Self-accelerating cosmologies and hairy black holes

in ghost-free bigravity and massive gravity

Mikhail S. Volkov

LMPT, University of Tours, FRANCE

SW7, Cargese, 9th May 2013

Mikhail S. Volkov Self-accelerating cosmologies and hairy black holes in ghost-fre



A.H. Chamseddine and M.S.V. Phys.Lett. B704 (2011) 652
M.S.V. JHEP 1201 (2012) 035

M.S.V. Phys.Rev. D85 (2012) 124043

M.S.V. Phys.Rev. D86 (2012) 061502

M.S.V. Phys.Rev. D86 (2012) 104022

Kei-ichi Maeda and M.S.V. arXiv:1302.6198, Phys.Rev.D
M.S.V. arXiv:1304.0238, contribution to the CQG focus issue

One of the main motivations to consider theories with massive
gravitons — to explain the cosmic acceleration. If gravitons are
massive with

m ~ 1/size of the universe

then at very large distances the gravity is screened
Newton — Yukawa

gravitational attraction is weaker = expansion is faster.



Ghost-free bigravity

Proportional backgrounds

FLRW cosmologies with non-bidiagonal metrics
FLRW cosmologies with bidiagonal metrics
Anisotropic cosmologies

Hairy black holes
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Ghost-free bigravity

/Hassan,Rosen 2011/
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Flat space is the solution and m is the FP mass if only
bp=4c3+¢c4—6, by =3—3c3 — 4, bp =23+ ¢4 — 1,
bs = —(c3 + ca), by = c4. Propagates 7 degrees of freedom



Field equations

Gl = m?cos® 1 T+ T[m]Ap, gl = m?sin? nTY + T[m;\p,
o= U, T =Y
Tf = {blz/{o + boUy + bsUs + b4U3}’7”y

{baUo + b3l + baUa } (),
+ {bslUo + balh }(7*)",
— balp (74)Mu

(e) ()
V.TH=0 =  V,T:=0

® Massive gravity for n — 0 if £, becomes flat.
% guw = f,u,z/ =N — 8uv = Mw + 5gp1/v f,u,z/ =N + 5fp1/v

hf};lass) = €0S N0 + sinndf,,, hfg) = cos N6t — sin g



Relation to higher derivative gravity

One can use the g-equations G)’\) = m?cos’n T)’? to express f,;, in

terms of g, and G,,. Inserting back to the action gives
1
S=o / {R + 2A + %(RWR’“’ - gR2) + O(m4)} V—gd*x

Truncating the higher order terms gives the R? gravity of Stelle,
which propagates 2 + 5 DoF of which 5 are ghostlike.

Keeping the whole series gives 2 + 5 healthy DoF.

/Hassan et al '12/



Proportional backgrounds



Gl + Ag(C)3% = TP

G8 + Nr(C)8% = TP

Ng(C) = m’cos’n (bo+3by C+3by C*+ b3 C?)

,sin%n

Ar(C) = m (b1 +3b,C +3b3C2 + b C?) .

C3

Gl =0Gy/C? = | = Ng/C?

7t = 7l /2 (fine tuning)

0 = C*4+ A3C3+ AC?+ G C+ Ao

4 solutions C = {Cy}, 4 values Ag(Cy). C=1= Ay =0 = GR.
Ag > 0 — self acceleration. No massive gravity limit.



FLRW cosmologies with non-bidiagonal metrics

(exist both in bigravity and massive gravity)

Koyama, Niz, Tasinato '11
Chamseddine and M.S.V. '11
D'Amico et al. '11

Gumrukcuoglu, Lin, Mukohyama 2011
M.S.V.'11

Gratia, Hu, Wyman 2012

Kobayashi et al 2012

M.S.V. '12



Spherical symmetry

ds; = —Q%dt® + N*dr® + R*dQ’
ds? = —(aQdt+ cNdr)? + (cQdt — bNdr)? + v R*dQ?,

Q,N,R,a,b,c,u depend on t,r,

a cN/Q 0 0

W | —c@q/N b 0 0
’Yl/_ g/'b fOU/_ O O u O )

0 0 0 u

eigenvalues

1
)\0,1: §<a+bi (a—b)2—4c2>, )\2 )\3—u.



