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• Inflationary models are the most successful attempt to describe

the early stages of development of the universe, and in particular

are at the basis of the current explanations of the formation of

structures.

• Usually, their dynamics is derived from models of gravity

minimally coupled to a scalar field with suitable potential. The

scalar field starts its evolution from a value that does not minimize

the potential and then rolls toward the minimum, inducing the

inflation of the scale factor of the universe.

• In most cases, these models can only be treated in an

approximate way (slow-roll approximation). The approximation

breaks down when the field is close to the minimum of the

potential, where the inflation ends. Later evolution of the universe

is assumed to obey the standard Friedmann-Lemaitre equations

and is characterized by a power-law expansion.
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• It would be interesting to find exact solutions that describe the

transition from an exponential expansion to a later

Friedmann-Lemaitre behavior in a smooth way.

• For this purpose, it may be useful to exploit the observation

(Skenderis, Townsend) that cosmological solutions of models of

gravity coupled to a scalar can be obtained by analytic continuation

to imaginary values of time and radial coordinates of domain-wall

solutions of the same model with opposite scalar potential.

• I present an application of this observation, leading to an exact

solution in which the scale factor expands exponentially at early

times and exhibits to a power-law behavior for late times.
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The model is based on gravity minimally coupled to a scalar field

ϕ, with action

I =

∫ √
−g

[
R− 2(∂ϕ)2 − V (ϕ)

]
d4x

where the scalar potential

V (ϕ) =
2λ2

3γ

(
e2

√
3βϕ − β2e2

√
3ϕ/β

)
depends on two parameters λ and β, with γ = 1− β2.

Φ

V
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• The potential vanishes for ϕ→ −∞, has a maximum for ϕ = 0,

where it takes the value V0 = 2λ2/3, and goes to −∞ for ϕ→ ∞.

• V (ϕ) admits a duality for β → 1/β. In the following we shall

consider only the case 0 < β2 < 1.

• In the limit β → 0, it reduces to a cosmological constant, while

for β2 = 1 it vanishes.

• A solution with ϕ = 0 exists, that coincides with that of pure

gravity with cosmological constant Λ = 2λ2/3. This is of course the

de Sitter solutions with cosmological constant Λ.
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• The model with V → −V was considered in the context of

AdS/CFT correspondence (Cadoni, S.M., Serra) and it was shown to

admit solitonic domain-wall solutions of the form

ds2 = R̂
− 2

1+3β2

(
1 + µR̂

− 3γ

1+3β2

) 2β2

γ

dR̂2

+ R̂
2

1+3β2

(
1 + µR̂

− 3γ

1+3β2

) 2β2

3γ

(−dT̂ 2 + ds̄22)

with µ a free parameter.

• This metric interpolates between anti-de Sitter for R̂→ 0 and

domain-wall behavior for R̂→ ∞.

• Analytically continuing this solution for R̂→ iT , T̂ → iR, one

can obtain a cosmological solution that behaves as a de Sitter

universe for T → 0 and as a Friedmann universe with power-law

expansion for T → ∞. It is then a promising candidate to describe

the evolution of an inflationary universe.
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• However, this is not the most general cosmological solution of the

model.

• It is therefore important to investigate the general solutions in

order to see if this behavior is generic and to understand if it can

describe a viable cosmological model.

• The system is exactly integrable if we choose a suitable

parametrization of the metric.
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• We are interested in the general isotropic and homogeneous

cosmological solutions, with flat spatial sections, that we

parametrize as

ds2 = −e2a(τ)dτ2 + e2b(τ)ds̄23, ϕ = ϕ(τ)

with τ a time variable.

• With this parametrization, the vacuum Einstein equations read

3ḃ2 = ϕ̇2 +
V

2
e2a,

2b̈+ ḃ(3ḃ− 2ȧ) = −ϕ̇2 + V

2
e2a

where a dot denotes a derivative with respect to τ .

• The scalar field obeys the equation

ϕ̈+ (3ḃ− ȧ)ϕ̇ = −1

4

dV

dϕ
e2a
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• In the gauge b = a/3 the previous equations simplify:

ȧ2

3
= ϕ̇2 +

1

2
V e2a,

ä =
3

2
V e2a,

ϕ̈ = −1

4

dV

dϕ
e2a

• Defining new variables

ψ = a+
√
3βϕ, χ = a+

√
3

β
ϕ

the field equations take the very simple form

ψ̈ = λ2e2ψ, χ̈ = λ2e2χ,

ψ̇2 − β2χ̇2 = λ2(e2ψ − β2e2χ)

• Note: they are invariant under time reversal, τ → −τ .
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• One can immediately write down the first integrals

ψ̇2 = λ2e2ψ +Q1, χ̇2 = λ2e2χ +Q2

with Q1 and Q2 integration constants, which satisfy

Q1 = β2Q2

• A further integration gives the solutions of the system, that

depends on the sign of the integration constants.
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• If Qi = q2i > 0 (i = 1, 2),

λ2e2ψ =
q21

sinh2[q1(τ − τ1)]
, λ2e2χ =

q22
sinh2[q2(τ − τ2)]

with τ1, τ2, integration constants and q21 = β2q22 .

