (ξ) + ρg ) = −k

⇒ cosmology with constant Λg (ξ), also

A2 = −f00 =
(Λg + ρg )a

2 − 3k

(Λf + ρf )a2 − 3k/ξ2

Admits the massive gravity limit η,Λf , ρf → 0 for k = −1 (open
universe) /Gumrukcuoglu, Lin, Mukohyama ’11/



Anisotropic cosmologies with diagonal metrics

Kei-ichi Maeda, M.S.V. arXiv:1302.6198



Bianchi class A types

ds2g = −α(t)2dt2 + hab(t)ω
a ⊗ ωb,

ds2f = −A2(t)dt2 +Hab(t)ω
a ⊗ ωb .

[ea, eb] = C c
abec , C c

ab = ncdǫdab, nab = diag[n(1), n(2), n(3)]

I II VI0 VII0 VIII IX

n(1) 0 1 1 1 1 1

n(2) 0 0 −1 1 1 1

n(3) 0 0 0 0 −1 1

If hab,Hab are diagonal ⇒ G 0
r = G0r = 0 ⇒ no radial fluxes.

hab = diag[α 2
1 , α

2
2 , α

2
3 ], Hab = diag[A 2

1 ,A 2
2 ,A 2

3 ].



Equations

ds2g = −α2dt2 + dl2g , ds2f = −Adt2 + dl2f

dl2g = e2Ω
(

e2β++2
√
3β

−(ω1)2 + e2β+−2
√
3β

−(ω2)2 + e−4β+(ω3)2
)

dl2f = e2W
(

e2B++2
√
3B

−(ω1)2 + e2B+−2
√
3B

−(ω2)2 + e−4B+(ω3)2
)

In the Bianchi I case ωa = dxa.

Second order equations for Ω, W, β±, B± and also 3 first order
constraints from G 0

0 = T 0
0 , G00 = T 0

0 and the conservation of Tµ
ν .



Equal anisotropies

Bianchi I, fµν = C 2gµν

ds2g = −dt2+e2Ω
(

e2β++2
√
3β

−dx21 + e2β+−2
√
3β

−dx22 + e−4β+dx23

)

Ω̇2 = β̇2
+ + β̇2

− +
1

3
(Λg + ρg ) ,

β̇± = σ±e
−3Ω;

with C 4 + A3C
3 + A2C

2 + A1C = A0 and Λg = Λg (C ) ≡ 3H2. At
late times

Ω = Ht + O(e−3Ht), β± = B± = β±(∞) + O(e−3Ht) ,

and the shear energy

β̇2
+ + β̇2

− = (σ2
+ + σ2

−)e
−6Ω

All Bianchi types approach equal anisotropy states at late times



Dynamical system formulation

ẏN = FN(α,A, yM) ,

with

y0 = eΩ, y1 = eβ+ , y2 = e
√
3β

− ,

y3 = eW , y4 = eB+ , y5 = e
√
3B

− ,

y6 =
e3Ω

α
Ω̇, y7 =

e3Ω

α
β̇+, y8 =

e3Ω

α
β̇−,

y9 =
e3W

A Ẇ, y10 =
e3W

A Ḃ+, y11 =
e3W

A Ḃ−.

plus three constraints

C1(yN) = 0, C2(yN) = 0, C3(yN) = 0.



Constraints

Ċ1 =
11
∑

N=0

∂C1
∂yN

FN ∼ Ċ2 =
11
∑

N=0

∂C2
∂yN

FN ∼ C3 ≈ 0

If C3 = 0 ⇒ C1, C2 propagate. Does C3 propagate itself ?

Ċ3 =
11
∑

N=0

∂C3
∂yN

FN = αXα(yM) +AXA(yM) ≈ 0

⇒ condition of propagation of all constraints

A = −Xα

XA
α

⇒ it is enough to impose the constraints only at t = t0.



Strategy

At the initial moment t = 0 the universe is an anisotropic
deformation of a finite size FLRW. One chooses Ω(0) = 0 ⇒ the
initial universe size eΩ ∼ 1 in 1/m units. The initial anisotropies
β±, B±, β̇±, Ḃ± ∼ 10−2. The f-sector is empty, ρf = 0. The
g-sector contains radiation + dust,

ρg = 0.25× e−4Ω + 0.25 × e−3Ω

The dimensionful energy m2M2
pl ρg ∼ 10−10(eV)4, assuming that

m ∼ 10−33eV.

For all Bianchi types, the solutions rapidly approach a state with a
constant expansion rate and constant and non-zero anisotropies =
late time attractor.



