The Minkowski functionals of the SDSS LRGs

Alexander Wiegand¹ with Thomas Buchert² and Matthias Ostermann²

¹Albert Einstein Institut

²CRAL Université Lyon 1

SW7, Cargèse 06.05.2013

A. Wiegand (Albert Einstein Institut)

Minkowski functionals

SW7 Cargèse 2013 1 / 41

2 Minkowski functionals and boolean grain model

Analysis and data set

Analysing structure with galaxy surveys

2 Minkowski functionals and boolean grain model

3 Analysis and data set

5 Conclusion

Inhomogeneities in the local galaxy distribution

A. Wiegand (Albert Einstein Institut)

Minkowski functionals

SW7 Cargèse 2013 4 / 41

Galaxy surveys

 Measurements of the galaxy distribution have been pushed to higher and higher redshifts

survey	galaxies	Z	year
2dFGRS	200k	0.2	2003
SDSS I	700k	0.3	2005
SDSS II	900k	0.5	2008
WiggleZ	240k	1.0	2012
SDSS III	1.5M	0.8	2014
BigBoss	20M	1.7	2020
Euclid	2000M	2	2025

Slice of SDSS data from http://www.sdss.org/

• Excellent data to improve our understanding of the origin and evolution of cosmic structure

Galaxy surveys

 Measurements of the galaxy distribution have been pushed to higher and higher redshifts

survey	galaxies	Z	year
2dFGRS	200k	0.2	2003
SDSS I	700k	0.3	2005
SDSS II	900k	0.5	2008
WiggleZ	240k	1.0	2012
SDSS III	1.5M	0.8	2014
BigBoss	20M	1.7	2020
Euclid	2000M	2	2025

• Excellent data to improve our understanding of the origin and evolution of cosmic structure

Sloan Digital Sky Survey (SDSS) Telescope

www.sdss.org

A. Wiegand (Albert Einstein Institut)

Holes for the fibers of the spectrograph

www.sdss.org

A. Wiegand (Albert Einstein Institut)

Fibers of the spectrograph are plugged in

www.sdss.org

A. Wiegand (Albert Einstein Institut)

Sloan digital sky survey (SDSS)

• SDSS I: 8000 sq deg. imaging, 5740 spectroscopy

SDSS II: 11663 sq deg. imaging, 9380 spectroscopy

• final data release (DR): DR7, Abazajian, et al. 2009

• SDSS III: Ongoing part targeting luminous red galaxies

• One goal: measuring baryon acoustic oscillations

• DR8 (2011), DR9 (2012)

A. Wiegand (Albert Einstein Institut)

Sloan digital sky survey (SDSS)

- SDSS I: 8000 sq deg. imaging, 5740 spectroscopy
 SDSS II: 11663 sq deg. imaging, 9380 spectroscopy
 - final data release (DR): DR7, Abazajian, et al. 2009

SDSS III: Ongoing part targeting luminous red galaxies

- One goal: measuring baryon acoustic oscillations
- DR8 (2011), DR9 (2012)

A. Wiegand (Albert Einstein Institut)

Sloan digital sky survey (SDSS)

- SDSS I: 8000 sq deg. imaging, 5740 spectroscopy
- SDSS II: 11663 sq deg. imaging, 9380 spectroscopy
 - final data release (DR): DR7, Abazajian, et al. 2009
- SDSS III: Ongoing part targeting luminous red galaxies
 - One goal: measuring baryon acoustic oscillations
 - DR8 (2011), DR9 (2012)

SDSS II

Credit: Eric Aubourg

A. Wiegand (Albert Einstein Institut)

SDSS III

Credit: Eric Aubourg

Two point correlations

• Also interesting: Matter fluctuations in a sphere

$$\sigma^{2}(R) = \frac{1}{\left(\frac{4\pi}{3}R^{3}\right)^{2}} \int_{\mathcal{B}(R)} d^{3}r_{1} \int_{\mathcal{B}(R)} d^{3}r_{2}\tilde{\xi}\left(|\mathbf{r}_{1} - \mathbf{r}_{2}|\right)$$

Two point correlations

• First important quantity for characterization:

$$\xi(\mathbf{x}_1, \mathbf{x}_2) = \xi(|\mathbf{x}_{12}|) = \langle \delta(\mathbf{x}_1) \delta$$

