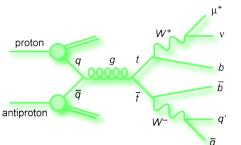


This is *NOT* a talk about quantum corrections in MG

CdR, Gabadadze, Heisenberg et Pirtskhalava, Phys. Rev. D **87**, 085017 (2013) CdR, Heisenberg, Ribeiro, soon (june?)



Pulsar tests of modified Gravity

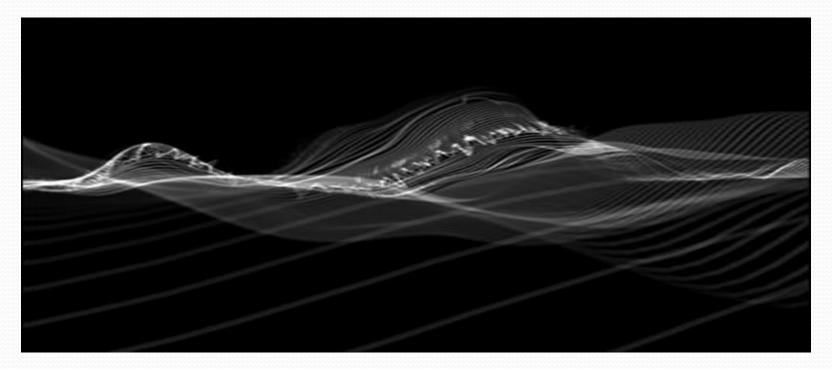
Claudia de Rham May 9th 2013

Work in Collaboration with Gregory Gabadadze, Lavinia Heisenberg, Andrew Matas, David Pirtskhalava and Andrew Tolley

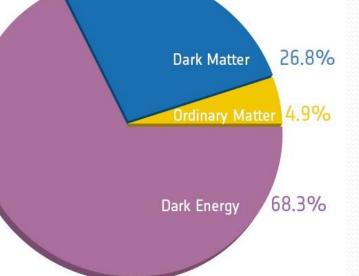
No students were harmed in the process of this work

GR has been a successful theory from mm length scales to **Cosmological scales** 10-6 10-10 10-14 10⁻¹⁸ -5 10⁻¹ period shift (s) Excluded region The Gravity Probe B 10⁰ 10-2 -10 Experiment 10-10-3 ... testing Einstein's Universe hc×10⁴⁰ 10-2 -1510-4 Frame-dragging Effect 10⁻³ 10-5 -39 milliarcseconds/year 000011 d-Then why Modify Gravity 1992 100

Why Modify Gravity ? There is little doubt that GR breaks down at high energy (Mpl ? TeV ???)

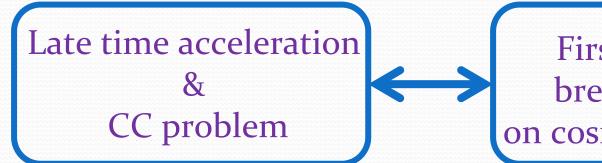


Why Modify Grav There is little doubt that at high energy (Mpl ?]



Does gravity break down in the IR ?

Is Modified Gravity an alternative to Dark Matter ???



First signs of the breakdown of GR on cosmological scales

Massive Gravity ?

If the graviton was massive, gravity would be weaker in the IR...

Massive Gravity ?

If the graviton was massive, gravity would be weaker in the IR...

How do we describe a theory of massive gravity ???

Stirring up a hornet's nest...

Massive Gravity ?

If the graviton was massive, gravity would be weaker in the IR...

How do we describe a theory of massive gravity ???
 without any ghost...
 & hiding the new dofs...

Stirring up a hornet's nest...

Massive Gravity

$$S = \int \sqrt{-g} \frac{M_{\rm Pl}^2}{2} R$$

Massive Gravity $S = \int \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \left(R - \text{Mass Term} \right)$

• The notion of mass requires a *reference* !

Massive Gravity

$$S = \int \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \left(R - \text{Mass Term} \right)$$

- The notion of mass requires a *reference* !
- Having the flat Metric as a Reference breaks
 Covariance !!! (Coordinate transformation invariance)
- The loss in symmetry generates new dof

$$\begin{array}{c} 2 + 4 = 6 \\ \text{GR} \leftarrow \text{Loss of 4 sym} \end{array}$$

Massive Gravity

$$S = \int \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \left(R - \text{Mass Term} \right)$$

- The notion of mass requires a *reference* !
- Having the flat Metric as a Reference breaks Covariance !!! (Coordinate transformation invalue)
- The loss in symmetry generates new dof

2 + 4 = 6 = 5

Boulware & Deser, PRD6, 3368 (1972)

$$\mathcal{U}_{\rm FP} = h_{\mu\nu}^2 - h^2$$

• Mass term for the fluctuations around flat space-time

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Fierz & Pauli, Proc.Roy.Soc.Lond.A 173, 211 (1939)

$$\mathcal{U}_{\rm FP} = h_{\mu\nu}^2 - h^2$$

• Mass term for the fluctuations around flat space-time

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

• Transforms under a change of coordinate

$$x^{\mu} \rightarrow x^{\mu} + \partial^{\mu} \xi$$

 $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\xi + \partial_{\mu}\partial_{\alpha}\xi\partial_{\nu}\partial^{\alpha}\xi$

$$\mathcal{U}_{\rm FP} = H_{\mu\nu}^2 - H^2$$

Mass term for the 'covariant fluctuations'

$$H_{\mu\nu} = h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\pi - \partial_{\mu}\partial_{\alpha}\pi\partial_{\nu}\partial^{\alpha}\pi$$

• Does not transform under that change of coordinate

$$x^{\mu} \rightarrow x^{\mu} + \partial^{\mu} \xi$$

 $h_{\mu\nu} \rightarrow h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\xi + \partial_{\mu}\partial_{\alpha}\xi\partial_{\nu}\partial^{\alpha}\xi$