• If Q1 = Q2 = 0,

λ2e2ψ =
1

(τ − τ1)2
, λ2e2χ =

1

(τ − τ2)2

• If Qi = −q2i < 0,

λ2e2ψ =
q21

sin2[q1(τ − τ1)]
, λ2e2χ =

q22
sin2[q2(τ − τ2)]

with q21 = β2q22 .

• In the following we define q = q2 = q1/β.
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The general solutions of the Friedman equations are therefore

(φ ≡
√
3ϕ/β):

• If Qi > 0,

e2a =
q2

λ2

∣∣ sinh[q(τ − τ2)]
∣∣2β2/γ∣∣β−1 sinh[βq(τ − τ1)]

∣∣2/γ , e2φ =

∣∣∣∣ sinh[βq(τ − τ1)]

β sinh[q(τ − τ2)]

∣∣∣∣2/γ
• If Qi = 0,

e2a =
1

λ2

∣∣τ − τ2
∣∣2β2/γ∣∣τ − τ1
∣∣2/γ , e2φ =

∣∣∣∣τ − τ1
τ − τ2

∣∣∣∣2/γ
• If Qi < 0,

e2a =
q2

λ2

∣∣ sin[q(τ − τ2)]
∣∣2β2/γ∣∣β−1 sin[βq(τ − τ1)]

∣∣2/γ , e2φ =

∣∣∣∣ sin[βq(τ − τ1)]

β sin[q(τ − τ2)]

∣∣∣∣2/γ
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• The actual value of q is not important, it only sets the scale of

the unphysical time variable τ .

• To interpret the solutions, it is useful to define the cosmic time t

such that dt = ±eadτ (The possibility of choosing the plus or

minus sign derives from the invariance of the equations under time

reversal).

• In the new parametrization, the line element reads

ds2 = −dt2 + e2b(t)dΩ2

• Unfortunately, in general the solutions obtained cannot be

written in terms of elementary functions of t.
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• This is only possible when Qi = 0, τ1 = τ2. Then

t− t0 = ± log |τ − τ1|

with t0 an arbitrary integration constant.

• Choosing the minus sign in the previous expression, one obtains

an expanding universe, with e2b = e2(t−t0)/3λ and ϕ = 0, namely a

de Sitter spacetime with vanishing scalar field.

• This is of course the unstable solution corresponding to the scalar

sitting at the top of the potential.

• In the general case, the solutions have two qualitatively different

branches if τ1 = τ2, or three if τ1 ̸= τ2.

• We are only interested in those branches where t is a monotonic

function of τ and the universe expands.

• Studying their behavior for τ → τ1,2 and τ → ±∞, we obtain

other physically acceptable solutions:
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• Qi > 0, τ1 = τ2

e2b ∼ e2λt/3 for t→ −∞; e2b ∼ t2/3 for t→ ∞

This solution describes a universe with de Sitter inflationary

behavior for t→ −∞ that gradually turns to a power-law

expansion for t→ ∞.

• Qi < 0, τ1 = τ2: two branches

e2b ∼ e2λt/3 for t→ −∞; e2b ∼ (t− t0)
2β2/3 → 0 for t→ t0.

e2b ∼ (t− t0)
2β2/3 , both at t = t0 and at a later finite time.

Both branches describe a universe that initially expands and then

recollapses.
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If τ1 ̸= τ2, the solutions are more complicated and present two

acceptable branches:

• Qi = 0

e2b ∼ e2λt/3 for t→ −∞; e2b ∼ t2/3β
2

for t→ ∞.

e2b ∼ (t− t0)
2β2/3 for t→ t0; e2b ∼ t2/3β

2

t→ ∞.

In the first case the behavior is qualitatively similar to the case in

which q ̸= 0 and τ1 = τ2.

• Qi > 0

e2b ∼ (t− t0)
2β2/3 for t→ t0; e2b ∼ t2/3 for t→ ∞.

e2b ∼ (t− t0)
2β2/3 for t→ t0; e2b ∼ t2/3β

2

for t→ ∞.

• Qi < 0

e2b ∼ (t− t0)
2β2/3 for t→ t0; e2b ∼ t2/3β

2

for t→ ∞.

e2b = (t− t0)
2β2/3 both at t = t0 and at a later finite time.
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• The most interesting solutions are those that behave

exponentially for t→ −∞ and as a power law for t→ ∞. These

are obtained for Qi > 0, τ1 = τ2, or Qi = 0, τ1 ̸= τ2.

• They correspond to an initial configuration where the scalar field

is at the top of the potential and then rolls down either to −∞ or

to +∞. Their behavior is similar, but they differ for the exponent

of the late power-law expansion which is 2/3 in the first case, and

2/3β2 in the second.