• Equiv.: Power spectrum

$$P(\mathbf{k}) = \int d^3 r \tilde{\xi}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}}$$

Also interesting: Matter fluctuations in a sphere

$$\sigma^{2}(R) = \frac{1}{\left(\frac{4\pi}{3}R^{3}\right)^{2}} \int_{\mathcal{B}(R)} d^{3}r_{1} \int_{\mathcal{B}(R)} d^{3}r_{2}\tilde{\xi}\left(|\mathbf{r}_{1} - \mathbf{r}_{2}|\right)$$

Two point correlations

• First important quantity for characterization:

$$\xi(\mathbf{x}_1, \mathbf{x}_2) = \xi(|\mathbf{x}_{12}|) = \langle \delta(\mathbf{x}_1) \delta(\mathbf{x}_1) \rangle$$

• Equiv.: Power spectrum

$$P(\mathbf{k}) = \int d^3 r \tilde{\xi}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}}$$

• Also interesting: Matter fluctuations in a sphere

$$\sigma^{2}(R) = \frac{1}{\left(\frac{4\pi}{3}R^{3}\right)^{2}} \int_{\mathcal{B}(R)} d^{3}r_{1} \int_{\mathcal{B}(R)} d^{3}r_{2}\tilde{\xi}\left(|\mathbf{r}_{1}-\mathbf{r}_{2}|\right)$$

• Three point correlation function

$$\zeta(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}) = \zeta(|\mathbf{x}_{12}|, |\mathbf{x}_{13}|, |\mathbf{x}_{23}|) = \left\langle \hat{\delta}(\mathbf{x}_{1}) \,\hat{\delta}(\mathbf{x}_{2}) \,\hat{\delta}(\mathbf{x}_{3}) \right\rangle$$

and higher order complete correlation functions (=central moments of the distribution)

$$m_n = \left\langle \hat{\delta}(\mathbf{x}_1) \, \hat{\delta}(\mathbf{x}_2) \dots \hat{\delta}(\mathbf{x}_n) \right\rangle$$

 Often more useful: connected correlation functions (= cumulants of the distribution)
 ⇒Extract from joint cumulant generating function

$$g(t_1, t_2, \dots, t_n) = \log \left(\mathbb{E} \left[\exp \left(\sum_{j=1}^n t_j X_j \right) \right] \right)$$

• Three point correlation function

$$\zeta(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}) = \zeta(|\mathbf{x}_{12}|, |\mathbf{x}_{13}|, |\mathbf{x}_{23}|) = \left\langle \hat{\delta}(\mathbf{x}_{1}) \,\hat{\delta}(\mathbf{x}_{2}) \,\hat{\delta}(\mathbf{x}_{3}) \right\rangle$$

and higher order complete correlation functions (=central moments of the distribution)

$$m_n = \left\langle \hat{\delta}(\mathbf{x}_1) \, \hat{\delta}(\mathbf{x}_2) \dots \hat{\delta}(\mathbf{x}_n) \right\rangle$$

 Often more useful: connected correlation functions (= cumulants of the distribution)
 Extract from isint sumulant generating function

 \Rightarrow Extract from joint cumulant generating function

$$g(t_1, t_2, \dots, t_n) = \log \left(\mathbb{E} \left[\exp \left(\sum_{j=1}^n t_j X_j \right) \right] \right)$$

Connected correlation functions

Connected correlation functions obtained from

$$\xi_n = \partial_{t_1} \dots \partial_{t_n} g(t_1, t_2, \dots, t_n)|_{\mathbf{t}=0}$$

and related to the complete correlation functions by

$$\xi_n(X_1,...,X_n) = \sum_{\pi} (|\pi|-1)!(-1)^{|\pi|-1} \prod_{B \in \pi} \mathbb{E} \left[\prod_{i \in B} X_i \right]$$

