Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Dynamical Bridges

Eduardo Bittencourt

Sapienza Università di Roma and ICRANet

Spontaneous Workshop VIII, May 12-17, Cargèse, France

Collaborators: M. Novello, U. Moschella, E. Goulart, J.M. Salim, J.D. Toniato and S. Faci

May 16th, 2014

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metri Applications

Dynamica Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

2 Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

3 Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

4 Concluding Remarks

Outline on DB

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

- New way of describing dynamical equations for fundamental fields.
- Mathematical map between dynamics acting on the space-time metrics.
- For free fields, the solutions of a given dynamic in a specific metric are mapped in solutions of another dynamic in another metric.

Motivation

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Analogously to Gordon's paper¹, we study specific geometries such that the metric and its inverse assume a binomial form

$$\widehat{\boldsymbol{q}}_{\mu\nu} = \boldsymbol{A} \eta_{\mu\nu} + \boldsymbol{B} \Phi_{\mu\nu}, \quad \widehat{\boldsymbol{q}}^{\mu\nu} = \alpha \, \eta^{\mu\nu} + \beta \, \Phi^{\mu\nu}, \qquad (1)$$

where *A*, *B*, α and β are functions, $\eta^{\mu\nu}$ is the Minkowski metric and $\Phi^{\mu\nu}$ is a symmetric tensor satisfying

$$\Phi_{\mu\nu}\,\Phi^{\nu\lambda} = m\,\delta^{\lambda}_{\mu} + n\,\Phi^{\lambda}_{\mu}.$$
 (2)

Note that *m* and *n* are not completely arbitrary functions.

¹W. Gordon, Ann. Phys. (Leipzig) **72** 421 (1923).

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Examples:

- Scalar fields: $\Phi_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi$;
- Electromagnetic fields: $\Phi_{\mu\nu} = F_{\mu}{}^{\alpha}F_{\alpha\nu}$;
- Spinor fields: $\Phi_{\mu\nu} = (J_{\mu} + \epsilon I_{\mu})(J_{\nu} + \epsilon I_{\nu}).$

We analyze each case in details afterwards.

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metric Applications

Dynamica Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

Kinematical Context
 Theorem

Polynomial Metrics

Applications

Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

4 Concluding Remarks

Geodesic motion condition

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks The Dynamical Bridges also present interesting results in the kinematics, as follows:

Theorem

Let Γ be a congruence of curves represented by the vector field V_{μ} in a given space-time. This vector follows along a geodesic in the metric $\hat{q}_{\mu\nu}$, if the condition below is satisfied²

$$\frac{1}{2}\hat{N}_{,\mu}+V_{[\mu,\nu]}\hat{q}^{\nu\alpha}V_{\alpha}-p(\lambda)V_{\mu}=0,$$

where \hat{N} is the norm of V_{μ} calculated with $\hat{q}_{\mu\nu}$ and $p(\lambda)$ is a function of the affine parameter λ .

²M. Novello and EB, PRD **86** 124024 (2012); M. Novello and EB, GERG **45** 1005 (2013).

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metrics

Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

2 Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

4 Concluding Remarks

Polynomial Metrics

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Applying the theorem for a special set of metrics, called *dragged metrics*, which depend on the background and the observer field under consideration

(a)
$$\hat{q}_{\mu\nu} = A\eta_{\mu\nu} + BV_{\mu}V_{\nu}, \quad \hat{q}^{\mu\nu} = \alpha\eta^{\mu\nu} + \beta V^{\mu}V^{\nu},$$

(b)
$$\hat{q}_{\mu\nu} = A\eta_{\mu\nu} + BV_{\mu}V_{\nu} + \Delta a_{\mu}a_{\nu} + \Lambda a_{(\mu}V_{\nu)},$$

$$\hat{\mathbf{q}}^{\mu\nu} = \alpha \eta^{\mu\nu} + \beta \mathbf{V}^{\mu} \mathbf{V}^{\nu} + \delta \mathbf{a}^{\mu} \mathbf{a}^{\nu} + \lambda \mathbf{a}^{(\mu} \mathbf{V}^{\nu)}.$$

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metric Applications

Dynamica Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

2 Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

4 Concluding Remarks

Ex. 1: Normalized vector fields

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Consider V_{μ} normalized with acceleration a_{μ} in the Minkowski space. The condition for V_{μ} follows along a geodesic in $\hat{q}_{\mu\nu}$ (given by (*a*)) is

$$a_{\mu} = -\frac{1}{2} \frac{(\alpha + \beta)_{,\mu}}{\alpha + \beta}.$$
 (3)

It means that

$$\alpha + \beta = \boldsymbol{e}^{-2\Psi},$$

where $a_{\mu} \equiv \partial_{\mu} \Psi$ and Ψ is a scalar potential.