 $\pi \rightarrow \pi - \xi$

$$\mathcal{U}_{\rm FP} = H_{\mu\nu}^2 - H^2$$

Mass term for the 'covariant fluctuations'

 $H_{\mu\nu} = h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\pi - \partial_{\mu}\partial_{\alpha}\pi\partial_{\nu}\partial^{\alpha}\pi$

• The potential has higher derivatives...

$$\mathcal{U}_{\rm FP} = \underbrace{\left(\partial_{\mu}\partial_{\nu}\pi\right)^2 - \left(\Box\pi\right)^2}_{\text{Total derivative}}$$

Fierz & Pauli, Proc.Roy.Soc.Lond.A 173, 211 (1939)

$$\mathcal{U}_{\rm FP} = H_{\mu\nu}^2 - H^2$$

Mass term for the 'covariant fluctuations'

 $H_{\mu\nu} = h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\pi - \partial_{\mu}\partial_{\alpha}\pi\partial_{\nu}\partial^{\alpha}\pi$

• The potential has higher derivatives...

$$\mathcal{U}_{\rm FP} = \underbrace{\left(\partial_{\mu}\partial_{\nu}\pi\right)^{2} - \left(\Box\pi\right)^{2}}_{\text{Total derivative}} + \underbrace{\left(\partial^{2}\pi\right)^{3} + \cdots}_{\begin{array}{c}\text{Ghost reappears at}\\\text{the non-linear level}\end{array}}$$

Deffayet & Rombouts, gr-qc/0505134

$$\mathcal{U}_{\rm FP} = H_{\mu\nu}^2 - H^2$$

 $\mathcal{U}_{\rm GF} = \mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2$

Ghost-free Massive Gravity $\mathcal{U}_{GF} = \mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2$

• Such that when neglecting $h_{\mu\nu}$, then $\mathcal{K}_{\mu\nu}|_{dec} = \partial_{\mu}\partial_{\nu}\pi$

$$H_{\mu\nu} = h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\pi - \partial_{\mu}\partial_{\alpha}\pi\partial_{\nu}\partial^{\alpha}\pi$$

CdR, Gabadadze, 1007.0443 CdR, Gabadadze, Tolley, 1011.1232

Ghost-free Massive Gravity $\mathcal{U}_{GF} = \mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2$

• Such that when neglecting $h_{\mu\nu}$, then $\mathcal{K}_{\mu\nu}|_{dec} = \partial_{\mu}\partial_{\nu}\pi$

CdR, Gabadadze, 1007.0443 CdR, Gabadadze, Tolley, 1011.1232

Ghost-free Massive Gravity $\mathcal{U}_{GF} = \mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2$

• Such that when neglecting $h_{\mu\nu}$, then $\mathcal{K}_{\mu\nu}|_{dec} = \partial_{\mu}\partial_{\nu}\pi$

$$\begin{aligned} H_{\mu\nu} &= h_{\mu\nu} + 2\partial_{\mu}\partial_{\nu}\pi - \partial_{\mu}\partial_{\alpha}\pi\partial_{\nu}\partial^{\alpha}\pi \\ & & & & \\ \mathcal{K}_{\mu\nu}^{2}|_{dec} & & \\ \mathcal{K}_{\mu\nu}^{2}|_{dec} \\ \end{aligned}$$
$$\begin{aligned} \mathcal{K}_{\nu}^{\mu}[H] &= \delta_{\nu}^{\mu} - \sqrt{\delta_{\nu}^{\mu} - H_{\nu}^{\mu}} \end{aligned}$$

 $= \delta^{\mu}_{\nu} - \sqrt{g^{\mu\alpha}\eta_{\alpha\nu}}$

CdR, Gabadadze, 1007.0443 CdR, Gabadadze, Tolley, 1011.1232

$$\mathcal{U}_{\rm GF} = \mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2$$

• With
$$\mathcal{K}^{\mu}_{\nu}[H] = \delta^{\mu}_{\nu} - \sqrt{\delta^{\mu}_{\nu} - H^{\mu}_{\nu}}$$

• Has no ghosts at leading order in the decoupling limit

$$\mathcal{U}_{\mathrm{GF}} = [\Pi^2] - [\Pi]^2 + \frac{h_{\mu\nu}}{M_{\mathrm{Pl}}} (\partial \partial \pi) + \cdots$$

 $= \delta^{\mu}_{\nu} - \sqrt{g^{\mu\alpha}\eta_{\alpha\nu}}$

 $\Pi_{\mu\nu} = \partial_{\mu}\partial_{\nu}\pi$

CdR, Gabadadze, 1007.0443 CdR, Gabadadze, Tolley, 1011.1232

 $\mathcal{K}_{\mu\nu}|_{\rm dec} = \partial_{\mu}\partial_{\nu}\pi$

• In the decoupling limit, $M_{\rm Pl} \rightarrow \infty$ $m \rightarrow 0$

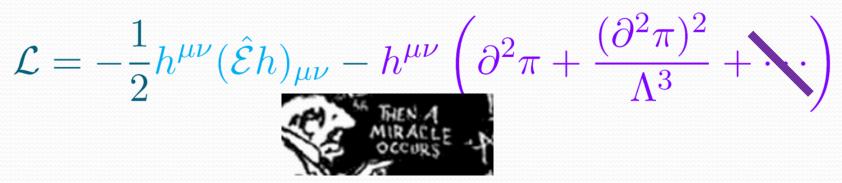
keeping $\Lambda = \left(M_{\rm Pl}m^2\right)^{1/3}$ fixed

• In the *decoupling limit*,

 $\mathcal{L} = -\frac{1}{2}h^{\mu\nu}(\hat{\mathcal{E}}h)_{\mu\nu} - h^{\mu\nu}\left(\partial^2\pi + \frac{(\partial^2\pi)^2}{\Lambda^3} + \cdots\right)$

