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Introduction

Quantum field theory in curved spacetime is a semiclassical approximation of
quantum gravity.

In quantum field theory in curved spacetime :

first,
we treat classically the spacetime metric gµν

and, on the other hand,
we consider from a quantum point of view all the other fields including the graviton
field to at least one-loop order for reasons of consistency.

This approach

avoids the difficulties due to the nonrenormalizability of quantum gravity
and

provides a framework which permits us to study the low-energy consequences of a
hypothetical ”theory of everything”.
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Semiclassical Einstein equations of quantum field theory in curved spacetime

In this presentation we consider a four-dimensional curved spacetime (M, g)
without boundary.

In quantum field theory in curved spacetime, it is conjectured that the back
reaction of a quantum field on the spacetime geometry is governed by the semi-
classical Einstein equations

Gµν = 8π〈Tµν〉ren

where

Gµν is the Einstein tensor Rµν − 1
2
gµνR + Λgµν or some higher-order generalization

of this geometrical tensor,
and
〈Tµν〉ren is the renormalized stress-energy tensor of the quantum field or, more
precisely, the renormalized expectation value of the stress-energy tensor operator
associated with the quantum field.
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Successes of quantum field theory in curved spacetime

This approach allowed theoretical physicists to obtain fascinating results con-
cerning early universe cosmology and quantum black hole physics. In particular,
it permits to discover

particle creation in expanding universes (Parker, 1969),
the black hole radiance (Hawking, 1975).

Moreover, it provides the natural framework to analyze the cosmic microwave
background observations made in recent years.

Furthermore, the semiclassical Einstein equations have been used

by Starobinsky (1980) to show that, after the Planck era, quantum effects lead to
an inflationary universe, i.e., a universe with an exponentially expanding de Sitter
phase,
by several authors to analyze the dynamics of evaporating black holes due to Hawk-
ing radiation [see, e.g., Bardeen (1981), Hiscock (1981), etc.],
to explain the acceleration of the expansion of the universe [see, e.g., Parker and
Vanzella (2004)].
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Difficulties with the semiclassical Einstein equations

However, the back reaction problem is in general difficult to tackle :

the semiclassical Einstein equations are a set of coupled nonlinear hyperbolic partial
differential equations
it is in general difficult to define the right-hand side of these equations, i.e., to
construct the renormalized stress-energy tensor.

Indeed, the expectation value of the stress-energy tensor operator is formally
infinite and it is necessary to regularize it, i.e.,

to extract from this formally infinite quantity a meaningful finite part
to renormalize all the coupling constants appearing in the problem in order to remove
the remaining infinite part.

Currently, there are some powerful procedures permitting us to construct it :

the adiabatic regularization method,
the dimensional regularization method,
the ζ-function approach,
the point-splitting method ...
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Difficulties with the semiclassical Einstein equations (2)

It is however important to note that, in order to obtain an analytical expres-
sion for the renormalized stress-energy tensor in a four-dimensional gravitational
background, we have to work under very strong hypotheses, e.g.

we have to consider field theories in maximally symmetric spacetimes,
we have to study massless or conformally invariant field theories on very particular
spacetimes.

In most cases, it is even impossible to construct, from a practical point of view,
the renormalized stress-energy tensor and, when this is possible, it is necessary
to perform a numerical analysis in order to extract its physical content.

So, it is interesting to note that various approaches have been developed which
permit us to deal with situations presenting a “lower degree of symmetry” and to
construct, in this context, accurate analytical approximations of the renormalized
stress-energy tensor.

In this presentation, we shall focus on the approximation which is based on the
DeWitt-Schwinger expansion of the effective action associated with a massive
quantum field.
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Effective action

The mean value of the stress-energy tensor 〈Tµν〉 is derived functionally with
respect to the metric tensor gµν from the effective action W associated with a
quantum field, i.e.

〈Tµν〉 =
2√
−g

δ

δgµν
W .

At one-loop order, the effective action W takes the following form

W = − i

2
Tr ln(−GF )

where GF is the Feynman propagator verifying the equation

D̂xG
F (x , x ′) = −δ(x , x ′)

with δ(x , x ′) = [−g(x)]−1/2 δ(x − x ′) and D̂x a minimal differential operator of
second order.
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DeWitt-Schwinger representation of the Feynman propagator

The DeWitt-Schwinger representation of the Feynman propagator GF is given
by

GF
DS (x , x ′) = i

∫ ∞
0

ds H(s, x , x ′).