Ex. 2: Gradient vector fields

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric: Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Consider $k_{\mu} \equiv \partial_{\mu}\Sigma$ with norm *N*. In *N* is not a constant, then k_{μ} is an accelerated vector in the background geometry. The condition for k_{μ} follows along a geodesic in $\hat{q}_{\mu\nu}$ (given by (*b*)) is

$$\hat{N} \equiv const. = (\alpha + \beta N + \lambda \dot{N})N + \frac{\delta}{4}\dot{N}^2,$$
 (4)

where \hat{N} is the norm calculated with $\hat{q}_{\mu\nu}$ and $\dot{N} \equiv N_{,\mu} \hat{q}^{\mu\nu} k_{\nu}$.

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

3 Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

Electromagnetic DB: Born-Infeld³

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

۷

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Consider the Born-Infeld Lagrangian

$$L = \beta^2 \left(1 - \sqrt{\hat{U}} \right), \tag{5}$$

(6)

where
$$\hat{U} \equiv 1 + \hat{F}/(2\beta^2) - \hat{G}^2/(16\beta^4)$$
, defined in $\hat{e}^{\mu
u} \equiv a \eta^{\mu
u} + b \Phi^{\mu
u}$ and $\Phi_{\mu
u} \equiv F_{\mulpha} F^{lpha}{}_{
u}$

where $\hat{F} \equiv F_{\mu\nu} F_{\alpha\beta} \hat{e}^{\mu\alpha} \hat{e}^{\nu\beta}$ and $G \equiv F_{\mu\nu} F^*_{\alpha\beta} \hat{e}^{\mu\alpha} \hat{e}^{\nu\beta}$. The dynamical equations are

$$\frac{1}{\sqrt{-\hat{e}}}\partial_{\nu}\left[\frac{\sqrt{-\hat{e}}}{\hat{U}}\left(\hat{F}^{\mu\nu}-\frac{1}{4\beta^{2}}\hat{G}\hat{F}^{*\mu\nu}\right)\right]=0.$$
 (7)

³M. Novello and EB, *IJMPA* 29 1450075 (2014)

Electromagnetic DB: Maxwell

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Consider the Maxwell Lagrangian

$$L = -\frac{1}{4}F \tag{8}$$

where $F \equiv F_{\mu\nu} F_{\alpha\beta} \eta^{\mu\alpha} \eta^{\nu\beta}$ defined in Minkowski space $\eta_{\mu\nu}$. The dynamical equations are

$$\frac{1}{\sqrt{-\eta}}\partial_{\nu}\left(\sqrt{-\eta}F^{\mu\nu}\right) = 0. \tag{9}$$

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks To demonstrate this equivalence is necessary to know how $\hat{F}^{\mu\nu}$ and its dual are related to the Maxwell's fields. In this case, the correspondence is

$$\begin{cases} n - \epsilon Fm + \frac{\hat{G}}{2\beta^2} \epsilon m = -\frac{Q}{4}, \\ -\epsilon Gm + \frac{\hat{G}n}{2\beta^2} = 0, \end{cases}$$
(10)

where $\epsilon \equiv b/a$ and

$$n = 1 + \frac{\epsilon^2 G^2}{16}, \quad m = 1 - \frac{\epsilon F}{4}, \quad Q = 1 - \frac{\epsilon F}{2} - \frac{\epsilon^2 G^2}{16}.$$

Special case

Dynamical Bridges

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

- First order corrections in $F \ll \beta^2$.
- Suppose G = 0 [second Eq. of (10) is trivial] and then choose a = 1.
- In this case, the coefficient ϵ can only be

$$\epsilon = \frac{2}{F} \left(1 - \frac{1}{\sqrt{1 - F/2\beta^2}} \right)$$

Finally, the EM metric is

$$\hat{\boldsymbol{e}}_{\mu\nu} \approx \eta_{\mu\nu} + \frac{1}{2\,\beta^2}\,\Phi_{\mu\nu}. \tag{11}$$