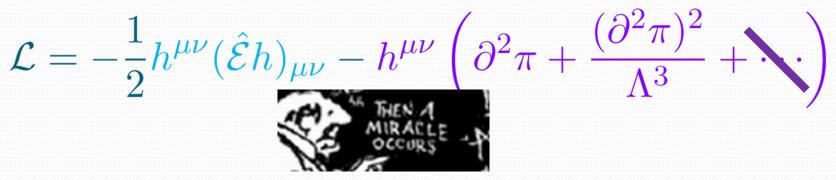


• In the *decoupling limit*,



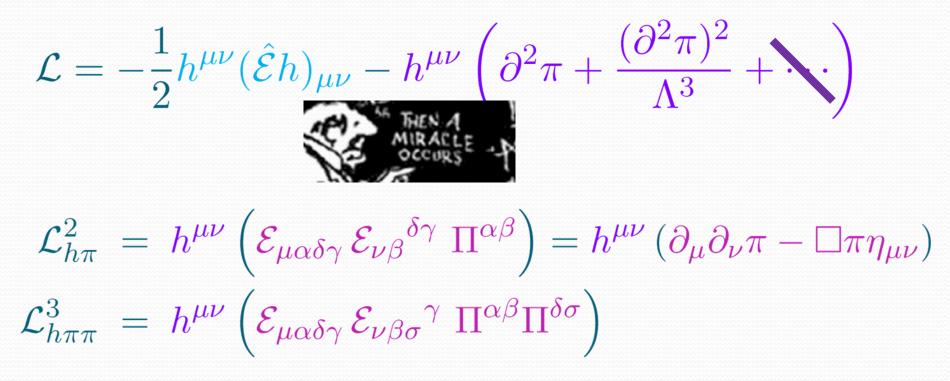
1. Only a finite number of interactions survive in the DL

• In the *decoupling limit*,



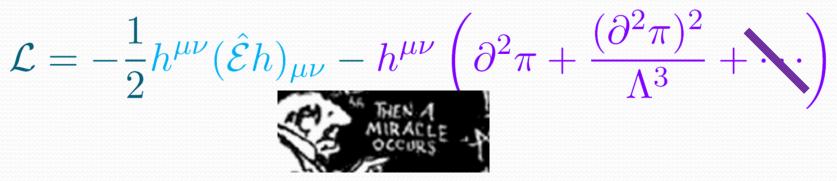
Only a finite number of interactions survive in the DL
 The surviving interactions have the VERY specific structure which prevents any ghost...

• In the *decoupling limit*,



 $\Pi_{\mu\nu} = \partial_{\mu}\partial_{\nu}\pi$

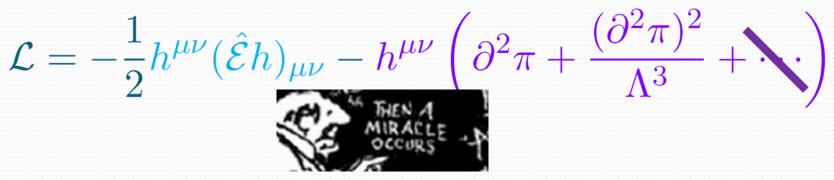
• In the *decoupling limit*,



- 1. Only a finite number of interactions survive in the DL
- 2. The surviving interactions have the VERY specific structure which prevents any ghost... CdR, Gabadadze, 1007.0443 CdR Gabadadze, Tolley, 101, 1222
- The absence of ghosts can be shown to all orders beyond the decoupling limit

CdR, Gabadadze, 1007.0443 CdR, Gabadadze, Tolley, 1011.1232 Hassan & Rosen, 1106.3344 CdR, Gabadadze, Tolley, 1107.3820 CdR, Gabadadze, Tolley, 1108.4521 Hassan & Rosen, 1111.2070 Hassan, Schmidt-May & von Strauss, 1203.5283

• In the *decoupling limit*,



- 1. Only a finite number of interactions survive in the DL
- 2. The surviving interactions have the VERY specific structure which prevents any ghost...
- 3. The theory is invariant under the symmetry

 $\pi \to \pi + c + v_\mu x^\mu$

• In the *decoupling limit*,

$$\mathcal{L} = -\frac{1}{2}h^{\mu\nu}(\hat{\mathcal{E}}h)_{\mu\nu} - h^{\mu\nu}\left(\partial^2\pi + \frac{(\partial^2\pi)^2}{\Lambda^3} + \cdot\cdot\right)$$

After diagonalization, we are left with nothing else but the Galileon type of interactions

$$\mathcal{L} = -\frac{1}{2}h^{\mu\nu}(\hat{\mathcal{E}}h)_{\mu\nu} + (\partial\pi)^2 \left(1 + \frac{\Box\pi}{\Lambda^3} + \frac{(\Box\pi)^2 - (\partial_\mu\partial_\nu\pi)^2}{\Lambda^6}\right) + \frac{1}{2M_{\rm Pl}}h_{\mu\nu}T^{\mu\nu} + \frac{\pi}{M_{\rm Pl}}T + \frac{1}{M_{\rm Pl}\Lambda^3}\partial_\mu\pi\partial_\nu\pi T^{\mu\nu}$$

$$\mathcal{U}_{\rm GF} = \left(\mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2\right) + \alpha_3 \left(\mathcal{K}^3 + \cdots\right) + \alpha_4 \left(\mathcal{K}^4 + \cdots\right)$$

- In 4d, there is a 2-parameter family of ghost free theories of massive gravity
 CdR, Gabadadze, 1007.0443
- Absence of ghost has now been proved fully nonperturbatively in many different languages

$$\mathcal{U}_{\rm GF} = \left(\mathcal{K}_{\mu\nu}^2 - \mathcal{K}^2\right) + \alpha_3 \left(\mathcal{K}^3 + \cdots\right) + \alpha_4 \left(\mathcal{K}^4 + \cdots\right)$$

- In 4d, there is a **2-parameter family** of ghost free theories of massive gravity
- Absence of ghost has now been proved fully nonperturbatively in many different languages
- As well as around *any reference metric*, be it dynamical or not -> BiGravity !!!

