Two-point functions for the Maxwell field in Robertson-Walker spacetimes. E. H, J. Renaud

E. H : Université Paris Diderot-Paris 7, APC-Astroparticule et Cosmologie (UMR-CNRS 7164). J. Renaud : Université Paris-Est, APC-Astroparticule et Cosmologie (UMR-CNRS 7164).

> Phys. Rev. D 88, 124018 (2013). J. Math. Phys. 53, 022304 (2013).

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
Two-point functions, conformal gauge, conformally flat spacetimes	
Summary	Quantization in W gauge

Two-point function in flat Robertson-Walker spacetimes

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
Гwo-point functions, conformal gauge, conformally flat spacetimes	An attempt in the Lorenz gauge
Summary	Quantization in W gauge

- Quantization of the free electromagnetic field : $(\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R^{\nu}_{\ \mu} A_{\nu} = 0.$ $\rightarrow D_{\mu\nu}(x, x') = \langle \widehat{A}_{\mu}(x) \widehat{A}_{\nu}(x') \rangle_{\text{vac}}.$
- Flat RW space in cosmology : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- No explicit function available (!?)
- Cosmological particle production (Parker) and the Gupta-Bleuler condition.

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
Two-point functions, conformal gauge, conformally flat spacetimes	An attempt in the Lorenz gauge
Summary	Quantization in <i>W</i> gauge

- Quantization of the free electromagnetic field : $(\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R^{\nu}_{\ \mu} A_{\nu} = 0.$ $\rightarrow D_{\mu\nu}(x, x') = \langle \widehat{A}_{\mu}(x) \widehat{A}_{\nu}(x') \rangle_{\text{vac}}.$
- Flat RW space in cosmology : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- No explicit function available (!?)
- Cosmological particle production (Parker) and the Gupta-Bleuler condition.

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
Two-point functions, conformal gauge, conformally flat spacetimes	An attempt in the Lorenz gauge
Summary	Quantization in <i>W</i> gauge

- Quantization of the free electromagnetic field : $(\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R^{\nu}_{\ \mu} A_{\nu} = 0.$ $\rightarrow D_{\mu\nu}(x, x') = \langle \widehat{A}_{\mu}(x) \widehat{A}_{\nu}(x') \rangle_{\text{vac}}.$
- Flat RW space in cosmology : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- No explicit function available (!?)
- Cosmological particle production (Parker) and the Gupta-Bleuler condition.

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
Two-point functions, conformal gauge, conformally flat spacetimes	An attempt in the Lorenz gauge
Summary	Quantization in <i>W</i> gauge

- Quantization of the free electromagnetic field : $(\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R^{\nu}_{\ \mu} A_{\nu} = 0.$ $\rightarrow D_{\mu\nu}(x, x') = \langle \widehat{A}_{\mu}(x) \widehat{A}_{\nu}(x') \rangle_{\text{vac}}.$
- Flat RW space in cosmology : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- No explicit function available (!?)
- Cosmological particle production (Parker) and the Gupta-Bleuler condition.

A view of Gupta-Bleuler quantization method

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- 1 Define a scalar product on the space of the solutions of the classical field equations. Product degenerate if gauge freedom.
- 2 Eliminate the degeneracy : extend the space of solutions (consider new field equations).
- 3 Quantize the field solution of the extended equations.
- 4 Select the subspace of physical states (GB condition).

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- 1 Define a scalar product on the space of the solutions of the classical field equations. Product degenerate if gauge freedom.
- 2 Eliminate the degeneracy : extend the space of solutions (consider new field equations).
- 3 Quantize the field solution of the extended equations.
- 4 Select the subspace of physical states (GB condition).

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- 1 Define a scalar product on the space of the solutions of the classical field equations. Product degenerate if gauge freedom.
- 2 Eliminate the degeneracy : extend the space of solutions (consider new field equations).
- 3 Quantize the field solution of the extended equations.
- 4 Select the subspace of physical states (GB condition).

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- 1 Define a scalar product on the space of the solutions of the classical field equations. Product degenerate if gauge freedom.
- 2 Eliminate the degeneracy : extend the space of solutions (consider new field equations).
- 3 Quantize the field solution of the extended equations.
- 4 Select the subspace of physical states (GB condition).