Interaction procedure for leptons

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

- Universality: all particles (charged or not) interact with $\hat{e}_{\mu\nu}$.
- The interaction is done through the *minimal coupling* principle.
- The Clifford algebra should be preserved in both space-times. Then, from Eq. (11) we obtain

$$\hat{\gamma}^{\mu} = \gamma^{\mu} - \frac{1}{4\beta^2} \Phi^{\mu}{}_{\alpha} \gamma^{\alpha}.$$
 (12)

Coupling uncharged particles to the EM field

Dynamical Bridges

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks In the curved space, the dynamics of Ψ is

$$i\hbar c \hat{\gamma}^{\mu} \hat{\nabla}_{\mu} \Psi - mc^2 \Psi = 0,$$
 (13)

and $\hat{\nabla}_{\mu} \equiv \partial_{\mu} - \hat{\Gamma}_{\mu}^{FI} - \hat{V}_{\mu}$, where \hat{V}_{μ} is an arbitrary element of the algebra given by

$$\hat{V}_{\mu} = i \frac{mc}{\hbar} \frac{F_{\mu\nu}}{\beta} \hat{\gamma}^{\nu} \gamma_5.$$
(14)

This gives $\hat{\nabla}_{\mu} \hat{\gamma}^{\nu} = [\hat{V}_{\mu}, \hat{\gamma}^{\nu}]$, but maintains $\hat{\nabla}_{\alpha} \hat{e}^{\mu\nu} = 0$ and preserves the current $\hat{\nabla}_{\mu} \hat{J}^{\mu} = 0$.

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Using Eqs. for $\hat{e}_{\mu\nu}$, $\hat{\gamma}^{\mu}$ and \hat{V}_{μ} , we obtain the following equation for Ψ in Minkowski space

$$i\hbar c \gamma^{\mu}\partial_{\mu}\Psi + \frac{mc^2}{2\beta}F_{\mu\nu}[\gamma^{\mu},\gamma^{\nu}]\gamma_5\Psi - mc^2\Psi = 0.$$
 (15)

This equation provides a magnetic moment for $\boldsymbol{\Psi},$ whose the intensity is

$$\mu^{G} = \frac{mc^2}{\beta}.$$
 (16)

We named this contribution as geometric magnetic moment.

Geometric magnetic moment for charged particles

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Charged particles have a classical source for μ . For electrons, it is the Bohr magneton $\mu_B = e \hbar/2m_e$. Then, the total value of the electron magnetic moment should be read as

$$\mu_{e} = \mu_{B} + \frac{m_{e} c^{2}}{\beta} + \text{quantum corrections.}$$

The first term is classical, the second one is the geometric magnetic moment and then we have quantum corrections (due to the charge).

Comparison with experiments

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Anomalous magnetic moment: the value a_l of the anomaly of the magnetic moment μ_l of the particle *l* is defined as

$$a_l = \frac{g_l - 2}{2} = \frac{m_l}{m_e} \frac{\mu_l}{\mu_B} - 1,$$
 (17)

where $I = (e, \mu, \tau)$, g_I is the Landé factor and m_I is the mass⁴.

<u>Data</u>: there are measurements of the anomaly for e^- (the most precise) and for μ (test the entire SM). For τ , it is unobservable due to its short mean-life ($\sim 2.9 \times 10^{-13}$ s).

⁴Data from the *Particle Data Group* (2013).

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks The difference Δa between the experimental and theoretical value of the anomaly for muons gives the upper limit in which μ^{G} can contribute. So, if the effects of $\hat{e}^{\mu\nu}$ appear at this order, we have

$$\mu_{\mu}^{G} \doteq \Delta a_{\mu} \, \frac{e\hbar}{2m_{\mu}}.\tag{18}$$

On the other hand, the formula is given by

$$\mu_{\mu}^{G} = \frac{m_{\mu}c^2}{\beta}.$$
 (19)

Assuming that μ^{G}_{μ} correspond to the remaining anomaly of muon, then we can estimate the critical field:

 $\beta \approx 1.31 \times 10^{23} T.$

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Assuming this value for β , the geometric corrections for the electron are

$$\mu_e^G = 6.74 \times 10^{-14} \mu_B. \tag{20}$$

The difference between theory and experiments is

$$\Delta a_e = -0.40 \times 10^{-12}.$$
 (21)

We can see that they are compatible with the effects of $\hat{e}^{\mu\nu}$.