Hassan, Rosen & Schmidt-May, 1109.3230 Hassan & Rosen, 1109.3515

One can construct a consistent theory of massive gravity around any reference metric which

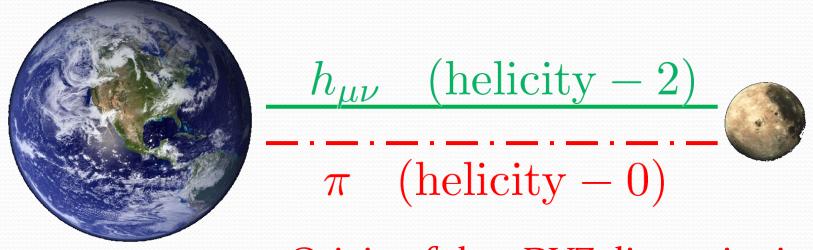
- propagates **5** dof in the graviton (free of the BD ghost)

- one of which is a **helicity-o** mode which behaves as a scalar field couples to matter πT

- "hides" itself via a Vainshtein mechanism

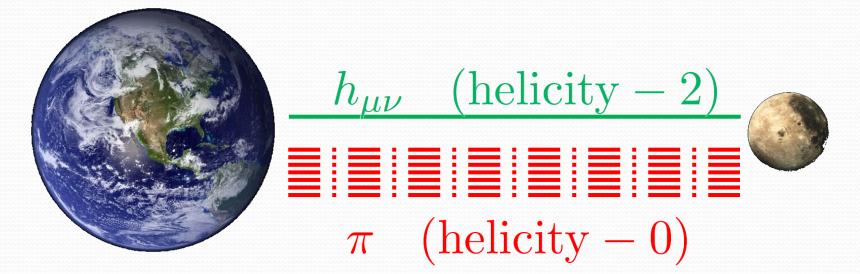
Vainshtein, PLB**39**, 393 (1972)

Vainshtein Mechanism



Origin of the vDVZ discontinuity

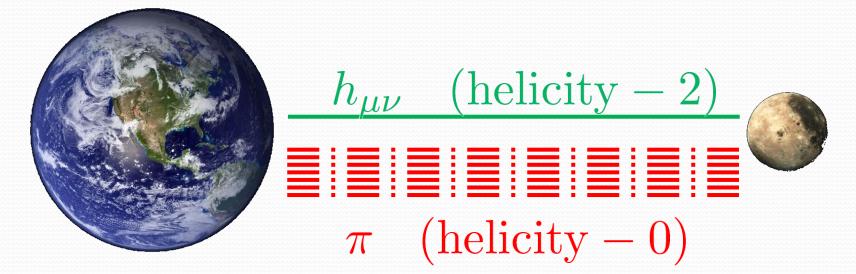
van Dam & Veltman, Nucl.Phys.B 22, 397 (1970) Zakharov, JETP Lett.12 (1970) 312



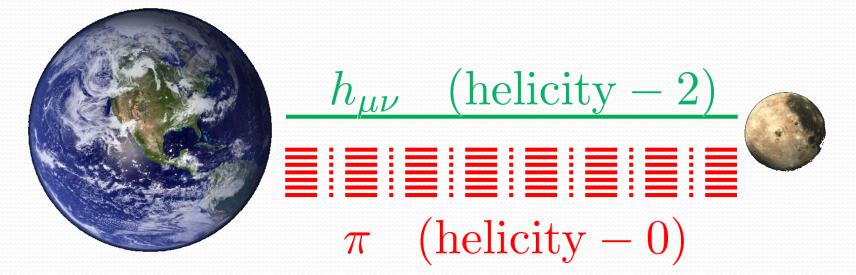
The non-linearities are essential in screening the helicity-o mode

Babichev & Deffayet, 1304.7240

Vainshtein, PLB**39**, 393 (1972)



The interactions for the helicity-o mode are important at a very low energy scale, $\Lambda \ll M_{\rm Pl}$



The interactions for the helicity-o mode are important at a very low energy scale, $\Lambda \ll M_{\rm Pl}$

The easiest way to see this is to work in the decoupling limit

• Close to a source the interactions are important

$$\Box \pi + \frac{1}{\Lambda^3} \left((\Box \pi)^2 + \cdots \right) = -T$$

• Perturbations end up being weakly coupled to matter, $\pi = \pi_0 + \delta \pi$

$$\left(1 + \frac{\Box \pi_0}{\Lambda^3} + \cdots\right) \Box \delta \pi = -\frac{1}{M_{\rm Pl}} \delta T$$
$$Z\left(\partial^2 \pi_0\right) \gg 1$$

• Close to a source the interactions are important

$$\Box \pi + \frac{1}{\Lambda^3} \left((\Box \pi)^2 + \cdots \right) = -T$$

• Perturbations end up being weakly coupled to matter, $\pi = \pi_0 + \delta \pi / \sqrt{Z}$

$$\Box \widehat{\delta \pi} = -\frac{1}{ZM_{\rm Pl}} \delta T$$

$$\boxed{Z = 1 + \frac{\partial^2 \pi_0}{\Lambda^3} + \dots \gg 1}$$

- Well understood for Static & Spherically Symmetric configurations e.g. $T_0 = -M_{\odot}\delta^{(3)}(r)$
- Background is analytic for $\pi'_0(r)$

$$\frac{\pi_0'}{r} + \frac{1}{\Lambda^3} \left(\frac{\pi_0'}{r}\right)^2 = \frac{M_{\odot}}{4\pi M_{\rm Pl} r^3}$$