• For $X_i = \hat{\varrho}(\mathbf{x}_i) / \varrho_0$

 $\begin{aligned} \xi_{2}(X_{1}, X_{2}) &= 1! (-1)^{1} \mathbb{E}[X_{1}] \mathbb{E}[X_{2}] + 0! (-1)^{0} \mathbb{E}[X_{1}X_{2}] &= \tilde{\xi}(\mathbf{x}_{12}) \\ \xi_{3}(X_{1}, X_{2}, X_{3}) &= \tilde{\zeta}(\mathbf{x}_{12}, \mathbf{x}_{13}, \mathbf{x}_{23}) \\ \xi_{4}(X_{1}, X_{2}, X_{3}, X_{4}) &= \left\langle \hat{\delta}(\mathbf{x}_{1}) \hat{\delta}(\mathbf{x}_{2}) \hat{\delta}(\mathbf{x}_{3}) \hat{\delta}(\mathbf{x}_{4}) \right\rangle - \tilde{\xi}(\mathbf{x}_{12}) \tilde{\xi}(\mathbf{x}_{34}) \\ &- \tilde{\xi}(\mathbf{x}_{13}) \tilde{\xi}(\mathbf{x}_{24}) - \tilde{\xi}(\mathbf{x}_{14}) \tilde{\xi}(\mathbf{x}_{23}) \end{aligned}$

Connected correlation functions

Connected correlation functions obtained from

$$\xi_n = \partial_{t_1} \dots \partial_{t_n} g(t_1, t_2, \dots, t_n)|_{\mathbf{t}=0}$$

and related to the complete correlation functions by

$$\xi_n(X_1,...,X_n) = \sum_{\pi} (|\pi|-1)!(-1)^{|\pi|-1} \prod_{B \in \pi} \mathbb{E}\left[\prod_{i \in B} X_i\right]$$

• For $X_i = \hat{\varrho}(\mathbf{x}_i) / \varrho_0$

 $\begin{aligned} \xi_{2}(X_{1}, X_{2}) &= 1! (-1)^{1} \mathbb{E}[X_{1}] \mathbb{E}[X_{2}] + 0! (-1)^{0} \mathbb{E}[X_{1}X_{2}] &= \tilde{\xi}(\mathbf{x}_{12}) \\ \xi_{3}(X_{1}, X_{2}, X_{3}) &= \tilde{\zeta}(\mathbf{x}_{12}, \mathbf{x}_{13}, \mathbf{x}_{23}) \\ \xi_{4}(X_{1}, X_{2}, X_{3}, X_{4}) &= \left\langle \hat{\delta}(\mathbf{x}_{1}) \hat{\delta}(\mathbf{x}_{2}) \hat{\delta}(\mathbf{x}_{3}) \hat{\delta}(\mathbf{x}_{4}) \right\rangle - \tilde{\xi}(\mathbf{x}_{12}) \tilde{\xi}(\mathbf{x}_{34}) \\ &- \tilde{\xi}(\mathbf{x}_{13}) \tilde{\xi}(\mathbf{x}_{24}) - \tilde{\xi}(\mathbf{x}_{14}) \tilde{\xi}(\mathbf{x}_{23}) \end{aligned}$

Connected correlation functions

• Connected correlation functions obtained from

$$\xi_n = \partial_{t_1} \dots \partial_{t_n} g(t_1, t_2, \dots, t_n) |_{\mathbf{t}=0}$$

and related to the complete correlation functions by

$$\xi_n(X_1,...,X_n) = \sum_{\pi} (|\pi|-1)!(-1)^{|\pi|-1} \prod_{B \in \pi} \mathbb{E}\left[\prod_{i \in B} X_i\right]$$

• For $X_i = \hat{\varrho}(\mathbf{x}_i) / \varrho_0$

$$\begin{aligned} \xi_{2}(X_{1},X_{2}) &= 1!(-1)^{1}\mathbb{E}[X_{1}]\mathbb{E}[X_{2}] + 0!(-1)^{0}\mathbb{E}[X_{1}X_{2}] = \tilde{\xi}(\mathbf{x}_{12})\\ \xi_{3}(X_{1},X_{2},X_{3}) &= \tilde{\zeta}(\mathbf{x}_{12},\mathbf{x}_{13},\mathbf{x}_{23})\\ \xi_{4}(X_{1},X_{2},X_{3},X_{4}) &= \left\langle \hat{\delta}(\mathbf{x}_{1})\hat{\delta}(\mathbf{x}_{2})\hat{\delta}(\mathbf{x}_{3})\hat{\delta}(\mathbf{x}_{4})\right\rangle - \tilde{\xi}(\mathbf{x}_{12})\tilde{\xi}(\mathbf{x}_{34})\\ &- \tilde{\xi}(\mathbf{x}_{13})\tilde{\xi}(\mathbf{x}_{24}) - \tilde{\xi}(\mathbf{x}_{14})\tilde{\xi}(\mathbf{x}_{23})\end{aligned}$$