The function H(s, x , x ′) is called the heat kernel and satisfies the “heat equation”(
i
∂

∂s
+ D̂x

)
H(s, x , x ′) = 0 for s > 0

with the boundary condition

H(s, x , x ′)→ δ(x , x ′) for s → 0.

H(s, x , x ′) can be expanded for s → 0 and x ′ near x and then has the form

H(s, x , x ′) =
i

(4πis)d/2
exp

(
i

2s
[σ(x , x ′) + iε]− is m2

) ∞∑
n=0

An(x , x ′)(is)n.
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DeWitt-Schwinger representation of the Feynman propagator (2)

H(s, x , x ′) =
i

(4πis)d/2
exp

(
i

2s
[σ(x , x ′) + iε]− is m2

) ∞∑
n=0

An(x , x ′)(is)n

Here, d denotes the dimension of spacetime and we shall take d = 4 at the end
of the calculations.

The so-called geodetic interval σ(x , x ′) is a biscalar function which is defined as
half of the square of the geodesic distance between x and x ′ and which satisfies
2σ(x , x ′) = σ;µσ;µ. We recall also that

σ(x , x ′) < 0 if x and x ′ are timelike related,
σ(x , x ′) = 0 if x and x ′ are null related,
σ(x , x ′) > 0 if x and x ′ are spacelike related.

The DeWitt coefficients An(x , x ′) are biscalar functions, symmetric in the ex-
change of x and x ′ and regular for x ′ → x . The heat equation and the boundary
condition satisfied by H(s, x , x ′) permit us to find the recursion relations for these
coefficients.
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DeWitt coefficients

The DeWitt coefficients An(x , x ′) are purely geometrical two-point functions
formally independent of the dimension d of spacetime.

The coefficients of lowest orders encode the short-distance singular behavior of
the Feynman propagator. As consequence, their determination is an important
problem.

Unfortunately, in general, these coefficients cannot be determined exactly. It
is however possible to look for them in the form of a covariant Taylor series
expansion for x ′ in the neighborhood of x

An(x , x ′) = an(x)− anµ1 (x)σ;µ1 (x , x ′) +
1

2!
anµ1µ2 (x)σ;µ1 (x , x ′)σ;µ2 (x , x ′)

− 1

3!
anµ1µ2µ3 (x)σ;µ1 (x , x ′)σ;µ2 (x , x ′)σ;µ3 (x , x ′) + . . .

The construction of these coefficients can be done with the covariant recursive
method of DeWitt and with the modern covariant nonrecursive approach of
Avramidi.
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DeWitt coefficients (2)

The diagonal DeWitt coefficients an(x) = An(x , x) appear in connection with

the renormalization in the effective action for quantum field theories and quantum
gravity,

the determination of gravitational anomalies for conformal theories.

It must be noted that the off-diagonal DeWitt coefficients is of fundamental
importance in other different contexts :

in stochastic semiclassical gravity,

in connection with the self-force problem of gravitational wave theory,

etc.
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Renormalized effective action

The DeWitt-Schwinger representation of the Feynman propagator GF permits
us to rewrite the effective action W at one-loop order in the form

W = − i

2
Tr ln(−GF

DS ) =

∫
M

dx
√
−g

{
1

2(4π)d/2

∞∑
n=0

Γ (n − d/2)

(m2)n−d/2
an(x)

}

where an(x) = An(x , x) are the diagonal DeWitt coefficients.

The expression between the braces corresponds to the Lagrangian density.

If d is even, it is easy to see that in the sum the first d/2 + 1 terms are divergent
and we have W = Wdiv + Wren.

In a four-dimensional spacetime

The three terms involving the diagonal DeWitt coefficients a0(x), a1(x) and a2(x)
correspond to the divergent part of the effective action Wdiv. In order to remove
this infinite part all the coupling constants must be redefined.
All the other terms in W contribute to the renormalized effective action Wren.

Renormalized effective action and approximate renormalized stress-energy tensor SW-8 May 2014 12 / 27



Introduction Renormalized effective action Approximate renormalized stress-energy tensor Conclusion

Approximate renormalized stress-energy tensor

In a four-dimensional curved spacetime without boundary, by functional deriva-
tion respect to the metric tensor gµν of the renormalized effective action Wren

we obtain the renormalized stress-energy tensor

〈Tµν〉ren =
2√
−g

δ

δgµν
Wren

=
2√
−g

δ

δgµν

∫
M

dx
√
−g

{
1

32π2

∞∑
n=3

Γ (n − 2)

(m2)n−2 an(x)

}
.