- Well understood for Static & Spherically Symmetric configurations e.g. $T_0 = -M_{\odot}\delta^{(3)}(r)$
- Background is analytic for $\pi'_0(r)$

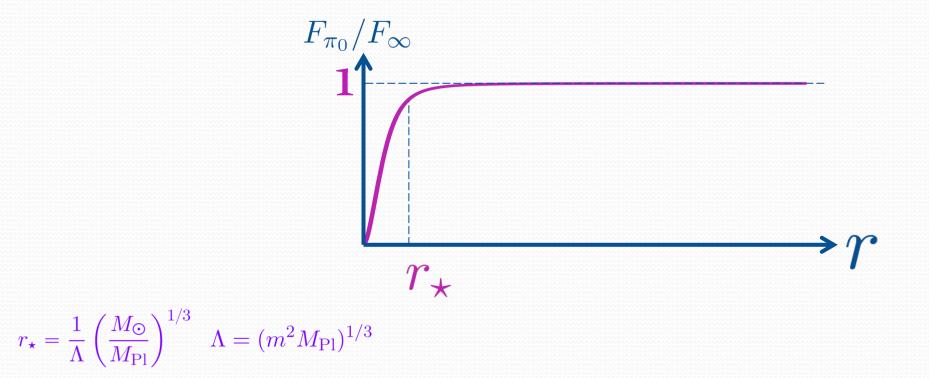
$$\frac{\pi_0'}{r} + \frac{1}{\Lambda^3} \left(\frac{\pi_0'}{r}\right)^2 = \frac{M_{\odot}}{4\pi M_{\rm Pl} r^3}$$

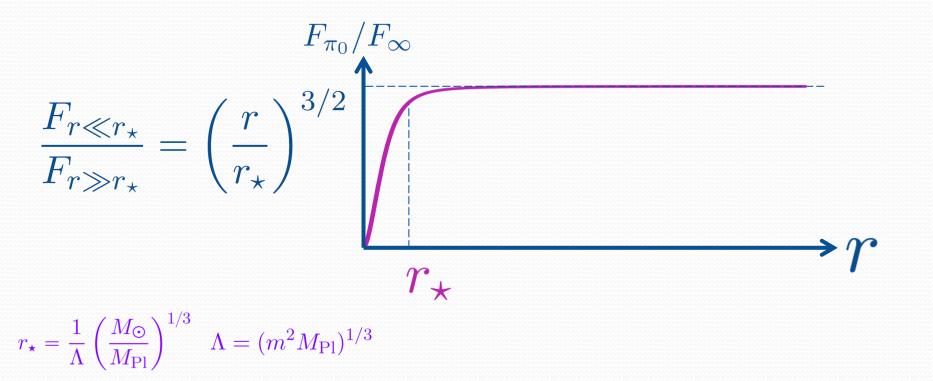
Vainshtein radius: $r_{\star} = \frac{1}{\Lambda} \left(\frac{M_{\odot}}{M_{\rm DI}}\right)^{1/3}$

- Well understood for Static & Spherically Symmetric configurations e.g. $T_0 = -M_{\odot}\delta^{(3)}(r)$
- Background is analytic for $\pi'_0(r)$

$$\frac{\pi_0'}{r} + \frac{1}{\Lambda^3} \left(\frac{\pi_0'}{r}\right)^2 = \frac{M_{\odot}}{4\pi M_{\rm Pl} r^3}$$

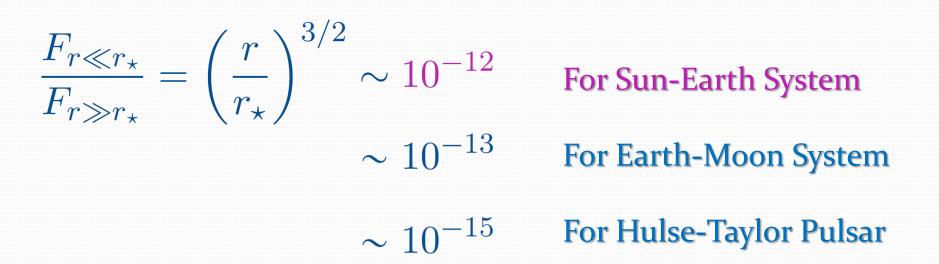
Vainshtein radius: $r_{\star} = \frac{1}{\Lambda} \left(\frac{M_{\odot}}{M_{\rm Pl}}\right)^{1/3}$ for $r \gg r_{\star}$, $\pi'_{0}(r) \sim \frac{M_{\odot}}{M_{\rm Pl}} \frac{1}{r^{2}}$ for $r \ll r_{\star}$, $\pi'_{0}(r) \sim \frac{M_{\odot}}{M_{\rm Pl}} \frac{1}{r_{\star}^{3/2} \sqrt{r}}$

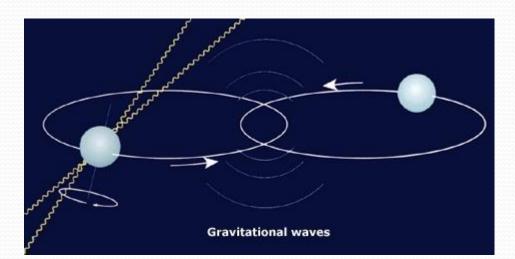


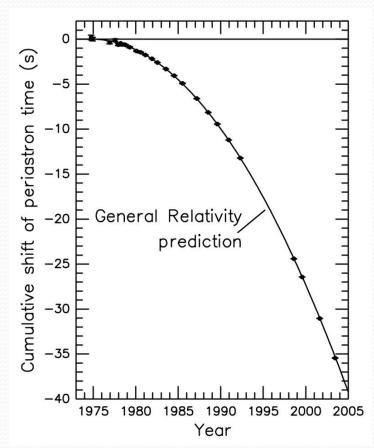


$$\frac{F_{r \ll r_{\star}}}{F_{r \gg r_{\star}}} = \left(\frac{r}{r_{\star}}\right)^{3/2} \sim 10^{-12} \quad \text{For Sun-Earth System}$$

$$for \qquad \begin{cases} r \sim 1UA \\ M = M_{\odot} \\ \Lambda \sim (1000 \text{ km})^{-1} \text{ or } m \sim H_0 \sim 10^{-33} \text{ eV} \end{cases}$$