The importance of the two-point function

• For Gaussian density field

$$p(\{\varrho(\mathbf{r}_i;\Delta V)\}) = Be^{-\frac{1}{2}\sum_{i,j}(\varrho(\mathbf{r}_i;\Delta V) - m_i)C_{ij}^{-1}(\varrho(\mathbf{r}_j;\Delta V) - m_j)}$$

here in the discretized form

$$\varrho(\mathbf{r}_{i};\Delta V) = \frac{1}{\Delta V} \int_{\Delta V(\mathbf{r}_{i})} \mathrm{d}^{3} r \hat{\varrho}(\mathbf{r})$$

the full probability distribution is determined by the knowledge of the two point correlation function

$$C_{ij} = \varrho_0^2 \xi\left(\mathbf{r}_i, \mathbf{r}_j\right)$$

• The connected correlation functions $n \ge 3$ are zero

• For Gaussian density field

$$p\left(\left\{\varrho\left(\mathbf{r}_{i};\Delta V\right)\right\}\right) = Be^{-\frac{1}{2}\sum_{i,j}\left(\varrho\left(\mathbf{r}_{i};\Delta V\right)-m_{i}\right)C_{ij}^{-1}\left(\varrho\left(\mathbf{r}_{j};\Delta V\right)-m_{j}\right)\right)}$$

here in the discretized form

$$\varrho(\mathbf{r}_{i};\Delta V) = \frac{1}{\Delta V} \int_{\Delta V(\mathbf{r}_{i})} \mathrm{d}^{3} r \hat{\varrho}(\mathbf{r})$$

the full probability distribution is determined by the knowledge of the two point correlation function

$$C_{ij} = \varrho_0^2 \xi\left(\mathbf{r}_i, \mathbf{r}_j\right)$$

• The connected correlation functions $n \ge 3$ are zero

1 Analysing structure with galaxy surveys

2 Minkowski functionals and boolean grain model

- 3 Analysis and data set
- 4 Results

5 Conclusion

Definition

- Find functionals *M* over poly-convex bodies *B* that satisfy:
 - Motion invariance: Independent of position/orientation

$$M(g\mathcal{B}) = M(\mathcal{B})$$
 for any $g \in G$ and $\mathcal{B} \in \mathcal{R}$

• Additivity:

 $M(\mathcal{B}_1 \cup \mathcal{B}_2) = M(\mathcal{B}_1) + M(\mathcal{B}_2) - M(\mathcal{B}_1 \cap \mathcal{B}_2) \forall \mathcal{B}_1, \mathcal{B}_2 \in \mathcal{R}$

 Conditional continuity: Functionals of convex approximations to a convex body converge to the functionals of the body

 $M(K_i) \rightarrow M(K)$ as $K_i \rightarrow K$ for $K, K_i \in \mathcal{K}$

• Surprisingly: only four independent functionals in 3D

Definition

- Find functionals *M* over poly-convex bodies *B* that satisfy:
 - Motion invariance: Independent of position/orientation

$$M(g\mathcal{B}) = M(\mathcal{B})$$
 for any $g \in G$ and $\mathcal{B} \in \mathcal{R}$

• Additivity:

 $M(\mathcal{B}_1 \cup \mathcal{B}_2) = M(\mathcal{B}_1) + M(\mathcal{B}_2) - M(\mathcal{B}_1 \cap \mathcal{B}_2) \forall \mathcal{B}_1, \mathcal{B}_2 \in \mathcal{R}$

 Conditional continuity: Functionals of convex approximations to a convex body converge to the functionals of the body

$$M(K_i) \rightarrow M(K)$$
 as $K_i \rightarrow K$ for $K, K_i \in \mathcal{K}$

• Surprisingly: only four independent functionals in 3D

• The four functionals are:

geometric quantity		μ	V_{μ}	v'_{μ}
volume	V	0	V	$V/V_{\mathcal{D}}$
surface area	A	1	A/6	A/6N
integral mean curv.	Η	2	$H/3\pi$	$H/3\pi N$
Euler characteristic	χ	3	χ	χ/N