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks It is expected that μ_{ν} and its quantum corrections are zero. However, the extended SM suggests $\mu_{\nu} \neq 0$ and $\mu_{\nu} \propto m_{\nu}$. Then, it seems natural to propose that μ_{ν} has only the geometrical origin. In this case,

$$u_{\nu} = \frac{m_{\nu}c^2}{\beta} = 1.32 \times 10^{-19} \mu_B.$$
 (22)

This value is in agreement with⁵ phenomenology and close to the ESM value $(3, 2 \times 10^{-19} \mu_B)$.

⁵A.V. Kuznetsov e N.V. Mikheev, *JCAP* **11** 031 (2007); A.B. Balantekin, *Proc. OMEG05* (2006); O. Lychkovskiy e S. Blinnikov, *Phys. Atom. Nucl.* **73** 614 (2010).

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

3 Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

Chiral symmetry breaking without mass⁶

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

- Due to symmetry properties, it is not possible to give mass for v in the SM.
- Several distinct experiments detect neutrino oscillation.
- They are compatible with lightly massive neutrinos, breaking the chiral symmetry.

Then we face the question: where are the right-handed neutrinos?

⁶EB et al., in preparation.

Spinor DB: Dirac

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Consider the Dirac equation

$$i\hat{\gamma}^{\mu}\hat{\nabla}\Psi=0, \tag{23}$$

in the metric

$$\hat{g}^{\mu\nu} = \eta^{\mu\nu} + 2\beta H^{\mu} H^{\nu}$$
(24)

and tetrad basis

$$\hat{\boldsymbol{e}}^{\mu}{}_{\boldsymbol{A}}=\boldsymbol{e}^{\mu}{}_{\boldsymbol{A}}+\beta\boldsymbol{H}^{\mu}\boldsymbol{H}_{\boldsymbol{A}},$$

where $H^{\mu} = J^{\mu} - I^{\mu}$, $J^{\mu} = \bar{\Psi}\gamma^{\mu}\Psi$ and $I^{\mu} = \bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi$.

Spinor DB: NJL

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks The corresponding dynamics in Minkowski space is a generalization of a Nambu-Jona-Lasinio (NJL) model

$$i\gamma^{\mu}\nabla\Psi_{R} + i\dot{\beta}(A + iB\gamma_{5})\Phi_{L} = 0,$$

$$i\gamma^{\mu}\nabla\Psi_{L} = 0,$$
(25)

where $A \equiv \bar{\Psi}\Psi$ and $B \equiv i\bar{\Psi}\gamma_5\Psi$.

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Further comments:

- There is an exact solution given by the Inomata condition $\partial_{\mu}\Psi = -(1/2)\dot{\beta}H_{\mu}\Psi$.
- For massive fermions, we expected that the self-interacting term should be negligible compared to the mass.
- Main drawback: J^µ is not conserved in flat space for the right-handed component. Possibly, a conformal transformation in Eq. (24) can solve the problem.

Index

Dynamical Bridges

Eduardo Bittencour

Introductior

Kinematical Context Theorem Polynomial Metric Applications

Dynamica Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Introduction

Kinematical Context

- Theorem
- Polynomial Metrics
- Applications

3 Dynamical Context

- Vector Fields
- Spinor Fields
- Scalar Fields

4 Concluding Remarks

Formulation of the GSG

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Let us summarize the main properties of the GSG⁷:

- The gravity is described by Φ which satisfies a nonlinear dynamics;
- The theory satisfies the principle of general covariance and minimal coupling;
- All kinds of matter and energy interact with Φ only through

$$\mathbf{q}^{\mu\nu} = \alpha \eta^{\mu\nu} + \beta \frac{\partial^{\mu} \Phi \partial^{\nu} \Phi}{\mathbf{w}},$$

- i.e., gravity is a geometrical phenomenon;
- Test particles follow geodesics relative to $q^{\mu\nu}$;
- Φ is nontrivially related to Φ_N ;

⁷M. Novello, EB et al., JCAP 06 014 (2013).