Expansion rate and anisotropies
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For Bianchi I one can scale away the constant values of β± = B±,
but not for other Bianchi types ⇒ universe generically approaches
an anisotropic state, although it expands with a constant rate.



f-metric and shears
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Both A and eW−Ω approach the same value ⇒ fµν = C 2gµν .

Right: Σ =
√

β̇2
+ + β̇2

−/Ω̇, the relative contribution of shears to

the total energy. If only one or two Hubble times have elapsed
since the acceleration started, then Σ is not small.



Late time anisotropies

At infinity anisotropies oscillate around constant values

β±(t) → β±(∞) + const.× e−3Ht/2 cos(Hωt)

B±(t) → β±(∞) + const.× e−3Ht/2 cos(Hωt)

with ω = ω(C , bk , η,H).
The shear energy in bigravity

β̇2
+ + β̇2

− ∼ e−3Ω ∼ 1/a3

falls off as the energy of a non-relativistic (dark ?) matter.
In GR one has

β̇2
+ + β̇2

− ∼ e−6Ω ∼ 1/a6



Near singularity behaviour
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When continued to the past, the solutions show a singularity where
both eΩ and eW vanish. For Bianchi IX anisotropies start
fluctuating near singularity.



Bainchi IX – chaos
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Near singularity – a sequence of Kasner-like periods with

αa ∝ tpa with p1 + p2 + p3 = p21 + p22 + p23 = 1.

Matter cannot change this, as ρ grows slower than shears,

1/a6 ← shear energy = β̇2
+ + β̇2

− → 1/a3



Summary of cosmologies

3 types of FLRW self-accelerating cosmologies in bigravity:

[a] fµν = C 2gµν , require source fine-tuning, ρf = ρg/C
2

[b] bidiagonal, approach [a] at late times when ρf = ρg → 0
[c] non-bidiagonal, admit the limit of flat f-metric

Anisotropic cosmologies approach anisotropic versions of [a]. In
GR shear energy ∼ 1/a6, while in bigravity it is ∼ 1/a3, which
could perhaps mimic dark matter. The Bianchi IX bigravity
cosmology is chaotic near singularity.

It is unclear if there exist non-bidiagonal anisotropic cosmologies.



Black holes

M.S.V.Phys.Rev. D85 (2012) 124043



Black holes with non-bidiagonal metrics

ds2g = −D(r)dt2 +
dr2

D(r)
+ r2dΩ2,

ds2f = −∆(U) dT 2 +
dU2

∆(U)
+ U2dΩ2 .

where

D(r) = 1− 2M

r
− Λg

3
U2, ∆(U) = 1− Λf

3
U2

T = ut − u

∫

D −∆

D∆
dr , U = ur

u =
1

b3

(

−b2 ±
√

b22 − b1b3

)

The only black holes in massive gravity
/Isham and Storey ’78/,/Koyama et al ’11/,/D’Amico et al ’12/



Bidiagonal metrics

ds2g = Q2dt2 − dr2

N2
− r2dΩ2, ds2f = A2dt2 − U ′2

Y 2
dr2 − U2dΩ2

Q,N,Y ,U,A are 5 functions of r , they fulfill 5 equations

G 0
0 = m2cos2 ηT 0

0 ,

G r
r = m2cos2 ηT r

r ,

G00 = m2sin2 η T 0
0 ,

Grr = m2sin2 η T r
r ,

T r
r
′ +

Q ′

Q
(T r

r − T 0
0 ) +

2

r
(Tϑ

ϑ − T r
r ) = 0.



Simplest solutions

Background black holes: fµν = C 2gµν ⇒

C 4 + A3C
3 + A2C

2 + A1C = A0 ⇒ C = {Ck},Λg = Λg (C )

Gµ
ν + Λg (C ) = 0

⇒ Schwarzschild, Schwarzschild-dS, Schwarzschild-AdS

U,A = const. backgrounds:

N2 =
a−1

r
+ a0 + a1r + a2r

2,

Q

N
= A

m2cos2 η

2

∫ r dr

xN3
F , Y =

m2sin2 η

2U

∫ r dr

N
F ,

F = α0 + α1x + α2x
2

gµν approaches AdS as r →∞ in the leading order.



Event horizon at r = rh

N2 =
∑

n≥1

an(r−rh)n, Y 2 =
∑

n≥1

bn(r−rh)n, U = urh+
∑

n≥1

cn(r−rh)n,

an, bn, cn depend on one free parameter u.

Horizon is common for both metrics

Set of all black holes is one-dimensional and labeled by
u = U(rh)/rh = ratio of the even horizon radius measured by
fµν to that measured by gµν .