- Problem: Trivial for a set of points
 ⇒ Find a prescription to make bodies
- Decorate every galaxy with a ball of radius *R*
- Study the functionals of these bodies as a function of *R*

• The four functionals are:

geometric quantity		μ	V_{μ}	v'_{μ}
volume	V	0	V	$V/V_{\mathcal{D}}$
surface area	A	1	A/6	A/6N
integral mean curv.	Η	2	$H/3\pi$	$H/3\pi N$
Euler characteristic	χ	3	χ	χ/N

- Problem: Trivial for a set of points
 ⇒ Find a prescription to make bodies
- Decorate every galaxy with a ball of radius *R*
- Study the functionals of these bodies as a function of *R*

• The four functionals are:

geometric quantity		μ	V_{μ}	v'_{μ}
volume	V	0	V	$V/V_{\mathcal{D}}$
surface area	A	1	A/6	A/6N
integral mean curv.	Η	2	$H/3\pi$	$H/3\pi N$
Euler characteristic	χ	3	χ	χ/N

- Problem: Trivial for a set of points
 ⇒ Find a prescription to make bodies
- Decorate every galaxy with a ball of radius R
- Study the functionals of these bodies as a function of *R*

Schema by Jens Schmalzing

• The densities of the functionals

$$v_{0} = 1 - e^{-\varrho_{0}\overline{V}_{0}}$$

$$v_{1} = \varrho_{0}\overline{V}_{1}e^{-\varrho_{0}\overline{V}_{0}},$$

$$v_{2} = \left(\varrho_{0}\overline{V}_{2} - \frac{3\pi}{8}\varrho_{0}^{2}\overline{V}_{1}^{2}\right)e^{-\varrho_{0}\overline{V}_{0}},$$

$$v_{3} = \left(\varrho_{0}\overline{V}_{3} - \frac{9}{2}\varrho_{0}^{2}\overline{V}_{1}\overline{V}_{2} + \frac{9\pi}{16}\varrho_{0}^{3}\overline{V}_{1}^{3}\right)e^{-\varrho_{0}\overline{V}_{0}}$$

• are related to the distribution's correlation functions ξ_{n+1}

$$\overline{V}_{\mu} = V_{\mu}(B) + \sum_{n=1}^{\infty} \frac{(-\varrho_0)^n}{(n+1)!} \int_{\mathcal{D}} d^3 x_1 ... d^3 x_n \xi_{n+1}(0, \mathbf{x}_1, ... \mathbf{x}_n) V_{\mu}(B \cap B_{\mathbf{x}_1} ... \cap B_{\mathbf{x}_n})$$

• with the functionals of a ball given by

$$V_0 = \frac{4\pi}{3}R^3$$
; $V_1 = \frac{2}{3}\pi R^2$; $V_2 = \frac{4}{3}R$; $V_3 = 1$

 \bullet For very small densities \rightarrow Gauss-Poisson point distributions

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{2} \int_{\mathcal{D}} \mathrm{d}^3 x_1 \xi_2(|\mathbf{x}_1|) V_{\mu}(B \cap B_{\mathbf{x}_1})$$

Can be calculated from the theoretical power spectrum

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{\pi} \int_{0}^{\infty} P(k) W_{\mu}(k, R) k^2 dk$$

In particular

$$\overline{V}_0 = \frac{4\pi}{3} R^3 \left(1 - \frac{\frac{4\pi}{3} R^3 \varrho_0}{2} \sigma^2(R) \right)$$
$$\overline{V}_3 = 1 - 2\pi \varrho_0 \int_0^{2R} \xi_2(r) r^2 dr$$

 \bullet For very small densities \rightarrow Gauss-Poisson point distributions

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{2} \int_{\mathcal{D}} \mathrm{d}^3 x_1 \xi_2(|\mathbf{x}_1|) V_{\mu}(B \cap B_{\mathbf{x}_1})$$

• Can be calculated from the theoretical power spectrum

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{\pi} \int_{0}^{\infty} P(k) W_{\mu}(k, R) k^2 dk$$