1. Method Effective Action Approach described by Goldberger & Rothstein hep-th/0409156 & subsequent literature

1. Method Effective Action Approach

2. Monopole & Quadrupole Radiation

Vainshtein Suppression in the Monopole $~\sim$

Vainshtein Suppression in the Quadrupole

$$rac{1}{\left(\Omega_p r_\star
ight)^{3/2}} \ rac{1}{\left(\Omega_p r_\star
ight)^{3/2}} rac{1}{\Omega_p ar r}$$

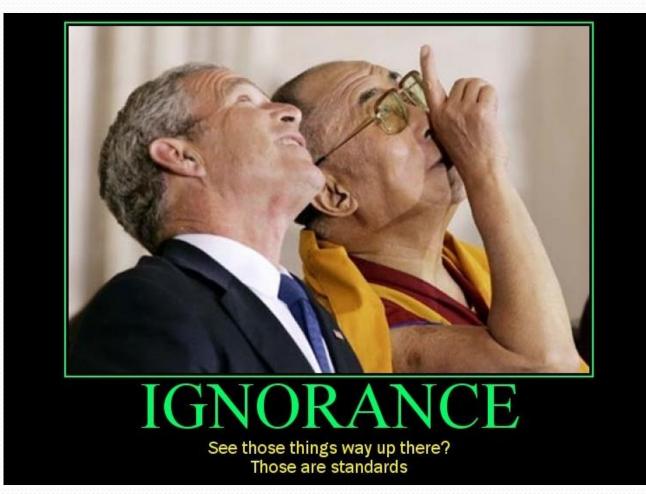
1. Method Effective Action Approach

2. Monopole & Quadrupole Radiation in Simplest Galileon

3. Subtleties in General Galileon Model...

What is an EFT ?

A Clever way to parameterize our "ignorance"



What is an EFT ?

- A Clever way to parameterize our "ignorance"
- Instead of trying to solve the *full theory*, we only include the most important contributions in the Effective description
- This makes sense when there is Hierarchy of scales.

Hierarchy of Scales

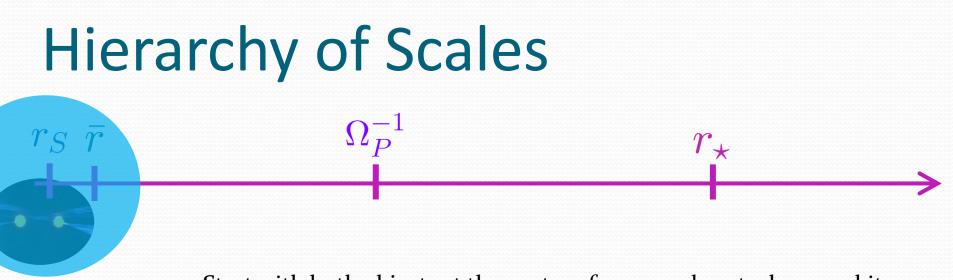
 Ω_P^{-1}

 $r_S \sim 10 \text{ km}$ $\bar{r} \sim 10^6 \text{ km}$ $\Omega_P^{-1} \sim 10^9 \text{ km}$ $r_\star \sim 10^{15} \text{ km}$

 $r_S \ ar r$

$$r_S \ll \bar{r} \ll \Omega_P^{-1} \ll r_\star \ll m^{-1}$$

 r_{\star}



Start with both objects at the center of mass and perturb around it

 $T = \underbrace{T_0}_{0} + \delta T$ Total mass at center of mass $\pi = \pi_0(r) + \underbrace{\phi}_{\text{Radiation emitted by that scalar}}$

• Start with the Cubic Galileon $S_{\text{Gal}} = \int \mathrm{d}^4 x \left(-\frac{1}{2} (\partial \pi)^2 + \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{\text{Pl}}} \pi T \right)$

 $T = (T_0) + \delta T$

 $\pi = \pi_0(r) + \phi$

Total mass at center of mass

Radiation emitted by that scalar

• Start with the Cubic Galileon

$$S_{\text{Gal}} = \int \mathrm{d}^4 x \left(-\frac{1}{2} Z(\pi_0) (\partial \phi)^2 + \frac{1}{M_{\text{Pl}}} \phi \delta T \right)$$

$$T = \underbrace{T_0}_{h} + \delta T$$
Total mass at center of mass
$$\pi = \pi_0(r) + \underbrace{\phi}_{Radiation emitted by that scalar}$$

• Start with the Cubic Galileon

$$S_{\text{Gal}} = \int \mathrm{d}^4 x \left(-\frac{1}{2} Z(\pi_0) (\partial \phi)^2 + \frac{1}{M_{\text{Pl}}} \phi \delta T \right)$$

Integrate out the scalar field

$$\phi(x) = \frac{i}{M_{\rm Pl}} \int \mathrm{d}^4 x' G_F(x, x') \delta T(x')$$

 $Z(\partial^2 \pi_0(r)) \,\partial_x^2 G_F(x, x') = i\delta^4(x - x')$

• Start with the Cubic Galileon

$$S_{\text{Gal}} = \int \mathrm{d}^4 x \left(-\frac{1}{2} Z(\pi_0) (\partial \phi)^2 + \frac{1}{M_{\text{Pl}}} \phi \delta T \right)$$