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

Scalar product

$$L = \frac{1}{4}F^{2}$$

$$\mathcal{J}^{\mu}(A,B) := A_{\nu}\frac{\partial L}{\partial \nabla_{\mu}B_{\nu}} - \frac{\partial L}{\partial \nabla_{\mu}A_{\nu}}B_{\nu}.$$

$$\langle A,B \rangle = -i \int_{\Sigma} \sigma_{\mu}\mathcal{J}^{\mu}(A,B^{*}),$$

▶ No causal reproducing kernel $\langle G(x,.), A \rangle = A(x)$ if gauge.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

Scalar product

•
$$L = \frac{1}{4}F^2$$

• $\mathcal{J}^{\mu}(A, B) := A_{\nu}\frac{\partial L}{\partial \nabla_{\mu}B_{\nu}} - \frac{\partial L}{\partial \nabla_{\mu}A_{\nu}}B_{\nu}.$
• $\langle A, B \rangle = -i \int_{\Sigma} \sigma_{\mu}\mathcal{J}^{\mu}(A, B^*),$

▶ No causal reproducing kernel $\langle G(x,.), A \rangle = A(x)$ if gauge.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

Scalar product

$$L = \frac{1}{4}F^{2}$$

$$\mathcal{J}^{\mu}(A, B) := A_{\nu}\frac{\partial L}{\partial \nabla_{\mu}B_{\nu}} - \frac{\partial L}{\partial \nabla_{\mu}A_{\nu}}B_{\nu}.$$

$$\langle A, B \rangle = -i \int_{\Sigma} \sigma_{\mu}\mathcal{J}^{\mu}(A, B^{*}),$$

▶ No causal reproducing kernel $\langle G(x,.), A \rangle = A(x)$ if gauge.

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つんぐ

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

Scalar product

$$L = \frac{1}{4}F^{2}$$

$$\mathcal{J}^{\mu}(A, B) := A_{\nu}\frac{\partial L}{\partial \nabla_{\mu}B_{\nu}} - \frac{\partial L}{\partial \nabla_{\mu}A_{\nu}}B_{\nu}.$$

$$\langle A, B \rangle = -i \int_{\Sigma} \sigma_{\mu}\mathcal{J}^{\mu}(A, B^{*}),$$

▶ No causal reproducing kernel $\langle G(x,.), A \rangle = A(x)$ if gauge.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - の Q @ >

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

Extended equation

• In practice
$$\frac{1}{4}F^2 + L_{GF}$$

Historical Minkowski-Lorenz $\mathcal{E}A_{\mu} = \partial^{2}A_{\mu}$ $\mathcal{C}A = \mathcal{G}A = \partial \cdot A$ $\mathcal{M}A_{\mu} = \partial^{2}A_{\mu} - \partial_{\mu}(\partial \cdot A).$

▲ロト▲聞と▲臣と▲臣と 臣 めんの

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- ► {\$\phi_k\$} basis of positive frequency modes of the space of solutions of the extended equation:
 - $\blacktriangleright \hat{a}_k, \hat{a}_k^{\dagger}, |0\rangle, \widehat{A}, G_{\mu\nu}(x, x'), etc.$
- GB condition: $C\widehat{A}^{(+)}|\Psi_{A}\rangle = 0$ iff $|\Psi_{A}\rangle$ "physical state".
- $\begin{array}{l} \ \ \, \langle \Psi_{A_1} | \mathcal{M} \widehat{\mathcal{A}} | \Psi_{A_2} \rangle = 0 \ \text{and} \ \langle \Psi_{A_1} | \mathcal{G} \widehat{\mathcal{A}} | \Psi_{A_2} \rangle = 0, \ | \Psi_{A_1} \rangle, \ | \Psi_{A_2} \rangle \\ \ \, \text{physical states.} \end{array}$

