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Introduction

Ultralight bosonic fields are important ingredients of the fundamental theories beyond :
I The standard model of elementary particles.
I The standard model of cosmology based on Einstein’s general relativity.

The particles associated with these fields are so light and are so weakly coupled with the visible
sector particles that they have escaped detection so far.

It is rather exciting to realize that ultralight bosonic fields interacting with black holes (BHs) could
lead to “macroscopic” effects.

In this context, in our recent work dealing with massive bosonic fields in the Schwarzschild
spacetime, we have highlighted a new and unexpected effect in BH physics :
I Around particular values of the mass, the excitation factors of the long-lived quasinormal

modes (QNMs) have a strong resonant behavior.
I This effect has an immediate fascinating consequence : it induces giant and slowly decaying

ringings when the Schwarzschild BH is excited by an external perturbation.
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Introduction

Throughout this presentation :
I We display our numerical results by using the dimensionless coupling constant α̃= 2Mµ/m2

p

(here M,µ and m2
p denote respectively the mass of BH, the rest mass of the field and Planck

mass).
I We adopt units such that ~= c = G = 1.
I We consider the exterior of the Schwarzschild BH of mass M defined by the metric

ds2 =−(1−2M/r)dt2 +(1−2M/r)−1dr2 + r2dσ
2
2 (1)

where dσ2
2 denotes the metric on the unit 2-sphere S2.

I The tortoise coordinate :
r∗(r) = r +2M ln[r/(2M)−1] (2)

I For r −→ 2M (black hole horizon), r∗(r)−→−∞

I For r −→+∞ (spatial infinity), r∗(r)−→+∞
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The Regge-Wheeler equation

In the Schwarzschild spacetime, the time-dependent Regge-Wheeler equation[
− ∂2

∂t2 +
∂2

∂r2
∗
−V`(r)

]
φ`(t, r) = 0 (3)

with the effective potential V`(r) given by

V`(r) =

(
1− 2M

r

)(
µ2 +

A(`)
r2 +β

2M
r3

)
(4)

governs the partial amplitudes φ`(t, r) of
i. the modes of the massive scalar field (` ∈ N, A(`) = `(`+1) and β = 1)
ii. the odd-parity modes of the Proca field (` ∈ N∗, A(`) = `(`+1) and β = 0)
iii. the even-parity `= 0 mode of the Proca field (A(`) = 2 and β =−3)
iv. the odd-parity `= 1 mode of the Fierz-Pauli field (Massive gravity)(A(`) = 6 and β =−8)
v. the odd-parity modes of Einstein gravity (` ∈ N−{0,1},A(`) = `(`+1) and β =−3)
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The Regge-Wheeler equation

The retarded Green function Gret
` (t; r , r ′) associated with the partial amplitude φ`(t, r)

is a solution of [
− ∂2

∂t2 +
∂2

∂r2
∗
−V`(r)

]
Gret
` (t; r , r ′) =−δ(t)δ(r∗− r ′∗) (5)

I It satisfying the condition Gret
` (t; r , r ′) = 0 for t ≤ 0

I It can be written as

Gret
` (t; r , r ′) =−

∫ +∞+ic

−∞+ic

dω

2π

φin
ω`(r<)φ

up
ω`(r>)

W`(ω)
e−iωt (6)

where c > 0, r< = min(r , r ′), r> = max(r , r ′) and with W`(ω) denoting the Wronskian of
the functions φin

ω` and φ
up
ω`
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The Regge-Wheeler equation

φin
ω` and φ

up
ω` are linearly independent solutions of the Regge-Wheeler equation

d2φω`

dr2
∗

+
[
ω

2−V`(r)
]

φω` = 0. (7)

I When Im(ω)> 0, φin
ω` is uniquely defined by its ingoing behavior at the event horizon r = 2M