• Integrate out the scalar field

$$S_{\rm eff} = \frac{i}{2M_{\rm Pl}^2} \int d^4x \, d^4x' \, \delta T(x) G_F(x, x') \delta T(x')$$

 $Z(\partial^2 \pi_0(r)) \,\partial_x^2 G_F(x, x') = i\delta^4(x - x')$

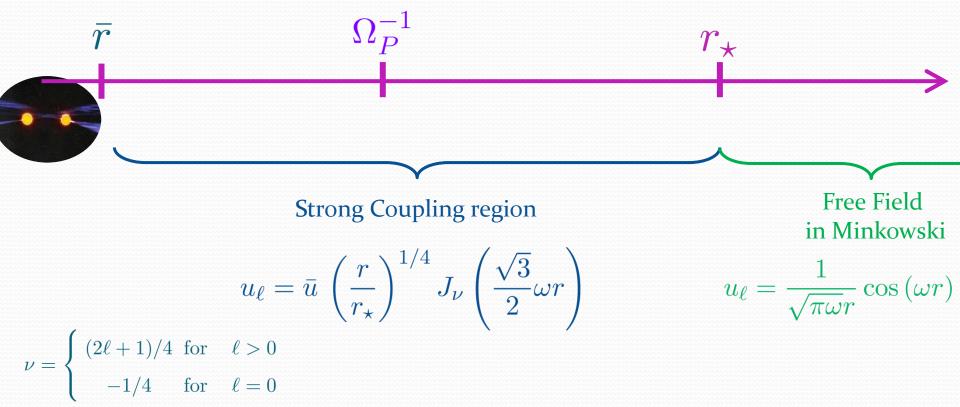
- The average power emitted can then be computed out of the Im part of the effective action $\langle d\mathcal{E} \rangle = \int_{-\infty}^{\infty} \int_{-$
- $P = -\left\langle \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} \right\rangle = \int_0^\infty \mathrm{d}\omega \,\omega f(\omega) \quad \text{with} \quad \frac{2}{T_P} \mathrm{Im}S_{\mathrm{eff}} = \int \mathrm{d}\omega f(\omega)$

- The average power emitted can then be computed out of the Im part of the effective action $P = -\left\langle \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} \right\rangle = \int_0^\infty \mathrm{d}\omega \,\omega f(\omega) \quad \text{with} \quad \frac{2}{T_P} \mathrm{Im}S_{\mathrm{eff}} = \int \mathrm{d}\omega f(\omega)$
 - In terms of the modes spherical harmonic space $Z \partial_x^2 \left[u_\ell(r) Y_{\ell m}(\Omega) e^{-i\omega t} \right] = 0$

$$P \sim \sum_{n=0}^{\infty} \sum_{\ell,m} (n\Omega_P) \left| \frac{1}{M_{\rm Pl} T_P} \int_0^{T_P} \mathrm{d}t \mathrm{d}^3 x \, \boldsymbol{u}_{\ell}(\boldsymbol{r}) Y_{\ell,m} e^{-in\Omega_P t} \delta T \right|^2$$

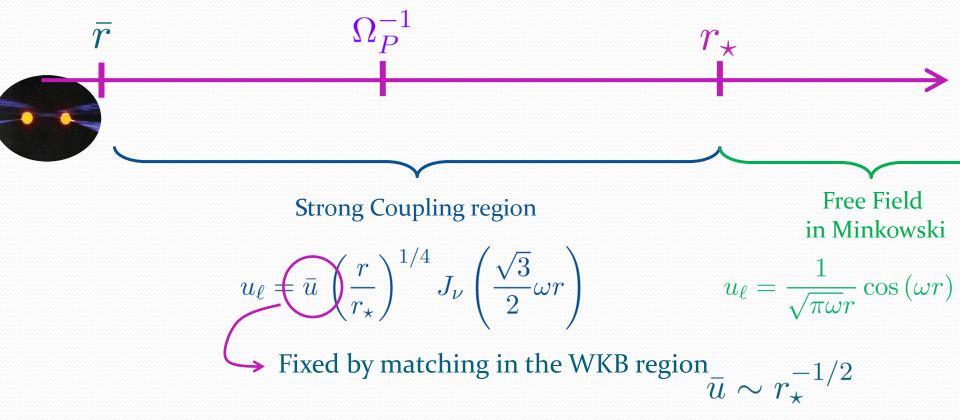
Normalization

• We choose the normalization by matching to the correct modes at infinity



Normalization

• We choose the normalization by matching to the correct modes at infinity



Monopole

- The leading order contribution to the monopole vanishes by conservation of energy...
- The first relativistic correction gives

$$\delta T = -\left[\sum_{i=1,2} M_i \left(1 - \frac{1}{2} (\omega r_i(t))^2 + \dots\right) \delta^{(3)}(\vec{x} - \vec{x}_i(t)) - M \delta^{(3)}(\vec{x})\right]$$

$$u_0(r) \sim \frac{1}{(\omega r_\star^3)^{1/4}} \left(1 - \frac{1}{4} (\omega r)^2 + \cdots \right)$$

With $r_i(t) = \frac{\bar{r}(1-e^2)}{1+e\cos\Omega_P t} \frac{M_{2,1}}{M}$

Monopole

- The leading order contribution to the monopole vanishes by conservation of energy...
- The first relativistic correction gives

$$P_{\bar{\mathrm{Mon}}_{i=1,2}^{-}} \left[\sum_{i=1,2}^{M_{i}} \left(\sim \frac{1}{2} \frac{\left(\Omega_{P} \bar{r}\right)^{4}}{\left(\Omega_{P} r_{\star}\right)^{2}} \frac{\mathcal{M}^{2}}{\delta^{(3)}(\bar{x} - \bar{x}_{i})} \mathcal{M}^{2}_{\bar{P}} M \delta^{(3)}(\bar{x}) \right] \right]$$