Its approximation in the large mass limit is given by

〈Tµν〉ren =
2√
−g

δ

δgµν

∫
M

dx
√
−g

{
1

32π2m2
a3(x)

}
+O

(
1

m4

)
.

To obtain the a3(x) diagonal DeWitt coefficient, it is necessary to solve the recur-
sion relations satisfied by the DeWitt coefficients A0(x , x ′), A1(x , x ′), A2(x , x ′)
and A3(x , x ′) which must be expanded up to orders σ3, σ2, σ1 and σ0 respec-
tively.
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Semiclassical Einstein equations

In a four-dimensional curved spacetime without boundary, the semiclassical Ein-
stein equations take the following form

Rµν −
1

2
gµνR + Λgµν + αH(1)

µν + βH(2)
µν + γH(3)

µν = 8π〈Tµν〉ren

where all the coupling constants are finite (renormalized).

The H
(∗)
µν have the following expressions

H(1)
µν ≡

1√
−g

δ

δgµν

∫
M

dx
√
−g R2

= 2R;µν − 2RRµν + gµν(−2�R + 1/2R2),

H(2)
µν ≡

1√
−g

δ

δgµν

∫
M

dx
√
−g RαβR

αβ

= R;µν −�Rµν − 2RαβRαµβν + gµν(−1/2�R + 1/2RαβR
αβ),

H(3)
µν = −H(1)

µν + 4H(2)
µν .

The last relation can be derived from the topological invariant Euler number.
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Massive field theories

We now consider three massive field theories :

the massive scalar field φ solution of the Klein-Gordon equation

(�−m2 − ξR)φ = 0,

the massive spinor field ψ solution of the Dirac equation

(γµ∇µ + m)ψ = 0,

the massive vector field Aµ solution of the Proca equation

(gµν�−m2gµν −∇µ∇ν − Rµν)Aν = 0.

In these wave equations,

m denotes the mass of the fields,
ξ is a dimensionless factor which accounts for the possible coupling between the
scalar field and the gravitational background,
γµ denote the usual Dirac matrices.
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Approximate renormalized stress-energy tensor for massive fields

It should be noted that, formally, the DeWitt-Schwinger approximation can be
used only when the Compton length associated with the massive field is much
less than a characteristic length constructed from the curvature of spacetime.

From the expression of the diagonal DeWitt coefficient a3(x) [see e.g. Avramidi
(2000)], we have

(96π2m2)〈Tµν〉ren =
1√
−g

δ

δgµν

∫
M

dx
(
c1 R�R + c2 Rpq�Rpq + c3 R

3

+c4 RRpqR
pq + c5 RpqR

p
rR

qr + c6 RpqRrsR
prqs + c7 RRpqrsR

pqrs

+c8 RpqR
p
rstR

qrst + c9 RpqrsR
pquvR rs

uv + c10 RprqsR
p q
u vR

rusv
)
.

The coefficients ci which depend on the field are given in following table :

Scalar field Dirac field Proca field

c1 (1/2)ξ2 − (1/5)ξ + 1/56 −3/280 −27/280

c2 1/140 1/28 9/28

c3 −(ξ − 1/6)3 1/864 −5/72

c4 (1/30)(ξ − 1/6) −1/180 31/60

c5 −8/945 −25/756 −52/63

Scalar field Dirac field Proca field

c6 2/315 47/1260 −19/105

c7 −(1/30)(ξ − 1/6) −7/1440 −1/10

c8 1/1260 19/1260 61/140

c9 17/7560 29/7560 −67/2520

c10 −1/270 −1/108 1/18
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Approximate renormalized stress-energy tensor for massive fields (2)

After the functional derivation [see Décanini and Folacci (2007)] we obtain the
approximate renormalized stress-energy tensor for massive fields written in an
irreducible form

(96π2m2)〈Tµν〉ren = d1 (�R);µν + d2 ��Rµν + d3 RR;µν + d4 (�R)Rµν + d5 R;p(µR
p
ν)

+ d6 R�Rµν

+d7 Rp(µ�R
p
ν)

+ d8 Rpq Rpq;(µν) + d9 Rpq Rp(µ;ν)q + d10 Rpq Rµν;pq + d11 R ;pq Rpµqν + d12 (�Rpq )Rpµqν

+d13 R
pq;r

(µ
R|rqp|ν) + d14 R

p ;qr
(µ

R|pqr|ν) + d15 Rpqrs Rpqrs;(µν) + d16 R;µR;ν + d17 R;p R
p
(µ;ν)