In particular

$$\overline{V}_0 = \frac{4\pi}{3} R^3 \left(1 - \frac{\frac{4\pi}{3} R^3 \varrho_0}{2} \sigma^2(R) \right)$$
$$\overline{V}_3 = 1 - 2\pi \varrho_0 \int_0^{2R} \xi_2(r) r^2 dr$$

 \bullet For very small densities \rightarrow Gauss-Poisson point distributions

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{2} \int_{\mathcal{D}} \mathrm{d}^3 x_1 \xi_2(|\mathbf{x}_1|) V_{\mu}(B \cap B_{\mathbf{x}_1})$$

• Can be calculated from the theoretical power spectrum

$$\overline{V}_{\mu} = V_{\mu}(B) - \frac{\varrho_0}{\pi} \int_{0}^{\infty} P(k) W_{\mu}(k, R) k^2 dk$$

In particular

$$\overline{V}_0 = \frac{4\pi}{3} R^3 \left(1 - \frac{\frac{4\pi}{3} R^3 \varrho_0}{2} \sigma^2(R) \right)$$
$$\overline{V}_3 = 1 - 2\pi \varrho_0 \int_0^{2R} \xi_2(r) r^2 \mathrm{d}r$$

Higher order coefficients

• In general: Consider the modified Minkowski functionals

$$\overline{V}_{\mu} = V_{\mu}\left(B\right) + \sum_{n=1}^{\infty} \frac{\left(-\varrho_{0}\right)^{n}}{(n+1)!} \int_{\mathcal{D}} \mathrm{d}^{3}x_{1} .. \mathrm{d}^{3}x_{n} \xi_{n+1}\left(0, \mathbf{x}_{1}, .. \mathbf{x}_{n}\right) V_{\mu}\left(B \cap B_{\mathbf{x}_{1}} .. \cap B_{\mathbf{x}_{n}}\right)$$

as a power series in the density ϱ_0

$$\overline{V}_{\mu} = \sum_{n=0}^{\infty} \frac{b_{n+1}^{\mu}}{(n+1)!} \left(-\varrho_0\right)^n$$

with coefficients $b_{1}^{\mu} = V_{\mu}\left(B\right)$ and

$$b_{n+1}^{\mu} = \int_{\mathcal{D}} \xi_{n+1} \left(0, \mathbf{x}_1, \dots, \mathbf{x}_n \right) V_{\mu} \left(B \cap B_{\mathbf{x}_1} \cap \dots \cap B_{\mathbf{x}_n} \right) \mathrm{d}^3 x_1 \dots \mathrm{d}^3 x_n$$

1 Analysing structure with galaxy surveys

2 Minkowski functionals and boolean grain model

Analysis and data set

5 Conclusion

A. Wiegand (Albert Einstein Institut)

- Comparison of the structure in the SDSS LRGs with those in a simulation in three cases
 - For the complete Minkowski functional densities $v_{\mu}(R)$
 - For the reduced Minkowski functionals $\overline{V}_{\mu}\left(R
 ight)$
 - For the first two coefficients in the \overline{V}_{μ} -series
- Analysis of the dependence of \overline{V}_{μ} on integrals over higher correlation functions

The samples considered

- Consider luminous red galaxy sample of Kazin et al. (2010)
- Choose controllable boundary $ra \in [132^{\circ}, 235^{\circ}]$, $dec \in [-1^{\circ}, 60^{\circ}]$
- We used two samples:
 - »full sample« L < -21.2redshift $z \in [0.16, 0.35]$ number of galaxies 41,375
 - »bright sample« L < -21.8redshift $z \in [0.16, 0.44]$ number of galaxies 22,386
- Largest cubes in sample has sidelength of $452h^{-1}$ Mpc

The samples considered

- Consider luminous red galaxy sample of Kazin et al. (2010)
- Choose controllable boundary $ra \in [132^{\circ}, 235^{\circ}]$, $dec \in [-1^{\circ}, 60^{\circ}]$

• We used two samples:

• »full sample« L < -21.2redshift $z \in [0.16, 0.35]$ number of galaxies 41,375

- »bright sample« L < -21.8redshift $z \in [0.16, 0.44]$ number of galaxies 22,386
- Largest cubes in sample has sidelength of $452h^{-1}$ Mpc