U = a+b+2u, U =u(u+2a+2b)+ab+c?,
Us = u(au+ bu+2ab+2c?), Uy = u?(ab+ c?).

= one gets T} and 7.';
N 1
70 = % [b1 + 2byu + b3u’] =0 = u= ba <_b2 + b3 — b1b3>
3
TOO = T" = const., TQ = T" = const. =

(8)
Y Th~ TF = Tf = (ba + bsu)[(u — a)(u — b) + ¢2] =0,

if this is fulfilled :>‘ T!' = const. x 8, T} = const. x &




(A) Gl + Ngoly = Tl
(B) Gl + el = Tl
(O) (b2+b3u)[(u—a)(u—b)+c2]:0

with the Lambda-terms

Ne = m? cos? 1) (bg + 2byu + bou?),
by + 2b bau?
A = m?sin®n 2+ 3[21+ 4u'
u

Tk — diag[—p(t), P(t), P(t), P(t)], T =o.

Equations (A) decouple from (B), up to the constraint (C).
Many people observed (A)+ (B).
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ds2 = —dt’+a (t)<1_kr2+r d§2>,
dsf = —A(U)dT?+ 4 | ae? (*)
' A(U) '
where )
a2—%(A+p):—k, A(U):l—%u2

One has dT = Tdt+ T'dr, dU = Udt + U'dr. Inserting to (+)
and comparing with

ds? = —(aQdt + cNdr)? + (cQdt — bNdr)? + u’R?dQ?.

gives U(t,r) = ua(t)r and a,b,c in terms of T, U, T', U



Inserting a, b, c into the constraint [(u — a)(u — b) + c?] = 0 gives

aV1—k2(UT' - TU) - u%ﬁmmwAf—zo(ﬂ

Ar=a(AT £ U)+VI—k2(U' £ AT'), A =1~ 1?,
U = ura. Exact solutions of (1) are found in the massive gravity
limit, when n =Ar =0, A =1,

dt u
k=0: T(t,r) = / —i—( +Cr>
(t,r) q 4q

k==41: T(t,r) = \/q2—|—ku2/ vaZ+ kdt+ qgay1— kr?

= T(t,r),U(t,r) are found, constraint is fulfilled. One obtains
two parameter family of solutions labeled by g, k, it contains all
known FLRW cosmologies in the massive gravity theory



@ For each spatial type (k = 0,£1) solutions comprise a
one-parameter family labeled by q.

o g-metric is FLRW.Matter-dominated at early times,
A-dominated at late time = self-acceleration.

o f-metric is AdS. When n — 0, Af ~ sin27] — 0= 1, is flat,
massive gravity is recovered.

@ Are sometimes called ‘inhomogeneous’, since the fluctuations

are expected to contain a non-FLRW part proportional to m?.

If k=—1and g = uthen T = uva(t)v1+r? also U= uva(t)r =
f-metric is diagonal both in the T, U and t, r coordinates,

22 d 2
ds? = —dT24dU?+U2d02 = v?a2 [~ a? + -2 4 1240?) |
a2 1+ r2

/Gumrukcuoglu, Lin, Mukohyama '11/



FLRW cosmologies with diagonal metrics

M.S.V. '11
von Strauss et al. '11
Cristosomi et al. '11



Diagonal metrics

ds

[N}

= —dt? 4 e < + r2d§22> , k=0,+1

1 — kr?

dr?
2 2 5,2 2W 2 102
dsf = —A’dt’+e (—l_kerrrdQ).

Equations (here Ag(€), Ar(€) are polynomials in & = e"V~%)

o N(E)Hpe k _ W2 (&) +pr Kk _
02 — g()?) g_Zem7 = f(é f_Zezvv’ (o)

and the conservation condition

() = A(e2) ] (b1 + 22 + b3g?) =0.



[(ew)' - A (eQ)} =0 = We=QA4 =
equations reduce to a Friedmann equation
a’ +U(a) = —k

where a = 2¢ and U(a) is determined by roots of an algebraic
equations. There are several roots = several types of U(a), and
several different type of solutions.