+d18 R;p R ;p
µν + d19 Rpq

;µRpq;ν + d20 R
pq

;(µ
Rν)p;q + d21 Rp

µ;q R ;q
pν + d22 Rp

µ;q Rq
ν;p + d23 Rpq;r Rrqp(µ;ν)

+d24 Rpq;r Rpµqν;r + d25 Rpqrs
;µRpqrs;ν + d26 Rpqr

µ;s R ;s
pqrν + d27 R2Rµν + d28 RRpµRp

ν + d29 Rpq Rpq Rµν

+d30 Rpq RpµRqν + d31 RRpq Rpµqν + d32 Rpr Rq
r Rpµqν + d33 Rpq Rr

(µR|rqp|ν) + d34 RRpqr
µRpqrν

+d35 RµνRpqrs Rpqrs + d36 R
p
(µ

R
qrs

|p|R|qrs|ν) + d37 Rpq Rrs
pµRrsqν + d38 Rpq Rprqs Rrµsν + d39 Rpq Rprs

µRq
rsν

+d40 Rpqrs RpqtµR t
rs ν + d41 Rprqs Rt

pqµRtrsν + d42 Rpqr
s Rpqrt R

s t
µ ν

+gµν [d43 ��R + d44 R�R + d45 R;pq Rpq + d46 Rpq�Rpq + d47 Rpq;rs Rprqs + d48 R;p R ;p + d49 Rpq;r Rpq;r

+d50 Rpq;r Rpr ;q + d51 Rpqrs;t Rpqrs;t + d52 R3 + d53 RRpq Rpq + d54 Rpq Rp
r Rqr + d55 Rpq Rrs Rprqs

+d56 RRpqrs Rpqrs + d57 Rpq R
p
rst Rqrst + d58 Rpqrs Rpquv Rrs

uv + d59 Rprqs Rp q
u v Rrusv ]

where the coefficients di can be expressed in function of the coefficients cj .
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Mathematica packages

This expression involves Riemann polynomials of order six in the derivatives of
the metric tensor. As a consequence, for spacetimes presenting a low degree of
symmetry the calculation of this approximate renormalized stress-energy tensor
cannot be done by hand.

For this reason we have written some Mathematica packages in order to perform
this computation on various spacetimes of astrophysical or cosmological interest.

the package SETSphericallySymmetricST that could be used to obtain the approx-
imate renormalized stress-energy tensor for massive field theories on any arbitrary
spherically symmetric spacetime with line element

ds2 = −M00(t, r) dt2 + M11(t, r) dr 2 + M22(t, r) dσ2
2

where dσ2
2 = dθ2 + sin2 θ dϕ2 denotes the metric on the unit 2-sphere S2 and

M00(t, r), M11(t, r) and M22(t, r) are three arbitrary functions,
the package SETArbitraryST based on the suite of Mathematica packages xAct
which permits us to perform tensor algebra very efficiently and, therefore, to obtain
the approximate renormalized stress-energy tensor for massive field theories on any
arbitrary spacetime.
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Friedmann-Lemâıtre-Robertson-Walker universes

Due to the fundamental importance of the renormalized stress-energy tensor
associated with quantum fields in early universe cosmology, its construction in
Friedmann-Lemâıtre-Robertson-Walker spacetimes has often been discussed in
the past forty years [see, e.g., Parker and Fulling (1974), Davies, Fulling, Chris-
tensen and Bunch (1977), etc. and, more recently, Matyjasek and al. (2014)].

We work with coordinates such that the spacetime metric takes the form

ds2 = −dt2 + R2(t)

(
1

1− κr2
dr2 + r2 dσ2

2

)
where

R(t) denotes the scale factor,
κ = −1, 0, 1 corresponds to the three possible spatial geometries (open, flat, closed).
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Friedmann-Lemâıtre-Robertson-Walker universes (2)

For the massive fields, we have four non-vanishing components of the approxi-
mate renormalized stress-energy tensor :

〈T t
t〉ren =

1

40320π2m2[R(t)]6

{
v1κ

3 + v2κ
2[R′(t)]2 + v3κ[R′(t)]4 + v4[R′(t)]6 + v5κR(t)[R′(t)]2R′′(t)

+v6R(t)[R′(t)]4R′′(t) + v7κ[R(t)]2[R′′(t)]2 + v8κ[R(t)]2R′(t)R(3)(t) + v9[R(t)]2[R′(t)]2[R′′(t)]2