The samples considered

- Consider luminous red galaxy sample of Kazin et al. (2010)
- Choose controllable boundary $ra \in [132^\circ, 235^\circ]$, dec $\in [-1^\circ, 60^\circ]$
- We used two samples:
 - »full sample« L < -21.2redshift $z \in [0.16, 0.35]$ number of galaxies 41,375
 - »bright sample« L < -21.8redshift $z \in [0.16, 0.44]$ number of galaxies 22,386
- Largest cubes in sample has sidelength of $452h^{-1}$ Mpc

- Use the simulations of the LasDamas collaboration (McBride et al. 2011)
- 4 × 40 simulations of a box big enough for the SDSS II volume
- Simulation overview:

Initial redshift	49
Box size	$2400h^{-1}{ m Mpc}$
# of particles	1280 ³
Particle mass	$4.6 \times 10^{11} h^{-1} M_{\odot}$

• Simulated cosmology:

Ω_m	Ω_{Λ}	Ω_b	h	σ_8	n_s
0.25	0.75	0.04	0.7	0.8	1.0

- Use the simulations of the LasDamas collaboration (McBride et al. 2011)
- 4 × 40 simulations of a box big enough for the SDSS II volume

• Simulation overview:

Initial redshift	49
Box size	$2400h^{-1}{ m Mpc}$
# of particles	1280 ³
Particle mass	$4.6 \times 10^{11} h^{-1} M_{\odot}$

• Simulated cosmology:

Ω_m	Ω_{Λ}	Ω_b	h	σ_8	n_s
0.25	0.75	0.04	0.7	0.8	1.0

25 / 41

- Use the simulations of the LasDamas collaboration (McBride et al. 2011)
- 4 × 40 simulations of a box big enough for the SDSS II volume
- Simulation overview:

Initial redshift	49
Box size	2400 <i>h</i> ⁻¹ Mpc
# of particles	1280^{3}
Particle mass	$4.6 \times 10^{11} h^{-1} M_{\odot}$

Simulated cosmology:

Ω_m	Ω_{Λ}	Ω_b	h	σ_8	n_s
0.25	0.75	0.04	0.7	0.8	1.0

- Use the simulations of the LasDamas collaboration (McBride et al. 2011)
- 4 × 40 simulations of a box big enough for the SDSS II volume
- Simulation overview:

Initial redshift	49
Box size	2400 <i>h</i> ⁻¹ Mpc
# of particles	1280^{3}
Particle mass	$4.6 \times 10^{11} h^{-1} M_{\odot}$

• Simulated cosmology:

Ω_m	Ω_{Λ}	Ω_b	h	σ_8	n_s
0.25	0.75	0.04	0.7	0.8	1.0

1 Analysing structure with galaxy surveys

2 Minkowski functionals and boolean grain model

3 Analysis and data set

5 Conclusion

Minkowski functional densities - full sample

• sum of isolated components *K*, plus the sum of cavities *C*, minus the holes *R*: $\chi = K + C - R$.

A. Wiegand (Albert Einstein Institut)

Minkowski functionals

SW7 Cargèse 2013 27 / 41

Minkowski functional densities - full sample

• sum of isolated components *K*, plus the sum of cavities *C*, minus the holes *R*: $\chi = K + C - R$.

Zoomed plot

 After substraction of the average the deviations are more visible and are not significant

Stability in the sample

Comparison of the two boxes seems consistent as well

Minkowski functional densities - bright sample

• Slight deviation of the v_{μ} in the galaxies and in the simulation

Zoomed plot

 After substraction of the average the deviations are more visible and are not significant • Use analytical dependence to derive series

$$\begin{aligned} V_0 &= -\log(1-v_0) \\ \overline{V}_1 &= \frac{v_1}{\varrho_0(1-v_0)} , \\ \overline{V}_2 &= \frac{v_2}{\varrho_0(1-v_0)} + \frac{3\pi}{8} \varrho_0 \left(\frac{v_1}{\varrho_0(1-v_0)}\right)^2 , \\ \overline{V}_3 &= \frac{v_3}{\varrho_0(1-v_0)} + \frac{9}{2} \varrho_0 \frac{v_2 v_1}{\varrho_0^2(1-v_0)^2} - \frac{9\pi}{8} \varrho_0^2 \left(\frac{v_1}{\varrho_0(1-v_0)}\right)^3 \end{aligned}$$