Scalar DB or the birth of the geometry⁸

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Theorem

Consider a lagrangian $L = V(\Phi)w$, whose the dynamics is

$$\frac{1}{\sqrt{-\eta}}\partial_{\mu}\left(\sqrt{-\eta}\,\eta^{\mu\nu}\,\partial_{\nu}\Phi\right) + \frac{1}{2}\,\frac{V'}{V}\,w = 0. \tag{26}$$

This equation is equivalent to the Klein-Gordon equation

 $\Box \Phi = 0$

in the metric $q^{\mu\nu}$, where $\alpha(\Phi)$ and $\beta(\Phi)$ satisfy $\alpha + \beta = \alpha^3 V$.

⁸M. Novello and E. Goulart, *Class. Quantum Grav.* **28** 145022 (2011); E. Goulart *et al.*, *Class. Quantum Grav.* **28** 245008 (2011).

Static and spherically symmetric solution

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamica Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks Let us start with flat background

$$ds_M^2 = dt^2 - \alpha \left(\frac{1}{2\alpha} \frac{d\alpha}{dr} r + 1\right)^2 dr^2 - \alpha r^2 d\Omega^2, \qquad (27)$$

where *r* is related to the radial coordinate *R* through $R = \sqrt{\alpha(r)} r$. The static and spherically symmetry suggests $\Phi = \Phi(r)$. Therefore, the gravitational metric becomes

$$ds^{2} = \frac{1}{\alpha} dt^{2} - B dr^{2} - r^{2} d\Omega^{2}, \qquad (28)$$

where
$$B \equiv \frac{\alpha}{\alpha+\beta} \left(\frac{1}{2\alpha} \frac{d\alpha}{dr} r + 1\right)^2$$
 and $\alpha = e^{-2\Phi}$

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks By successive approximations, we obtained an *Ansatz* for *V*, as follows:

$$V(\Phi) = \frac{(e^{\Phi} - 3e^{3\Phi})^2}{4}$$
(29)

and then, the solution of the field equation yields

$$\Phi = \frac{1}{2} \ln \left(1 - \frac{r_H}{r} \right), \tag{30}$$

where $r_H \equiv 2MG/c^2$. Now, the line element can be written down as

$$ds^{2} = \left(1 - \frac{r_{H}}{r}\right) dt^{2} - \left(1 - \frac{r_{H}}{r}\right)^{-1} dr^{2} - r^{2} d\Omega^{2}.$$
 (31)

Note that GSG reproduces solar system tests with a good approximation.

Dynamics in the presence of matter

Dynamical Bridges

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metrics Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks We start with the action for Φ written in the Minkowski metric. Then, we use the DB to rewrite it in $q^{\mu\nu}$ as

$$\delta S_{M} = -2 \int \sqrt{-q} d^{4}x \sqrt{V} \Box \Phi \,\delta \Phi.$$
 (32)

Then, we add the matter content L_m and make the variation wrt $q^{\mu\nu}$ and obtain the usual conserved $T_{\mu\nu}$. As $q_{\mu\nu}$ is not the fundamental quantity and we must rewrite $\delta q_{\mu\nu}$ as function of $\delta \Phi$.

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric: Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

After some calculation, we get

$$\sqrt{V} \Box \Phi = \kappa \chi, \tag{33}$$

where the quantity χ involves a nontrivial coupling between $\nabla_{\mu} \Phi$ and $T_{\mu\nu}$. The Newtonian limit of the theory is obtained by fixing $\kappa \equiv 8\pi G/c^4$.

Concluding Remarks

Dynamical Bridges

Eduardo Bittencourt

Introduction

Kinematical Context Theorem Polynomial Metric Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

- Class of geometries that describe accelerated motion in a given space as geodetic one in another space.
- Vector case: a new description of the anomalous magnetic moment, through a minimal coupling principle.
- Spinor case: an alternative explanation of the chiral symmetry breaking.
- Scalar case: local gravitational tests verified by a scalar theory of gravity.
- A universality a priori of the space-time geometry is left aside; changing the metric we were able to describe the physical world in accordance with the postulate we choose.

Eduardo Bittencour

Introduction

Kinematical Context Theorem Polynomial Metri Applications

Dynamical Context Vector Fields Spinor Fields Scalar Fields

Concluding Remarks

Thanks for your attention!