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- ► {\$\phi_k\$} basis of positive frequency modes of the space of solutions of the extended equation:
 - $\hat{a}_k, \hat{a}_k^{\dagger}, |0\rangle, \hat{A}, G_{\mu\nu}(x, x'), etc.$
- GB condition: $C\widehat{A}^{(+)}|\Psi_A\rangle = 0$ iff $|\Psi_A\rangle$ "physical state".
- $\land \langle \Psi_{A_1} | \mathcal{M} \widehat{A} | \Psi_{A_2} \rangle = 0 \text{ and } \langle \Psi_{A_1} | \mathcal{G} \widehat{A} | \Psi_{A_2} \rangle = 0, \ | \Psi_{A_1} \rangle, \ | \Psi_{A_2} \rangle$ physical states.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- ► {\$\phi_k\$} basis of positive frequency modes of the space of solutions of the extended equation:
 - \hat{a}_k , \hat{a}_k^{\dagger} , $|0\rangle$, \hat{A} , $G_{\mu\nu}(x, x')$, etc.
- GB condition: $C\widehat{A}^{(+)}|\Psi_{A}\rangle = 0$ iff $|\Psi_{A}\rangle$ "physical state".
- $\begin{array}{l} \ \ \, \langle \Psi_{{\scriptscriptstyle A_1}} | \mathcal{M} \widehat{\mathcal{A}} | \Psi_{{\scriptscriptstyle A_2}} \rangle = 0 \ \text{and} \ \langle \Psi_{{\scriptscriptstyle A_1}} | \mathcal{G} \widehat{\mathcal{A}} | \Psi_{{\scriptscriptstyle A_2}} \rangle = 0, \ | \Psi_{{\scriptscriptstyle A_1}} \rangle, \ | \Psi_{{\scriptscriptstyle A_2}} \rangle \\ \ \, \text{physical states.} \end{array}$

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

- ► {\$\phi_k\$} basis of positive frequency modes of the space of solutions of the extended equation:
 - \hat{a}_k , \hat{a}_k^{\dagger} , $|0\rangle$, \hat{A} , $G_{\mu\nu}(x, x')$, etc.
- GB condition: $C\widehat{A}^{(+)}|\Psi_A\rangle = 0$ iff $|\Psi_A\rangle$ "physical state".
- $\begin{array}{l} \ \, & \langle \Psi_{{\scriptscriptstyle A_1}} | \mathcal{M} \widehat{A} | \Psi_{{\scriptscriptstyle A_2}} \rangle = 0 \ \text{and} \ \langle \Psi_{{\scriptscriptstyle A_1}} | \mathcal{G} \widehat{A} | \Psi_{{\scriptscriptstyle A_2}} \rangle = 0, \ | \Psi_{{\scriptscriptstyle A_1}} \rangle, \ | \Psi_{{\scriptscriptstyle A_2}} \rangle \\ \, & \text{physical states.} \end{array}$

Two-point function in flat Robertson-Walker spacetimes	
wo-point functions, conformal gauge, conformally flat spacetimes	An attempt in the Lorenz gauge
Sullillary	

An attempt in the Lorenz gauge

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in ${\cal W}$ gauge

Extended equation

• $L^{\scriptscriptstyle RW} = \frac{1}{4}F^2 + \frac{1}{2}(\nabla \cdot A)^2 \longrightarrow \Box A_{\mu} + R^{\nu}_{\ \mu}A_{\nu} = 0$, modes?

- Flat RW space : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- Global Minkowskian coordinates (one chart).
- ▶ In Minkowskian coordinates: $\partial^2 A_{\mu} - W_{\mu} \partial \cdot A + (\partial_{\mu} - W_{\mu}) W \cdot A = 0, \quad W := d \ln a^2.$
- Can be obtained from $L^M = \frac{1}{4}F^2 + \frac{1}{2}\left(\left(\partial + W\right) \cdot A\right)^2$

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

Extended equation

- $L^{\scriptscriptstyle RW} = \frac{1}{4}F^2 + \frac{1}{2}(\nabla \cdot A)^2 \longrightarrow \Box A_{\mu} + R^{\nu}_{\ \mu}A_{\nu} = 0$, modes?
- Flat RW space : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- Global Minkowskian coordinates (one chart).
- ▶ In Minkowskian coordinates: $\partial^2 A_\mu - W_\mu \partial \cdot A + (\partial_\mu - W_\mu) W \cdot A = 0, \quad W := d \ln a^2.$
- Can be obtained from $L^{M} = \frac{1}{4}F^{2} + \frac{1}{2}\left(\left(\partial + W\right) \cdot A\right)^{2}$

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in ${\cal W}$ gauge

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Extended equation

- $L^{\scriptscriptstyle RW} = \frac{1}{4}F^2 + \frac{1}{2}(\nabla \cdot A)^2 \longrightarrow \Box A_{\mu} + R^{\nu}_{\ \mu}A_{\nu} = 0$, modes?
- Flat RW space : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- Global Minkowskian coordinates (one chart).