U(a)/m?

Physical and exotic cosmologies
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o physical: p>> m?TJ for small a, p < m?>TQ for large a
@ exotic: p <« m? Tg for any a.

o f,,, is not flat for  — 0 = no massive gravity limit

@ Solutions are stable




bi+2by¢ + b2 =0 = &=V =const.
a = 2¢% fulfills
a® — (a?/3)(Ag(€) + pg) = —k

= cosmology with constant Ag(§), also

(Ag + pg)a® — 3k

2
:—f e
AT = o = R e ke

Admits the massive gravity limit 7, A, pr — 0 for k = —1 (open
universe) /Gumrukcuoglu, Lin, Mukohyama '11/



Anisotropic cosmologies with diagonal metrics

Kei-ichi Maeda, M.S.V. arXiv:1302.6198



ds? = —a(t)’dt® + hap(t) w? @ WP,
dsi = —A(t)dt? + Hap(t)w? @ WP,

[ea, ep) = Cpec, CSp = nCdedab, n?t = diag[n(l), n(2), n(3)]

| T Vg | VIl [ VIII'[ IX
A o |1 1 1 1 1
@ 0|0 -1]1 1 1
"1 00| 0 0 | -1] 1

If hap, Hap are diagonal = G2 = G® = 0 = no radial fluxes.

hap = diag[alz, a22, 0432]7 Hap = diag[Alz, A22, .A32]



ds; = —a?dt® +dIZ,  dsf = —Adt®> + dif

2
dlg _ 20 (ezﬁ++2f B- (W'Y + o2B+—2/3p- (W2)2 + e~4B+ (L3)? )
dl,? _ 2W< 2B, +2v/3B_ 1)2 4 o2B+—2V3B- (wz)z X e_4B+(w3)2)

In the Bianchi | case w? = dx?.

Second order equations for Q, W, B+, B+ and also 3 first order
constraints from Gg = Tg, 98 = 760 and the conservation of T/.



Equal anisotropies

Bianchi |, £, = ng,“,

dsé = —dt?+ &% <62,8++2\/§,87 dx12 + e25+_2‘/§5* dx22 + e 4B+ dxg)

. i i 1
@ = B2+ (Nt s
Br = ore

with C* +A3C3 +A2C2 + A1C = Ap and /\g = /\g(C) =3H2. At
late times

Q = Ht 4 0(e*"), = Bi(00) + O(e ),

and the shear energy
B2 4 2 = (02 +02)e

All Bianchi types approach equal anisotropy states at late times



Dynamical system formulation

)I/N = FN(avA’yM)’

with

o = €% p=él yp=e

3 = &V, =€y —e‘[B‘
30 30 30
et . et . et .

Yo = Q? yr = /8-1-7 Y8 = /8—7
« «Q «
3W 3w 3w
e . e . e .

= — W, = _— B., =—B_.
Yo A Y10 A +, oy A

plus three constraints

Cilyn) =0, Co(yn) =0, Cs(yn) =0.



11
61: %FNNCQZ %FNNC3 ~0
— OyN = Oy

If C3 =0 = (C1,C> propagate. Does C3 propagate itself ?

11 aC5

C3 = a—FN = aXa(ym) + AXalym) =0
YN

N=0

= condition of propagation of all constraints

Xa
A——X—Aa

= it is enough to impose the constraints only at t = tp.



At the initial moment t = 0 the universe is an anisotropic
deformation of a finite size FLRW. One chooses Q(0) = 0 = the
initial universe size €2 ~ 1 in 1/m units. The initial anisotropies
B+, B+, Bi, Bi ~ 1072. The f-sector is empty, pr = 0. The
g-sector contains radiation + dust,

pg = 0.25 x e ¥ 1 0.25 x e3¢

The dimensionful energy m2M§l pg ~ 1070(eV)*, assuming that
m ~ 1073V,

For all Bianchi types, the solutions rapidly approach a state with a
constant expansion rate and constant and non-zero anisotropies =
late time attractor.