+v10[R(t)]2[R′(t)]3R(3)(t) + v11[R(t)]3[R′′(t)]3 + v12[R(t)]3R′(t)R′′(t)R(3)(t) + v13[R(t)]3[R′(t)]2R(4)(t)

+v14[R(t)]4[R(3)(t)]2 + v15[R(t)]4R′′(t)R(4)(t) + v16[R(t)]4R′(t)R(5)(t)
}
,

〈T r
r 〉ren = 〈Tθθ〉ren = 〈Tϕϕ〉ren =

1

40320π2m2[R(t)]6

{
w1κ

3 + w2κ
2[R′(t)]2 + w3κ[R′(t)]4 + w4[R′(t)]6

+w5κ
2R(t)R′′(t) + w6κR(t)[R′(t)]2R′′(t) + w7R(t)[R′(t)]4R′′(t) + w8κ[R(t)]2[R′′(t)]2

+w9κ[R(t)]2R′(t)R(3)(t) + w10[R(t)]2[R′(t)]2[R′′(t)]2 + w11[R(t)]2[R′(t)]3R(3)(t) + w12κ[R(t)]3R(4)(t)

+w13[R(t)]3[R′′(t)]3 + w14[R(t)]3R′(t)R′′(t)R(3)(t) + w15[R(t)]3[R′(t)]2R(4)(t) + w16[R(t)]4[R(3)(t)]2

+w17[R(t)]4R′′(t)R(4)(t) + w18[R(t)]4R′(t)R(5)(t) + w19[R(t)]5R(6)(t)
}
.

The coefficients vi and wi can be expressed in function of the coefficients cj

which depend on the field.
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Kerr-Newman spacetime

The renormalization of the stress-energy tensor in Kerr-Newman spacetime has
never been considered, despite of the physical importance of this black hole.
This is due to the complexity of the calculations involved. In arXiv:1404.7422
(Belokogne and Folacci, 2014) we have addressed this subject for the first time.

A charged and rotating black hole is described by the Kerr-Newman metric which
takes the following form in Boyer-Lindquist coordinates

ds2 =−
(

∆− a2 sin2 θ

Σ

)
dt2 − 2

a sin2 θ(r2 + a2 −∆)

Σ
dtdϕ

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θ dϕ2 +

Σ

∆
dr2 + Σ dθ2

where

∆ = r 2 − 2Mr + a2 + Q2 and Σ = r 2 + a2 cos2 θ,
M, Q and J = aM are the mass, the charge and the angular momentum of the
black hole while a is the so-called rotation parameter.

Here, we assume M2 ≥ a2 + Q2 and the outer horizon is located at r+ =
M +

√
M2 − (a2 + Q2), the largest root of ∆.
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Kerr-Newman spacetime (2)

For massive fields propagating on Kerr-Newman spacetime, the expressions of
the approximate renormalized stress-energy tensor are complicated and, for this
reason, we give here only their structure. We have

for the four diagonal components :

〈T t
t〉ren =

M2r 10

10080π2m2Σ9

10∑
p=0


3∑

q=0

Att
p,q

[
θ,

M

r

](
Q2

M2

)q

(

a

r

)p

,

and similar expressions for 〈T r
r 〉ren, 〈T θ

θ〉ren and 〈Tϕ
ϕ〉ren,

for the four off-diagonal non-vanishing components :

〈Tϕt〉ren =
M2r 9

5040π2m2Σ9

9∑
p=1


3∑

q=0

Aϕt
p,q

[
θ,

M

r

](
Q2

M2

)q

(

a

r

)p

,

〈T t
ϕ〉ren =

M2r 11 sin2 θ

5040π2m2Σ9

11∑
p=1


3∑

q=0

Atϕ
p,q

[
θ,

M

r

](
Q2

M2

)q

(

a

r

)p

,

〈Tθ r 〉ren =
M2r 9 sin θ cos θ

180π2m2Σ9

8∑
p=2


2∑

q=0

Aθr
p,q

[
θ,

M

r

](
Q2

M2

)q

(

a

r

)p

,

〈T r
θ〉ren =

M2r 11 sin θ cos θ

180π2m2Σ9

10∑
p=2


3∑

q=0

Arθ
p,q

[
θ,

M

r

](
Q2

M2

)q

(

a

r

)p

.
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Kerr-Newman spacetime (3)

We cannot present all the coefficients Aµνp,q [θ,M/r ]. We only give some co-
efficients Att

p,q [θ,M/r ] for the Proca field. They vanish if p is odd and we
have

Att
0,0 [θ,M/r ] = 1665− 3666 (M/r)