▶ In Minkowskian coordinates: $\partial^2 A_\mu - W_\mu \partial \cdot A + (\partial_\mu - W_\mu) W \cdot A = 0, \quad W := d \ln a^2.$

• Can be obtained from $L^{M} = \frac{1}{4}F^{2} + \frac{1}{2}\left(\left(\partial + W\right) \cdot A\right)^{2}$

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in ${\cal W}$ gauge

Extended equation

- $L^{\scriptscriptstyle RW} = \frac{1}{4}F^2 + \frac{1}{2}(\nabla \cdot A)^2 \longrightarrow \Box A_{\mu} + R^{\nu}_{\ \mu}A_{\nu} = 0$, modes?
- Flat RW space : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- Global Minkowskian coordinates (one chart).
- In Minkowskian coordinates: ∂²A_µ - W_µ∂ · A + (∂_µ - W_µ) W · A = 0, W := d ln a².
 Can be obtained from L^M = ¹/₄F² + ¹/₂ ((∂ + W) · A)²

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in ${\cal W}$ gauge

(日本) (日本) (日本)

Extended equation

- $L^{\scriptscriptstyle RW} = \frac{1}{4}F^2 + \frac{1}{2}(\nabla \cdot A)^2 \longrightarrow \Box A_{\mu} + R^{\nu}_{\ \mu}A_{\nu} = 0$, modes?
- Flat RW space : $ds^2 = a^2(\tau)(d\tau^2 d\mathbf{x}^2)$.
- Global Minkowskian coordinates (one chart).
- ► In Minkowskian coordinates: $\partial^2 A_{\mu} - W_{\mu} \partial \cdot A + (\partial_{\mu} - W_{\mu}) W \cdot A = 0, \quad W := d \ln a^2.$ ► Can be obtained from $I^M = {}^1 E^2 + {}^1 ((\partial + W) - A)^2$
- Can be obtained from $L^{M} = \frac{1}{4}F^{2} + \frac{1}{2}\left(\left(\partial + W\right) \cdot A\right)^{2}$

 Two-point function in flat Robertson-Walker spacetimes
 A view of Gupta-Bleuler quantization method.

 Two-point functions, conformal gauge, conformally flat spacetimes
 An attempt in the Lorenz gauge

 Summary
 Quantization in W gauge

Conformal mapping

Minkowskian coordinates \iff Conformal mapping:

RWM
$$\mathcal{M}A_{\mu} = 0$$
 $\mathcal{M}A_{\mu} = 0$ $\mathcal{E}^{RW}A_{\mu} = 0$ $g_{\mu\nu} = a(x)^2 \eta_{\mu\nu}$ $\mathcal{A}^{RW} = A^M = A$ $\mathcal{N} \cdot A = 0$ $\nabla \cdot A = 0$ $(\partial + W) \cdot A = 0$

 Two-point function in flat Robertson-Walker spacetimes
 A view of Gupta-Bleuler quantization method.

 Two-point functions, conformal gauge, conformally flat spacetimes
 An attempt in the Lorenz gauge

 Summary
 Quantization in W gauge

Using Lorenz Minkowski

Minkowskian coordinates \iff Conformal mapping:

RWM
$$\mathcal{M}A_{\mu} = 0$$
 $\mathcal{M}A_{\mu} = 0$ $\mathcal{E}^{RW}A_{\mu} = 0$ $\boldsymbol{\varphi}_{\mu\nu} = a(x)^2 \eta_{\mu\nu}$ $\mathcal{A}^{RW} = A^M = A$ $\boldsymbol{\Theta} \cdot A = 0$

▲口 ▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

Two-point function in flat Robertson-Walker spacetimes	A view of Gupta-Bleuler quantization method.
wo-point functions, conformal gauge, conformally flat spacetimes	
Summary	Quantization in W gauge

Quantization in W gauge

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in ${\it W}$ gauge

- $\bullet \ \partial \cdot A = 0 \longrightarrow (\nabla W) \cdot A = 0.$
- $\triangleright \ \partial^2 A = 0 \longrightarrow (MA)_{\mu} + (\nabla_{\mu} + W_{\mu})(\nabla W) \cdot A = 0.$
- ► $A_{k,\mu}^{(\lambda)} := \epsilon_{\mu}^{(\lambda)}(k) \frac{1}{(2\pi)^3 \sqrt{2\omega_k}} \exp\{-i(\omega_k \tau \mathbf{k} \cdot \mathbf{x})\}.$ Modes in Minkowski \rightarrow Modes Robertson-Walker.
- ▶ Minkowski ∂_{τ} Killing → Robertson-Walker ∂_{τ} conformal Killing.
- Modes of positive frequency with respect to the conformal time τ: conformal vacuum.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