(i.e., for r∗→−∞)
φ

in
ω`(r) ∼

r∗→−∞
e−iωr∗ (8a)

and, at spatial infinity r →+∞ (i.e., for r∗→+∞), it has an asymptotic behavior of the form

φ
in
ω`(r) ∼

r∗→+∞

[
ω

p(ω)

]1/2

×
(

A(−)
` (ω)e−i[p(ω)r∗+[Mµ2/p(ω)] ln(r/M)]

+A(+)
` (ω)e+i[p(ω)r∗+[Mµ2/p(ω)] ln(r/M)]

)
(8b)
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The Regge-Wheeler equation

I Similarly, φ
up
ω` is uniquely defined by its outgoing behavior at spatial infinity

φ
up
ω`(r) ∼

r∗→+∞

[
ω

p(ω)

]1/2

e+i[p(ω)r∗+[Mµ2/p(ω)] ln(r/M)] (9a)

and, at the horizon, it has an asymptotic behavior of the form

φ
up
ω`(r) ∼

r∗→−∞
B(−)
` (ω)e−iωr∗ +B(+)

` (ω)e+iωr∗ . (9b)

In Eqs. (8) and (9), p(ω)=
(
ω2−µ2

)1/2
denotes the “wave number" while A(−)

` (ω), A(+)
` (ω),

B(−)
` (ω) and B(+)

` (ω) are complex amplitudes.

By evaluating the Wronskian W`(ω) at r∗→−∞ and r∗→+∞, we obtain

W`(ω) = 2iωA(−)
` (ω) = 2iωB(+)

` (ω). (10)
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The Regge-Wheeler equation

If the Wronskian W`(ω) vanishes, the functions φin
ω` and φ

up
ω` are linearly dependent and propa-

gate inward at the horizon and outward at spatial infinity, a behavior which defines the QNMs
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Intrinsic giant ringings

By Cauchy’s theorem, we can extract from the retarded Green function (6) a residue
series over the quasinormal frequencies ω`n lying in the fourth quadrant of the complex
ω plane.

We then obtain the contribution describing the BH ringing. It is given by

GretQNM
` (t; r , r ′) = ∑

n
GretQNM
`n (t; r , r ′) (11)

with

GretQNM
`n (t; r , r ′) = 2Re

[
B`nφ̃`n(r)φ̃`n(r

′)

×e−i[ω`n t−p(ω`n)r∗−p(ω`n)r
′
∗−[Mµ2/p(ω`n)] ln(rr

′/M2)]
]
. (12)
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Intrinsic giant ringings

Here

B`n =

 1
2p(ω)

A(+)
` (ω)

dA(−)
` (ω)

dω


ω=ω`n

(13)

denotes the excitation factor corresponding to the complex frequency ω`n.

i. In Eq. (12), the real part symbol Re has been introduced to take into account the symmetry
of the quasinormal frequency spectrum with respect to the imaginary ω axis.

ii. The modes φ̃`n(r) are defined by

φ̃`n(r)≡ φ
in
ω`n`

(r)
/[

[ω`n/p(ω`n)]
1/2 A(+)

` (ω`n)

×ei[p(ω`n)r∗+[Mµ2/p(ω`n)] ln(r/M)]
]

(14)