Att
0,1 [θ,M/r ] = 12150− 69024 (M/r) + 93537 (M/r)2

Att
0,2 [θ,M/r ] = 41854 (M/r)2 − 107516 (M/r)3

Att
0,3 [θ,M/r ] = 31057 (M/r)4

Att
2,0 [θ,M/r ] = −44955 cos2

θ + 72
(

1528 cos2
θ + 5

)
(M/r)

Att
2,1 [θ,M/r ] = −12150

(
7 cos2

θ − 12
)

+ 36
(

10435 cos2
θ − 13313

)
(M/r)− 12

(
36771 cos2

θ − 23602
)

(M/r)2

Att
2,2 [θ,M/r ] = −4

(
47215 cos2

θ − 69264
)

(M/r)2 + 4
(

91476 cos2
θ − 81229

)
(M/r)3

Att
2,3 [θ,M/r ] = −(86153 cos2

θ − 92104) (M/r)4

· · ·

In view of the complexity of these results, the exact expression for any value of
the mass (and not only in the large mass limit) of the renormalized stress-energy
tensor in Kerr-Newman spacetime is completely out of reach.
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Kerr-Newman spacetime (4)

By putting Q = 0 into the expression of the renormalized stress-energy tensor of
a massive field in Kerr-Newman spacetime, we can recover the results obtained
in Kerr spacetime.

The same can be done for Schwarzschild and Reissner-Nordström spacetimes.
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Shift in mass and angular momentum of the black hole

As an application, we can determine the shift in mass and angular momentum
of the black hole measured by a distant observer due to the non-vanishing renor-
malized stress-energy tensor.

For a stationary axisymmetric black hole, we recall that the mass MD and the
angular momentum JD of the black hole dressed with a quantum field can be
expressed in terms of its mass M and its angular momentum J by

MD −M = 2

∫
S

(
〈Tµ

ν〉ren −
1

2
gµν〈Tρ

ρ〉ren
)
ξνdSµ,

JD − J = −
∫
S
〈Tµ

ν〉renψνdSµ

where

〈Tµν〉ren is the renormalized stress-energy tensors of the quantum field,
ξµ = (∂t)µ and ψµ = (∂ϕ)µ denote the two Killing vectors of the Kerr-Newman
black hole,
S is any spacelike hypersurface that extends from the outer horizon at r+ to spatial
infinity and dSµ = −Σ sin θ dr dθ dϕ (dt)µ is the associated surface element.
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Shift in mass and angular momentum of the black hole (2)

In order to simplify the expression for the shift in mass and angular momentum
we assume a� M and Q � M and then we obtain

MD −M =
M

336× 7!πm2M4

{
α0 + α1

( a

M

)2
+ α2

(
Q

M

)2

+ . . .

}
,

JD − J =
1

480× 7!πm2M2

( a

M

){
β0 + β1

( a

M

)2
+ β2

(
Q

M

)2

+ . . .

}

where

the dots denote terms of fourth order (i.e., in (a/M)4 or in (Q/M)4 or in a2Q2/M4),

the coefficients αi and βi are given in two tables :

Scalar field Dirac field Proca field

α0 −392(9ξ − 2) 196 −1176

α1 14(63ξ − 16) 7 210

α2 −66 −162 978

Scalar field Dirac field Proca field

β0 −60(84ξ − 17) 480 −1980

β1 −9(252ξ − 53) 180 −837

β2 20(714ξ − 145) −640 19580
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Conclusion

The approximate expressions of the renormalized stress-energy tensor obtained in
various spacetimes are based on the DeWitt-Schwinger expansion of the effective
action associated with a massive quantum field. As a consequence, they do not
take into account the quantum state of the field and are only valid in the large
mass limit.

For Friedmann-Lemâıtre-Robertson-Walker spacetimes

An analytical approximation can be used to simplify the back reaction problem or
to obtain an analytical expression for the density and the pressure associated with
the quantum field.

For Kerr-Newman spacetime

These expressions neglect the existence of superradiance instabilities for massive
fields in rotating black holes. This seems quite reasonable in the large mass limit.
Our results could be very helpful to study the back reaction of massive quantum
fields on this gravitational background. Here, we have limited this problem to
the determination of the shift in mass and angular momentum of the black hole
(measured by a distant observer) due to the renormalized stress-energy tensor.
Our results could be also used to study the quasinormal modes of the Kerr-Newman
black hole dressed by a massive quantum field.
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