 $\underset{u_0(r)}{\text{Vainshtein Suppression Lin the Monopole}} \sim \frac{1}{(\Omega_p r_\star)^{3/2}}$

For the Hulse-Taylor Pulsar $r_i(t) = \frac{10}{1 + e \cos \Omega_P t} \frac{M_{2,1}}{M}$

Quadrupole

- A priori the quadrupole is suppressed by a few powers of velocity compared to the monopole...
- But does not need to include to relativistic corrections

$$u_2(r) \sim \frac{(\omega r)^{3/2}}{(\omega r_\star^3)^{1/4}} + \cdots$$

Quadrupole

- A priori the quadrupole is suppressed by a few powers of velocity compared to the monopole...
- But does not need to include to relativistic corrections

$$P_{\text{Quadrupole}} \sim rac{\left(\Omega_P ar{r}
ight)^3}{\left(\Omega_P r_\star\right)^{3/2}} rac{\mathcal{M}^2}{M_{ ext{Pl}}^2} \Omega_P^2$$

Vainshtein Suppression in the Quadrupole ~ $\frac{1}{(\Omega_p r_{\star})^{3/2}} \frac{1}{\Omega_p \bar{r}}$

For the Hulse-Taylor Pulsar $\sim 10^{-8}$

Quartic Galileon

- In the Quartic Galileon, the angular direction is *not screened as much* as along the others
- The quadrupole is screened compared to GR $\frac{P_{\text{Quadrupole}}^{\text{Quadrupole}}}{P_{\text{GR}}^{\text{Quadrupole}}} \sim \frac{1}{\left(\Omega_P r_{\star}\right)^2} \sim 10^{-12} \text{ III}$
- But many multipoles contribute to the power with the same magnitude...

Quartic Galileon

- In the Quartic Galileon, the angular direction is *not screened as much* as along the others
- The quadrupole is screened compared to GR $\frac{P_{\text{Quadrupole}}^{\text{Quadrupole}}}{P_{\text{GR}}^{\text{Quadrupole}}} \sim \frac{1}{\left(\Omega_P r_{\star}\right)^2} \sim 10^{-12} \text{ III}$
- But many multipoles contribute to the power with the same magnitude...
 - Multipole expansion breaks down

• In the Cubic Galileon, the Effective metric for perturbations had of the same behavior along all directions

$$S_{\text{Gal}} = \int d^4 x \left(-\frac{1}{2} (\partial \pi)^2 + \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{1}{M_{\text{Pl}}} \pi T \right)$$
$$\pi = \pi_0(r) + \phi \qquad \checkmark$$
$$S_{\text{Gal}} = \int d^4 x \left(-\frac{1}{2} Z^{\mu\nu}(\pi_0) \partial_\mu \phi \partial_\nu \phi + \frac{1}{M_{\text{Pl}}} \phi \delta T \right)$$

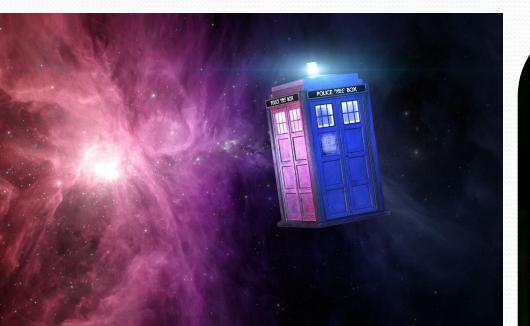
• In the Cubic Galileon, the Effective metric for perturbations had of the same behavior along all directions

• In the Quartic Galileon, the Effective metric for perturbations is *different* along different directions

$$Z_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} \sim \left(\frac{\pi_0'}{\Lambda^3 r}\right)^2 \left(-\mathrm{d}t^2 + \mathrm{d}r^2 + r_{\star}^2\mathrm{d}\Omega^2\right)$$

 In the Quartic Galileon, the Effective metric for perturbations is *different* along different directions

 $Z_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} \sim \left(\frac{\pi_0'}{\Lambda^3 r}\right)^2 \left(-\mathrm{d}t^2 + \mathrm{d}r^2 + r_{\star}^2\mathrm{d}\Omega^2\right)$



0000H the TARDIS is bigger on the inside?

Next thing you"re going to tell me is that I'm a Time Lord!

Quartic Galileon

• Perturbations are under control when there is another Hierarchy of scales

eg. hierarchy of mass between the two objects Solar System

• For a generic binary pulsar system, one needs to do perturbations about a different background...

Massive Gravity

- In some limit, MG looks like a quartic Galileon...
- However the static spherically symmetric solution is unstable
- Instead the stable solution behaves as

 $\pi_0 = \bar{\pi}_0(r) + c t^2$

Berezhiania, Chkareulib & Gabadadze, 1302.0549

Massive Gravity

- In some limit, MG looks like a quartic Galileon...
- However the static spherically symmetric solution is unstable
- Instead the stable solution behaves as $\pi_0 = \bar{\pi}_0(r) + c \ t^2$

Brings perturbation theory back into control

Outlook

- Massive Gravity is a specific framework to study IR modifications of Gravity
- It could play a role for
 - the late-time acceleration of the Universe
 - the cosmological constant problem
- We now have the theoretical formalism to describe a stable theory of massive gravity
- It behaves a scalar-tensor Galileon theory in some limit, hand in hand with a Vainshtein mechanism

Outlook

- The scalar field opens new channels of radiations which would have been observable in binary pulsar systems if they were not Vainshtein screened.
- The monopole is suppressed by a factor of $\frac{1}{(\Omega_p r_{\star})^{3/2}}$ • The quadrupole is suppressed by $\frac{1}{(\Omega_p r_{\star})^{3/2}} \frac{1}{\Omega_p \bar{r}}$
- While this suppression makes these effects unobservable in binary pulsar, it shows that the Vainshtein mechanism is much more subtle in time-dependent configurations.