- $\triangleright \ \partial \cdot A = 0 \longrightarrow (\nabla W) \cdot A = 0.$
- $\triangleright \ \partial^2 A = 0 \longrightarrow (MA)_{\mu} + (\nabla_{\mu} + W_{\mu})(\nabla W) \cdot A = 0.$
- ► $A_{k,\mu}^{(\lambda)} := \epsilon_{\mu}^{(\lambda)}(k) \frac{1}{(2\pi)^3 \sqrt{2\omega_k}} \exp\{-i(\omega_k \tau \mathbf{k} \cdot \mathbf{x})\}.$ Modes in Minkowski \rightarrow Modes Robertson-Walker
- ▶ Minkowski ∂_{τ} Killing → Robertson-Walker ∂_{τ} conformal Killing.
- Modes of positive frequency with respect to the conformal time τ: conformal vacuum.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

- $\triangleright \ \partial \cdot A = 0 \longrightarrow (\nabla W) \cdot A = 0.$
- $\triangleright \ \partial^2 A = 0 \longrightarrow (MA)_{\mu} + (\nabla_{\mu} + W_{\mu})(\nabla W) \cdot A = 0.$
- ► $A_{k,\mu}^{(\lambda)} := \epsilon_{\mu}^{(\lambda)}(k) \frac{1}{(2\pi)^3 \sqrt{2\omega_k}} \exp \{-i(\omega_k \tau \mathbf{k} \cdot \mathbf{x})\}.$ Modes in Minkowski \rightarrow Modes Robertson-Walker.
- ▶ Minkowski ∂_{τ} Killing → Robertson-Walker ∂_{τ} conformal Killing.
- Modes of positive frequency with respect to the conformal time τ: conformal vacuum.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

- $\triangleright \ \partial \cdot A = 0 \longrightarrow (\nabla W) \cdot A = 0.$
- $\triangleright \ \partial^2 A = 0 \longrightarrow (MA)_{\mu} + (\nabla_{\mu} + W_{\mu})(\nabla W) \cdot A = 0.$
- ► $A_{k,\mu}^{(\lambda)} := \epsilon_{\mu}^{(\lambda)}(k) \frac{1}{(2\pi)^3 \sqrt{2\omega_k}} \exp \{-i(\omega_k \tau \mathbf{k} \cdot \mathbf{x})\}.$ Modes in Minkowski → Modes Robertson-Walker.
- ► Minkowski ∂_{τ} Killing \rightarrow Robertson-Walker ∂_{τ} conformal Killing.
- Modes of positive frequency with respect to the conformal time τ: conformal vacuum.

- $\bullet \ \partial \cdot A = 0 \longrightarrow (\nabla W) \cdot A = 0.$
- $\triangleright \ \partial^2 A = 0 \longrightarrow (MA)_{\mu} + (\nabla_{\mu} + W_{\mu})(\nabla W) \cdot A = 0.$
- ► $A_{k,\mu}^{(\lambda)} := \epsilon_{\mu}^{(\lambda)}(k) \frac{1}{(2\pi)^3 \sqrt{2\omega_k}} \exp\{-i(\omega_k \tau \mathbf{k} \cdot \mathbf{x})\}.$ Modes in Minkowski \rightarrow Modes Robertson-Walker.
- ► Minkowski ∂_{τ} Killing \rightarrow Robertson-Walker ∂_{τ} conformal Killing.
- Modes of positive frequency with respect to the conformal time τ: conformal vacuum.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

(日)

Scalar product, space of solutions

$$\langle A,B\rangle = -i\int_{\Sigma}\sigma_{\mu}\mathcal{J}^{\mu}(A,B^{*})$$

М	RW
A	A
L ^M	$L^{RW} = a^{-4} L^{M}$
$\mathcal{J}^{\mu}_{\scriptscriptstyle M}(A,B)$	$\mathcal{J}^{\mu}_{\scriptscriptstyle RW}(A,B)=a^{-4}\mathcal{J}^{\mu}_{\scriptscriptstyle M}(A,B)$
$\sigma^{\scriptscriptstyle M}_{\mu}$	$\sigma_{\mu}^{\scriptscriptstyle RW}=a^4\sigma_{\mu}^{\scriptscriptstyle M}$
Σ_M	Σ_{RW}

$$\blacktriangleright \langle A, B \rangle_{RW} = \langle A, B \rangle_{M}.$$

Same space of solutions.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in *W* gauge