• The exponential expansion lasts until τ = τf ∼ 1/qβ, namely

t− t0 ∼ 1/λ. After this time the acceleration of the expansion

becomes negative. At such time the scale factor e2b is of order

λ−2/3.

• Denoting ti the time at which the inflation starts, the scale factor

therefore inflates by a factor e−2λ(ti−t0)/3. Choosing ti − t0

negative, one can then obtain the desired amount of inflation.
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QUESTIONS:

• How generic is the inflationary behavior?

• Does ordinary matter modify the behavior of the solutions?

Introduction of ordinary matter spoils the integrability.

One can however study the dynamical system.

• The Einstein equations become

ȧ2

3
− ϕ̇2 =

1

2
V e2a +

1

2
ρe2a,

ä =
3

2
V e2a +

3

4
(ρ− p)e2a

while the equation for the scalar is unchanged.

The usual continuity equation holds,

ρ̇+ (p+ ρ)ȧ = 0

Hence, for p = ωρ, ρ = ρ0e
−(1+ω)a.
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For dust (ω = 0) one has

ψ̈ = λ2e2ψ +
3

4
ρ0e

(ψ−β2χ)/γ , χ̈ = λ2e2χ +
3

4
ρ0e

(ψ−β2χ)/γ ,

ψ̇2 − β2χ̇2 = λ2e2ψ − β2λe2χ +
3γ

2
ρ0e

(ψ−β2χ)/γ

We put the equations in the form of a dynamical system, defining

X = η̇, Y = χ̇, Z = λ eχ, W =
√
λ eη

with η = (ψ − β2χ)/2γ. Then

Ẋ =
α

2
W 2 − β2

2γ
Z2 +

1

2γ
Z2β2

W 4γ ,

Ẏ = Z2 + αW 2, Ż = Y Z

with α = 3ρ0
4λ and W implicitly defined as

2αW 2 +
1

γ
Z2β2

W 4γ =
β2

γ
Z2 + 4γX2 + 4β2XY − β2Y 2
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• The global properties of the solutions can be deduced from the

study of their behavior near the critical points. In particular, the

critical points at finite distance correspond to the limit τ → ±∞
and lie on the two straight lines

X =
±β Y

2(1± β)
, Z = 0

• Near the critical points, for τ → ±∞,

a ∼ log t ∼ ±β Y0
1± β

τ,

√
3ϕ

β
∼ Y0

1± β
τ

where t is the cosmic time and goes to infinity in this limit. Hence,

e2b ∼ t2/3, e2φ ∼ t±2/β as t→ ∞.
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The behavior of the solutions for small t can instead be

investigated considering the critical points at infinity. These can be

studied by defining new variables

u =
1

X
, y =

Y

X
, z =

Z

X
, w =

W

X

and considering the limit u→ 0. This is attained for τ → τ0, where

τ0 is a finite constant. The field equations become

u′ = −
(
α

2
w2 − β2

2γ
z2 +

1

2γ
z2β

2

w4γu−2γ

)
u

y′ = z2 + αw2 −
(
α

2
w2 − β2

2γ
z2 +

1

2γ
z2β

2

w4γu−2γ

)
y

z′ = −
(
α

2
w2 − β2

2γ
z2 +

1

2γ
z2β

2

w4γu−2γ − y

)
z

where a prime denotes u d/dτ , with the constraint

4γ + 4β2y − β2y2 +
β2

γ
z2 − 2αw2 =

1

γ
z2β

2

w4γu−2γ
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• One obtains a set of critical points. From their values, one can

deduce the behavior of the metric functions for τ → τ0.

In particular,

a) t ∼ |τ − τ0|3 → 0; e2b ∼ t4/3, e2φ ∼ const.

b) t ∼ |τ − τ0|1/γ → 0; e2b ∼ t2β
2/3, e2φ ∼ t−2/γ .

c) t ∼ log |τ − τ0| → −∞; e2b ∼ e±2t/3, e2φ ∼ const.

d) t ∼ |τ − τ0|−β
2/γ → ∞; e2b ∼ t2/3β

2

, e2φ ∼ t2/γ .

• Some of these points correspond to t→ 0, other to t→ ±∞.

• However, the possible asymptotic behaviors of the solutions

essentially coincide with those of the exact solutions.
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• The study of the linearized equations shows that points a) and c)

are saddle points for the trajectories at infinity, while points b) and

d) are nodes.

• In particular, this implies that the solutions with exponential

expansion, associated to point c), require specific initial conditions.

CONCLUSIONS

• We have described an exactly solvable model of gravity minimally

coupled to a scalar field, with some solutions presenting an initial

inflationary period followed by a late power-law expansion.

• Although these solutions are not generic, the model may be

useful to discuss some topics as for example the generation of

inhomogeneities.