Expansion rate and anisotropies
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For Bianchi | one can scale away the constant values of 8+ = By,
but not for other Bianchi types = universe generically approaches
an anisotropic state, although it expands with a constant rate.



f-metric and shears

0.06

-215

Both A and €V~ approach the same value = £, = C?g,,.

Right: T = /32 + 52 /Q, the relative contribution of shears to
the total energy. If only one or two Hubble times have elapsed
since the acceleration started, then X is not small.



Late time anisotropies

At infinity anisotropies oscillate around constant values

Be(t) — PBi(oo) + const. x e 3H/2 cos(Huwt)
Bi(t) — Bi(o0)+ const. x e 3Ht/2 cos(Hwt)

with w = w(C, bk, n, H).
The shear energy in bigravity

ﬁi + 32 ~e 3 1/al

falls off as the energy of a non-relativistic (dark ?) matter.
In GR one has

ﬁi + 32 ~e % 1/ad



Near singularity behaviour

05

Bianchi IX

Bianchi |

Ht ’ ’ ’ I:It

When continued to the past, the solutions show a singularity where
both €2 and e"V vanish. For Bianchi IX anisotropies start
fluctuating near singularity.



Bainchi IX — chaos

0 In(ey)
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Near singularity — a sequence of Kasner-like periods with
a, o tP with pi+pa+ps=pi+ps+p3=1
Matter cannot change this, as p grows slower than shears,

1/a% < shear energy = 32 + 2 — 1/a°



3 types of FLRW self-accelerating cosmologies in bigravity:

[a] f., = C2g,., require source fine-tuning, pr = pg/C>
[b] bidiagonal, approach [a] at late times when pf = pg — 0
[c] non-bidiagonal, admit the limit of flat f-metric

Anisotropic cosmologies approach anisotropic versions of [a]. In
GR shear energy ~ 1/a°, while in bigravity it is ~ 1/a3, which
could perhaps mimic dark matter. The Bianchi IX bigravity
cosmology is chaotic near singularity.

It is unclear if there exist non-bidiagonal anisotropic cosmologies.



Black holes

M.S.V.Phys.Rev. D85 (2012) 124043



02 = —p(nd+ 3 1 a2
Sg = r D(r) r 5
2 2 dU2 2 2
ds? = —A(U)dT +A(U)+UdQ
where
2M A As
D(r)=1-=——-=-802 A 1— = U?
(r) p 3 Y5 (V) 3 Y
—-A
T:ut—u/ DA dr, U=ur

1 / K2
u= b_3 <—b2 + b2 — b1b3>

The only black holes in massive gravity
/Isham and Storey '78/,/Koyama et al '11/,/D’Amico et al '12/



Bidiagonal metrics

2 2 drz 2402 2 2 4.2 U~ 2 2 102
ds; = Q%dt? — N2 dQe, dsf:Adt—Wdr—UdQ

Q,N,Y, U, A are 5 functions of r, they fulfill 5 equations

G) = mPcos?n TP,
G' = mPcos’n T/,
G = misin®nTY,
G = m’sin’nT/,

r! Ql r 0 2 ¥ r
Tr + 6(7_,.—7_0)"‘7(7_19—7_,):0



Simplest solutions

® Background black holes: £, = C2g,“, =

C*+ AC+ AP+ AIC=Ag = C={C}, Ny =Ng(C)

Gl'+Ng(C)=0
= Schwarzschild, Schwarzschild-dS, Schwarzschild-AdS

o U, A = const. backgrounds:

N = 221 a0t arr+ ar?

r
Q _ Am2c05277/’ dr Foy= m?sin® 7 ’ﬂ}_’
N 2 xN3 2U N
F = ag+aix +axx’

guv approaches AdS as r — oo in the leading order.



Event horizon at r = ry,

N? = Z an(r—rm)", Y? = Z bn(r—rp)", U= urh—l—z cn(r—rn)",

n>1 n>1 n>1

an, by, ¢, depend on one free parameter wu.

@ Horizon is common for both metrics

o Set of all black holes is one-dimensional and labeled by

u = U(ry)/r, = ratio of the even horizon radius measured by
fu to that measured by g, .

@ Horizon temperatures and surface gravities are the same.