Scalar product, space of solutions

$$\langle A,B
angle = -i\int_{\Sigma}\sigma_{\mu}\mathcal{J}^{\mu}(A,B^{*})$$

Μ	RW
A	A
L ^M	$L^{RW} = a^{-4} L^M$
$\mathcal{J}^{\mu}_{\scriptscriptstyle M}(A,B)$	$\mathcal{J}^{\mu}_{\scriptscriptstyle RW}(A,B)=a^{-4}\mathcal{J}^{\mu}_{\scriptscriptstyle M}(A,B)$
$\sigma^{\scriptscriptstyle M}_{\mu}$	$\sigma_{\mu}^{\scriptscriptstyle RW}=a^4\sigma_{\mu}^{\scriptscriptstyle M}$
Σ_M	Σ_{RW}

- $\blacktriangleright \langle A, B \rangle_{RW} = \langle A, B \rangle_{M}.$
- Same space of solutions.

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

Physical states

•
$$(\nabla - W) \cdot \widehat{A}^{(+)} |\Psi\rangle = 0$$
,

• $\widehat{A}^{(+)}$ unambiguously defined (conformal vacuum/time).

A view of Gupta-Bleuler quantization method. An attempt in the Lorenz gauge Quantization in W gauge

- 4 同 6 4 日 6 4 日 6

э

Physical states

$$\blacktriangleright \ (\nabla - \mathcal{W}) \cdot \widehat{\mathcal{A}}^{(+)} \ | \, \Psi \, \rangle = \mathsf{0},$$

• $\widehat{A}^{(+)}$ unambiguously defined (conformal vacuum/time).

Two-point function in W gauge

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}D_M^{(s)}(x,x')$$
, conformal scalar function.

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}a(x)D^{(s)}(x,x')a(x'),$$

•
$$D_{\mu\nu}(x,x') = -\frac{1}{2} \left(\frac{g_{\mu\nu}(x)}{a^2(x)} + \frac{g_{\mu\nu}(x')}{a^2(x')} \right) a(x)a(x')D^{(s)}(x,x').$$

Short distance (Hadamard) behavior: $D^{(s)}(x, x') = a^{-1}(x)a^{-1}(x')\frac{\operatorname{cst}}{(x')^2}$

Two-point function in W gauge

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}D_M^{(s)}(x,x')$$
, conformal scalar function.

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}a(x)D^{(s)}(x,x')a(x'),$$

• $D_{\mu\nu}(x,x') = -\frac{1}{2} \left(\frac{g_{\mu\nu}(x)}{a^2(x)} + \frac{g_{\mu\nu}(x')}{a^2(x')} \right) a(x)a(x')D^{(s)}(x,x').$

► Short distance (Hadamard) behavior: $D^{(s)}(x, x') = a^{-1}(x)a^{-1}(x')\frac{\operatorname{cst}}{(x - x')^2 - x'}$

Two-point function in W gauge

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}D_M^{(s)}(x,x')$$
, conformal scalar function.

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}a(x)D^{(s)}(x,x')a(x'),$$

•
$$D_{\mu\nu}(x,x') = -\frac{1}{2} \left(\frac{g_{\mu\nu}(x)}{a^2(x)} + \frac{g_{\mu\nu}(x')}{a^2(x')} \right) a(x)a(x')D^{(s)}(x,x').$$

Short distance (Hadamard) behavior: $D^{(s)}(x, x') = a^{-1}(x)a^{-1}(x')\frac{\operatorname{cst}}{(x - x')^2 - x}$

< 17 ▶

Two-point function in W gauge

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}D_M^{(s)}(x,x')$$
, conformal scalar function.

•
$$D_{\mu\nu}(x,x') = -\eta_{\mu\nu}a(x)D^{(s)}(x,x')a(x'),$$

•
$$D_{\mu\nu}(x,x') = -\frac{1}{2} \left(\frac{g_{\mu\nu}(x)}{a^2(x)} + \frac{g_{\mu\nu}(x')}{a^2(x')} \right) a(x)a(x')D^{(s)}(x,x').$$

Short distance (Hadamard) behavior:

$$D^{(s)}(x,x') = a^{-1}(x)a^{-1}(x')\frac{\operatorname{cst}}{(x-x')^2 - i\epsilon}$$

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	

Two-point functions, conformal gauge, conformally flat spacetimes J. Math. Phys. **53**, 022304 (2013).