where

$$\overline{V}_{\mu} = V_{\mu}(B) + \sum_{n=1}^{\infty} \frac{\left(-\varrho_{0}\right)^{n}}{(n+1)!} \int_{\mathcal{D}} \mathrm{d}^{3}x_{1} .. \mathrm{d}^{3}x_{n}\xi_{n+1}(0, \mathbf{x}_{1}, .. \mathbf{x}_{n}) V_{\mu}\left(B \cap B_{\mathbf{x}_{1}} .. \cap B_{\mathbf{x}_{n}}\right)$$

Minkowski functionals

• Also in \overline{V}_{μ} there is a clear deviation from Poisson

$$\overline{V}_{\mu} = V_{\mu}(B) + \sum_{n=1}^{\infty} \frac{(-\varrho_0)^n}{(n+1)!} \int_{\mathcal{D}} \mathrm{d}^3 x_1 ... \mathrm{d}^3 x_n \xi_{n+1}(0, \mathbf{x}_1, ... \mathbf{x}_n) V_{\mu}(B \cap B_{\mathbf{x}_1} ... \cap B_{\mathbf{x}_n})$$

A. Wiegand (Albert Einstein Institut)

• To study the importance of higher order clustering use decomposition

$$\overline{V}_{\mu} = \sum_{n=0}^{\infty} \frac{b_{n+1}^{\mu}}{(n+1)!} \left(-\varrho_0\right)^n$$

with coefficients $b_{1}^{\mu} = V_{\mu}\left(B\right)$ and

$$b_{n+1}^{\mu} = \int_{\mathcal{D}} \xi_{n+1} \left(0, \mathbf{x}_1, \dots \mathbf{x}_n \right) V_{\mu} \left(B \cap B_{\mathbf{x}_1} \cap \dots \cap B_{\mathbf{x}_n} \right) \mathrm{d}^3 x_1 \dots \mathrm{d}^3 x_n$$

- Probe the sample at various densities ρ_0 :
 - Randomly choose a fixed number of points
 - Extract $\overline{V}_{\mu}(\varrho_0)$
 - Repeat O(1000) times to determine average and error

Density dependence

• Example for the ρ_0 -dependence of $\overline{V}_1(R)$ at a ball radius of $23h^{-1}{
m Mpc}$

Integrals of the two-point function

 Coefficients of the series expansion show that the data is consistent with theory

Integrals of the three-point function

$$b_{3}^{\mu} = \int_{\mathcal{D}} d^{3}x_{1} d^{3}x_{2} \xi_{3}(0, \mathbf{x}_{1}, \mathbf{x}_{2}) V_{\mu}(B \cap B_{\mathbf{x}_{1}}(R) \cap B_{\mathbf{x}_{2}}(R))$$

Importance of higher order correlations

• For high enough densities all higher terms are important

1 Analysing structure with galaxy surveys

- 2 Minkowski functionals and boolean grain model
- 3 Analysis and data set
- 4 Results

- Excellent observational data on galaxy structure is (becoming) available
- Minkowski functionals are useful for their characterization
- Minkowski functionals of the SDSS LRGs compatible with those in N-Body simulations
- Higher order correlations implicitely contained in and important for Minkowski functionals

- Excellent observational data on galaxy structure is (becoming) available
- Minkowski functionals are useful for their characterization
- Minkowski functionals of the SDSS LRGs compatible with those in N-Body simulations
- Higher order correlations implicitely contained in and important for Minkowski functionals

- Excellent observational data on galaxy structure is (becoming) available
- Minkowski functionals are useful for their characterization
- Minkowski functionals of the SDSS LRGs compatible with those in N-Body simulations
- Higher order correlations implicitely contained in and important for Minkowski functionals

- Excellent observational data on galaxy structure is (becoming) available
- Minkowski functionals are useful for their characterization
- Minkowski functionals of the SDSS LRGs compatible with those in N-Body simulations
- Higher order correlations implicitely contained in and important for Minkowski functionals

Questions? Remarques? Objections?