Horizon temperatures and surface gravities are the same.
(T = κ/2π),

κ2g = −1

2
gµαgνβ

(g)

∇µ ξν
(g)

∇α ξβ ,

κ2f = −1

2
f µαfνβ

(f )

∇µ ξν
(f )

∇α ξβ.

/Deffayet, Jackobson ’12/



Strategy

Solutions are obtained by integrating from the horizon for a
given value of u = U(rh = 1) towards r > 1.

For u = Ck they are the background black holes.

For u = Ck + δu they describe hairy deformations of the
background black holes.

For u = 1 + δu they describe hairy deformations of the
Schwarzschild black hole.



Deforming Schwarzschild-AdS

u = Ck + δu (k = 2, 3), deformations stay close to the horizon

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 0  1  2  3  4  5  6  7

ln(r/rh)

Y /Y0

N/N0

Q/Q0

a/a0

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  1  2  3  4  5

ln(r/rh)

u = 2.63

u = 2.8

u = 2.9

u = 3

U
′

N0,Q0,Y0, a0 correspond to the background AdS.
Hair is localized close to horizon.



Deforming Schwarzschild
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Deforming Schwarzschild-dS
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Deformations become singular at a finite distance from the horizon

Generic solutions are either asymptotically AdS, or U, a, or they
are compact and singular. The only asymptotically dS is pure dS.
The only asymptotically flat is pure Schwarzschild.



Globally regular solutions – lumps and stars
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Lumps of pure gravity

Replacing event horizon by a regular center

N = 1 +

(

m2 cos2 η (1− 3

2
u +

1

2
u2)

)

r2 + O(r4),

U = ur +O(r3),

Y = 1 +m2 sin2 η
u − 1

2u
x2 + O(r4),

where u is a free parameters ⇒ one-parameter set of solutions with
a regular center labeled by u.
Having chosen a value of u, one integrates the equations from
r = 0 towards large r .
At r →∞ the same asymptotic behavior as for black holes. Can
be viewed as black hole remnants for rh → 0 – globally regular
soliton deformations of AdS or U, a by the graviton massive modes.



Asymptotically flat stars

One adds the matter source

T (mat)µ
ν = diag(ρ(r),−P(r),−P(r),−P(r)), ρ(r) = ρ⋆(r − r⋆)

Boundary conditions at the origin:

N = 1 +

(

m2 cos2 η (1− 3

2
u +

1

2
u2)− ρ⋆

6

)

r2 + O(r4),

U = ur + O(r3),

Y = 1 +m2 sin2 η
u − 1

2u
x2 + O(r4),

P = p + O(r2), (0)

u, p are free parameters.



Asymptotic flatness

N = 1− C1 sin
2 η

r
+ C2 cos

2 η
mr + 1

r
e−mr ,

U = r + C2
m2r2 +mr + 1

m2r2
e−mr ,

Y = 1− C1 sin
2 η

r
− C2 sin2 η

1 +mr

r
e−mr (∞)

⇒ VdVZ (Yukawa) + Coulomb.

∃ Globally regular solutions which interpolate between (0) and (∞)
⇒ globally regular stars.



Solutions and Vainshtein mechanism

 0

 0.002

 0.004

 0.006

 0.008

 0  0.5  1  1.5  2  2.5  3  3.5

ln(1 + r)

Mg

η = 0,Mg

η = π/2,Mg

η = 1,Mf

η = 0,Mf

Mf

20xP

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0  0.5  1  1.5  2

ln(1 + r)

Q/N

a/Y

U/r

g rr = N2 = 1− 2Mg (r)/r , f rr = Y 2/U ′2 = 1− 2Mf (r)/r

(Mg )
′ =

r2

2
(m2 cos2 η T 0

0 + ρ), (Mf )
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2
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m is small ⇒ Mg ,Mf ≈ const for r⋆ < r < rV =
(

ρ⋆r3⋆
m2

)1/3
⇒ GR

recovery /Babichev,Deffayet,Ziour/ /Gruzinov,Mirbabayi/



Summary of black holes

Solutions with non-bidiagonal metrics describe
Schwarzschild-de Sitter black holes. Admit the massive
gravity limit with flat f-metric when η → 0. The only known
black holes in massive gravity.

Solutions with bidiagonal metrics describe hairy black holes in
bigravity. None of them is asymptotically flat, apart from the
pure Schwarzschild. Reduce to lumps of pure gravity when
rh → 0.

Static asymptotically flat solutions with matter (stars)
exhibiting the Vainshtein mechanism of GR recovery.