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	

The geometrical framework

Conformally flat spacetimes from \mathbb{R}^6

Two-point function in flat Robertson-Walker spacetimes Two-point functions, conformal gauge, conformally flat spacetimes Summary The Maxwell field in the Eastwood-Singer gauge A useful structure

Minkowski, dS, AdS

Example:
$$f_{\xi}(y) = (1+\xi)\frac{y^5}{2} + (1-\xi)\frac{y^4}{2}$$
, (plane)
$$X_{f_{\xi}} = \begin{cases} \xi = +H^2, & \text{de Sitter}, \\ \xi = 0, & \text{Minkowski}, \\ \xi = -H^2 & \text{Anti de Sitter} \end{cases}$$

The geometrical framework The Maxwell field in the Eastwood-Singer gauge A useful structure

Conformal (Weyl) relation

$$X_{f_1}$$
, X_{f_2} are conformally related: $g_{\mu
u}^{f_1}=\left(rac{f_2}{f_1}
ight)^2g_{\mu
u}^{f_2}$

Two-point function in flat Robertson-Walker spacetimes Two-point functions, conformal gauge, conformally flat spacetimes Summary The geometrical framework The Maxwell field in the Eastwood-Singer gauge A useful structure

Einstein space

 $\alpha, \beta, (\theta, \varphi)$ spherical coordinates in \mathbb{R}^6 . All the spacetimes X_f can be realized on the same underlying set (part of the Einstein space).

Minkowskian atlas

The geometrical framework The Maxwell field in the Eastwood-Singer gauge A useful structure

Minkowskian atlas

The geometrical framework The Maxwell field in the Eastwood-Singer gauge A useful structure

Minkowskian atlas

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	

The Maxwell field in the Eastwood-Singer gauge

The Eastwood-Singer gauge

$$ES \cdot A = 0 ES \cdot A := \left(\Box \nabla^{\nu} - 2 \nabla_{\mu} \left(R^{\mu\nu} - \frac{1}{3} R g^{\mu\nu} \right) \right) A_{\nu}.$$

$$\overline{g}_{\mu\nu} = \Omega^2(x)g_{\mu\nu}: \overline{\mathrm{ES}} \cdot \overline{A} = \Omega^{-4}(x) (\mathrm{ES} \cdot A + W \cdot (\mathcal{M}A)), W = \mathrm{d} \ln \Omega^2. (\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R_{\mu}^{\ \nu} A_{\nu},$$

Maximally symmetric spaces:

$$(\Box - \frac{R}{6})\nabla \cdot A = 0,$$

・ロト・西ト・西ト・西・シック

The Eastwood-Singer gauge

$$ES \cdot A = 0 ES \cdot A := \left(\Box \nabla^{\nu} - 2 \nabla_{\mu} \left(R^{\mu\nu} - \frac{1}{3} R g^{\mu\nu} \right) \right) A_{\nu}.$$

$$\overline{g}_{\mu\nu} = \Omega^2(x)g_{\mu\nu}: \overline{\mathrm{ES}} \cdot \overline{A} = \Omega^{-4}(x) (\mathrm{ES} \cdot A + W \cdot (\mathcal{M}A)), W = \mathrm{d} \ln \Omega^2. (\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R_{\mu}^{\ \nu} A_{\nu},$$

Maximally symmetric spaces:

$$(\Box - \frac{R}{6})\nabla \cdot A = 0,$$

▲口 ▶ ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ─ 臣 ─ のへで

The Eastwood-Singer gauge

$$ES \cdot A = 0 ES \cdot A := \left(\Box \nabla^{\nu} - 2 \nabla_{\mu} \left(R^{\mu\nu} - \frac{1}{3} R g^{\mu\nu} \right) \right) A_{\nu}.$$

$$\overline{g}_{\mu\nu} = \Omega^2(x)g_{\mu\nu}: \overline{\mathrm{ES}} \cdot \overline{A} = \Omega^{-4}(x) (\mathrm{ES} \cdot A + W \cdot (\mathcal{M}A)), W = \mathrm{d} \ln \Omega^2. (\mathcal{M}A)_{\mu} := \Box A_{\mu} - \nabla_{\mu} \nabla \cdot A + R_{\mu}^{\ \nu} A_{\nu},$$

Maximally symmetric spaces:

$$(\Box - \frac{R}{6})\nabla \cdot A = 0,$$

・ロト・西ト・西ト・西・シック

The main result

Let a a one-form hom. deg. zero, j one-form hom. deg. -2 such that

$$\begin{cases} \Box_6 a = j \\ y \cdot a = 0, \\ \sharp_\eta j | X_f \in T(X_f), \end{cases}$$