(T =k/27),
1 (g) (g)
/ié = _Eguaguﬁ vMé-V V(xfﬁa
1 () (f)
wi o= 5" Vi€ Ve’

/Deffayet, Jackobson '12/



@ Solutions are obtained by integrating from the horizon for a
given value of u = U(r, = 1) towards r > 1.

@ For u = Cj they are the background black holes.

o For u = Cx + du they describe hairy deformations of the
background black holes.

For u =1+ du they describe hairy deformations of the
Schwarzschild black hole.



Deforming Schwarzschild-AdS

u= Cx+ ou (k =2,3), deformations stay close to the horizon

101 T ] T
a 31 u=263

L 28
099 26 F
098 - 3 24 f;
097 | 221
096 |- 2r
; 181
095
Y 16
0.94 !
0 1 2 3 4 5 6 7 0 1 2 3 4 5
In(r/rh) In(r/m)

No, Qo, Yo, ap correspond to the background AdS.
Hair is localized close to horizon.



174

Deforming Schwarzschild

u = 1.00001
u=1.0001
u=1.001

u=101

o Close to Schwarzschild for r < ryax(u) but approaches
U, A = const for r — oco. Deformations are small close to
horizon but then grow and change the asymptotic behavior at
r— oo.



Deforming Schwarzschild-dS

2 T

al T

N
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1 In(Q |
@ ir T11/30;’ T0°/30; 4
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Deformations become singular at a finite distance from the horizon

Generic solutions are either asymptotically AdS, or U, a, or they
are compact and singular. The only asymptotically dS is pure dS.
The only asymptotically flat is pure Schwarzschild.




Globally regular solutions — lumps and stars

M.S.V.Phys.Rev. D85 (2012) 124043



Replacing event horizon by a regular center

N = 1+<m cos n(l—%u—i—%uz)) r? + 0(r"),
U = ur+0(r),
= 1+ m?sin’p 2u1X +0(r"),

where u is a free parameters = one-parameter set of solutions with
a regular center labeled by w.

Having chosen a value of u, one integrates the equations from

r = 0 towards large r.

At r — oo the same asymptotic behavior as for black holes. Can
be viewed as black hole remnants for r, — 0 — globally regular
soliton deformations of AdS or U, a by the graviton massive modes.



One adds the matter source

T(mat),;j = diag(p(r), _'D(r)7 _'D(r)7 _'D(r))a p(r) = p*(r - r*)

Boundary conditions at the origin:

1
= 1—|—<m cos 77(1—§u—|——u2) p*> r? +0(r"),

N
2 2 6
U = ur+0(r),
Y = 1+m? sm77 r 1x 24 0(r"),
P = p+0(r?), (0)

u, p are free parameters.



Asymptotic flatness

Cy sin? 1

N =1 il n—FCzcoszT]mr+ e ™,
2,2
1
U= G mr L
m?r

Cy sin? 1

Y = l—w—Czsinzn +mre_"" (0)

= VdVZ (Yukawa) + Coulomb.

3 Globally regular solutions which interpolate between (0) and ()
= globally regular stars.



Solutions and Vainshtein mechanism

3 /Y

0.008 -

0.006

0,004 [

0.002 -

,,,,,,,,,,,,,,,

g =N2=1-2My(r)/r, " =Y?/U?=1-2M(r)/r

2 U2
(Mg) = %(m2 cos®n T +p), (Mg) =U' - m?sin®n 7§
1/3
m is small = My, M¢ ~ const for r, <r < ry = P,*n_gf = GR

recovery /Babichev,Deffayet,Ziour/ /Gruzinov,Mirbabayi/



@ Solutions with non-bidiagonal metrics describe
Schwarzschild-de Sitter black holes. Admit the massive
gravity limit with flat f-metric when 17 — 0. The only known
black holes in massive gravity.

@ Solutions with bidiagonal metrics describe hairy black holes in
bigravity. None of them is asymptotically flat, apart from the
pure Schwarzschild. Reduce to lumps of pure gravity when
rhn — 0.

@ Static asymptotically flat solutions with matter (stars)
exhibiting the Vainshtein mechanism of GR recovery.