and are therefore normalized so that φ̃`n(r)∼ 1 as r →+∞.
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Results : Massive scalar field (`= 3,n = 0)
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FIGURE: The (`= 3,n = 0) QNM of the massive scalar field. (a) The complex quasinormal frequency 2Mω30 for
α̃ = 0,0.05, . . . ,2.15,2.20. (b) The resonant behavior of the excitation factor B30.(d) and (e) Some intrinsic ringings
corresponding to values of the mass near and above the critical value α̃30. We compare them with the ringing corresponding to
the massless scalar field. The results are obtained from (12) with r = 50M and r ′ = 10M.
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Results : Massive scalar field (`= 3,n = 1)
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FIGURE: The (`= 3,n = 1) QNM of the massive scalar field. (a) The complex quasinormal frequency 2Mω31 for
α̃ = 0,0.05, . . . ,2.50,2.55. (b) The resonant behavior of the excitation factor B31.(d) and (e) Some intrinsic ringings
corresponding to values of the mass near and above the critical value α̃31. We compare them with the ringing corresponding to
the massless scalar field. The results are obtained from (12) with r = 50M and r ′ = 10M.
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Results : Fierz-Pauli field (odd-parity sector) (`= 1,n = 0)
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FIGURE: The odd-parity (`= 1,n = 0) QNM of the Fierz-Pauli field. (a) The complex quasinormal frequency 2Mω10 for
α̃ = 0,0.05, . . . ,1.00,1.05. (b) The resonant behavior of the excitation factor B10.(d) and (e) Some intrinsic ringings
corresponding to values of the mass near and above the critical value α̃10. We compare them with the ringing corresponding to
the odd-parity (`= 2,n = 0) QNM of the massless spin-2 field. The results are obtained from (12) with r = 50M and r ′ = 10M.
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A semiclassical analysis

It is well known that the weakly damped QNMs of BHs which are associated with massless
fields can be interpreted in terms of waves trapped close to the so-called photon sphere with
“radius" rc = 3M and we have for the corresponding impact parameter bc = 3

√
3M.

For massive fields, the corresponding geometrical parameters are :

i. The critical radius rc(ω) parameter is given by

rc(ω) = 2M

(
3+
(
1+8v2(ω)

)1/2

1+(1+8v2(ω))1/2

)
. (15)

Here v(ω) denotes the particle speed at large distances from the BH which can be expres-
sed in term of the particle momentum p(ω) by

v(ω) =

√
1− µ2

ω2 = p(ω)/ω. (16)
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A semiclassical analysis

ii. The critical impact bc(ω) parameter is given by

bc(ω) =
M√

2v2(ω)

[
8v4(ω)+20v2(ω)−1 +

(
1+8v2(ω)

)3/2
]1/2

. (17)

Semiclassically, the QNMs of massive fields can be written in the form

φ
±
ω`(r) = exp

[
±ip(ω)

∫ r∗
(

1+
2Mbc(ω)

2/rc(ω)2

r ′

)1/2(
1− rc(ω)

r ′

)
dr ′∗

]
v±

ω`(r) (18)

which permits us to obtain analytically the quasinormal frequencies and their excitation factors.
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A semiclassical analysis

The derivation of the quasinormal excitation factors B`n can be realized by using the standard
WKB techniques as well as the usual matching procedures. After a tedious calculation, we
obtain

B`n =
i(`+1/2)−1
√

8πn!

(
−216i(`+1/2)

ξ

)n+1/2

exp[2ip(ω`n)ζc(ω`n)] (19)

where ξ = 7+4
√

3 and with ζc(ω) given by

ζc (ω)
2M =

b2
c (ω)

2r2
c (ω)
− rc (ω)

2M

√
1+ 2Mb2

c (ω)

r3
c (ω)

−
(

b2
c (ω)

2r2
c (ω)
− rc (ω)

2M +1
)

ln

[
b2
c (ω)

2r2
c (ω)

+ rc (ω)
2M + rc (ω)

2M

√
1+ 2Mb2

c (ω)

r3
c (ω)

]
+
(

rc (ω)
2M −1

)√
1+ b2

c (ω)

r2
c (ω)

ln

[(
rc (ω)

2M −1
)(

b2
c (ω)

2r2
c (ω)

+1+

√
1+ b2

c (ω)

r2
c (ω)

)]
−
(

rc (ω)
2M −1

)√
1+ b2

c (ω)

r2
c (ω)

ln

[
b2
c (ω)

2r2
c (ω)

(
rc (ω)

2M +1
)
+ rc (ω)