Let $l_f : X_f \ni x \mapsto l_f(x) = x \in \mathbb{R}^6$ (canonical injection), then $A^f := l_f^*(a)$ and $J^f := l_f^*(j)$ defined on X_f satisfy

$$\begin{cases} \mathcal{M}A^f = J^f \\ \mathrm{ES} \cdot A^f = 0. \end{cases}$$

・ロト ・聞 ト ・目 ト ・目 ・ つんの

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	A useful structure

A useful structure

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	A useful structure

A useful structure

Two-point function in flat Robertson-Walker spacetimes	The geometrical framework
Two-point functions, conformal gauge, conformally flat spacetimes	The Maxwell field in the Eastwood-Singer gauge
Summary	A useful structure

A useful structure

Two-point functions

 A solution for the classical "two-charges problem" in de Sitter space.

S. Faci, E. H, J. Renaud, Phys. Rev. D 84, 124050 (2011).

► Covariant two point function in de Sitter space. S. Faci, E. H, J. Queva, J. Renaud, Phys. Rev. D **80**, 124005 (2009). $D_{\mu\nu'}^{H} = \frac{H^2}{8\pi^2} \left(\frac{1}{\mathcal{Z}-1}g_{\mu\nu'} - n_{\mu}n_{\nu'}\right), \mathcal{Z} = \cosh(H\mu), \mathcal{Z} \ge -1$

Two-point functions

 A solution for the classical "two-charges problem" in de Sitter space.

S. Faci, E. H, J. Renaud, Phys. Rev. D 84, 124050 (2011).

Covariant two point function in de Sitter space.
S. Faci, E. H, J. Queva, J. Renaud,
Phys. Rev. D 80, 124005 (2009). $D^{H}_{\mu\nu'} = \frac{H^2}{8\pi^2} \left(\frac{1}{Z-1}g_{\mu\nu'} - n_{\mu}n_{\nu'}\right), Z = \cosh(H\mu), Z \ge -1$

Summary

- Simple closed expression of two-point function for the Maxwell field in flat Robertson-Walker spacetimes.
- Formalism to handle conformally invariant equations.
- Solution of classical problem in de Sitter, explicit two-point function for the Maxwell field.

Summary

- Simple closed expression of two-point function for the Maxwell field in flat Robertson-Walker spacetimes.
- Formalism to handle conformally invariant equations.
- Solution of classical problem in de Sitter, explicit two-point function for the Maxwell field.

Summary

- Simple closed expression of two-point function for the Maxwell field in flat Robertson-Walker spacetimes.
- Formalism to handle conformally invariant equations.
- Solution of classical problem in de Sitter, explicit two-point function for the Maxwell field.

Summary

 $\mathcal{L}(A_I, \partial_{\mu}A_I)$. real homogeneous polynomial of degree 2.

$$(L_{\pi}A)^{\mu I} := \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}A_{I})} \text{ and } M(A)^{I} := \frac{\partial \mathcal{L}}{\partial (A_{I})}$$

one can define the unique symmetric bilinear form (,) such that $\mathcal{L}(A) = (A, A)$: $(A, B) := \frac{1}{2}(\mathcal{L}(A + B) - \mathcal{L}(A) - \mathcal{L}(B))$.

$$\mathcal{L}(A+h) - \mathcal{L}(A) = 2(A,h) + o(h),$$

from which, one obtains,

$$(L_{\pi}A)^{\mu I} \partial_{\mu}B_{I} + M(A)^{I}B_{I} = 2(A, B).$$

Summary

Define

$$\mathcal{J}^{\mu}(A,B) = A_I \left(L_{\pi}B\right)^{\mu I} - B_I \left(L_{\pi}A\right)^{\mu I}$$

Remark that

$$abla_{\mu}\mathcal{J}^{\mu}(A,B) = A_{I}\left[
abla_{\mu}\left(L_{\pi}B\right)^{\mu I} - M(B)^{I}
ight]
onumber \ -B_{I}\left[
abla_{\mu}\left(L_{\pi}A\right)^{\mu I} - M(A)^{I}
ight],
onumber \ \langle A,B
angle = -i\int_{\Sigma}\sigma_{\mu}\mathcal{J}^{\mu}(A,B^{*}),
onumber \$$

hermitian sesquilinear form independent of Σ (A, B solutions).