2M + rc (ω)
2M

√(
1+ 2Mb2

c (ω)

r3
c (ω)

)(
1+ b2

c (ω)

r2
c (ω)

)]
+ln2. (20)
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Exact and asymptotic behaviors
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FIGURE: The quasinormal excitation factor of the
(`= 3,n = 0) QNM of the scalar field. Exact and asymptotic
behaviors.
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Extrinsic giant ringings

We consider that the BH perturbation is generated by an initial value problem with
(nonlocalized) Gaussian initial data. More precisely, we assume that the partial ampli-
tude φ`(t, r) solution of (3) is given, at t = 0, by

φ`(t = 0, r) = φ0 exp

[
− a2

(2M)2 [r∗(r)− r∗(r0)]
2
]

(21)

and, moreover, satisfies ∂t φ`(t = 0, r) = 0.

By Green’s theorem and using (3) and (5), we can show that

φ`(t, r) =
∫

∂t G
ret
` (t; r , r ′)φ`(t = 0, r ′)dr ′∗ (22)

describes the time evolution of φ`(t, r) for t > 0.
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Extrinsic giant ringings

We can now insert (6) into (22) and deform again the contour of integration in the
complex ω plane in order to capture the contribution of the QNMs.We have

φ
QNM
` (t, r) = ∑

n
φ

QNM
`n (t, r) (23)

with

φ
QNM
`n (t, r) = 2Re

[
iω`nC`n ×e−i[ω`n t−p(ω`n)r∗−[Mµ2/p(ω`n)] ln(r/M)]

]
. (24)

Here C`n denotes the excitation coefficient of the (`,n) QNM. It is defined from the
corresponding excitation factor B`n. We have

C`n = B`n

∫
φ`(t = 0, r ′)φin

ω`n`
(r ′)√

ω`n/p(ω`n)A
(+)
` (ω`n)

dr ′∗. (25)

Resonant excitation of black holes by massive bosonic fields and giant ringings SW-8 May 2014 19 / 23



Introduction
Resonant behavior of the quasinormal excitation factors

Extrinsic giant ringings
Conclusion and perspectives

Results : Extrinsic giant ringings

Results : Massive scalar field and Fierz-Pauli field

The results are obtained from (24) with r = 50M and by using (21) with φ0 = 1, a = 1 and r0 = 10M.

Massive scalar field (`= 3,n = 0) Fierz-Pauli field (odd-parity (`= 1,n = 0))
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FIGURE: (a) and (b) Some extrinsic ringings corresponding to
values of the mass near and above the critical value α̃20 and
comparison with the ringing associated with the massless
scalar field.
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FIGURE: (a) and (b) Some extrinsic ringings corresponding to
values of the mass near and above the critical value α̃10 and
comparison with the ringing associated with the odd-parity
(`= 2,n = 0) QNM of the massless spin-2 field.
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Conclusion

By considering massive bosonic field theories in Schwarzschild spacetime, we have pointed out
a new effect in BH physics :
I The excitation factors of the long-lived QNMs have a strong resonant behavior (observed

numerically and confirmed semiclassically).

This has an amazing consequence :
I The existence of giant and slowly decaying ringings in rather large domains of the mass

parameter. (We have also checked that the resonant effect and the associated giant ringing
phenomenon still exist when the source of the BH perturbation is described by an initial
value problem with Gaussian initial data.)

In the framework of massive gravity, even if the graviton is an ultralight particle, when it interacts
with a supermassive BH, values of the coupling constant α̃ leading to giant ringings can be
easily reached and used to test the various massive gravity theories or their absence could allow
us to impose strong constraints on the graviton mass and to support, in a new way, Einstein’s
general relativity.
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Perspectives

It would be interesting to study more realistic perturbations than the distortion descri-
bed by an initial value problem, e.g :
I The excitation of BH by a particle falling radially or plunging.
I To extend our study to the Kerr BH.
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Merci de votre attention.
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